用户名: 密码: 验证码:
工程车辆三参数最佳换挡规律及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程车辆在国民经济和国防建设中应用广泛,并发挥着重要的作用。实现自动换挡对于提高工程车辆的动力性和经济性、减轻驾驶员劳动强度等都有重要的意义。本文结合国家自然科学基金项目“工程车辆液力机械传动系统的电子节能控制研究”(59705005)和教育部骨干教师基金项目“提高工程车辆液力机械传动系统动力性与经济性的电控方法研究”,以提高工程车辆的动力性和经济性为主要目的,对工程车辆自动换挡规律及控制方法等内容进行了深入系统的研究。
     本文针对工程车辆的作业特性,综合考虑发动机的燃油消耗率和液力变矩器的效率,提出了工程车辆组合动力三参数最佳经济性换挡理论;为提高工程车辆的动力性并考虑到其时变性,提出了工程车辆动态三参数最佳动力性换挡理论;权衡经济性和动力性,提出了兼顾经济性和动力性的综合性换挡理论,并采用经济动力系数对其进行量化;最后开发了一套改进BP神经网络控制的自动换挡控制系统,并进行了台架试验。
     试验表明:本文提出的最佳经济性换挡策略可在一定程度上提高工程车辆的燃油经济性、增强整车节能效果,最佳动力性换挡策略可在一定程度上提高工程车辆的动力性,综合换挡策略能兼顾其动力性和经济性,是一种折衷的方法。本文的研究成果可为工程车辆自动换挡技术走向实用化提供参考。
Construction vehicles are widely used in economics of the country and construction of national defence, and playing an increasing role. It is the definite trend for construction vehicles to realize automatic shift in the future, which has an important meaning in alleviating the working strength of drivers, enhancing the productivity and working level, decreasing fuel consumption and improving the operating character of construction vehicles. Nowadays there is not a complete and special technique of automatic shift for construction vehicle. We usually use technique of automatic shift for automobiles. However, the main job of construction vehicles is working, and working pump will consume much power which can reach 60% at most. This is different from automobiles whose main job is steering, so it will make power performance and fuel economy lower if using the present theory of automatic shift.
     This Ph.D. dissertation are developed under the project named“Study on automatic transmission based on four parameters of construction vehicle”supported by DOCTOR Foundation project (No. 20020183003). And its main purpose is to improve the working and economical characters of construction vehicles, and emphases on studying the theory of automatic shift for construction vehicles. Besides, it will perform a deep and systemic study on the control method, simulation system and shifting quality. This dissertation can be divided into seven chapters.
     Chapter 1 Exordium. Based on a lot of reading and understanding of literature materials in and abroad, the background for choosing the subject and the purpose and meaning for realizing automatic shift were stated. Summarized the course, actuality, trend and practice in construction vehicles, and analyzed the problems and disadvantages of the study actuality of automatic shift in and abroad, the main study content was shown.
     Chapter 2 Analysis of driving system for construction vehicles. First, the composing and characters of driving system for construction vehicles was analyzed, and math model of driving system was established with modularization method. Second, with the present disadvantage of non-leading and much error for engine speed regulation models, a dynamic timing math model which is continuous leading and has a high imitating precision was established. This model settled a basement for the establishment of engine dynamic simulation model. Third, the common calculation methods and shortage of resistance of operation for construction vehicles were involved, and the relationship between resistance of operation and working pump pressure and driving force were also included in this chapter. The calculating equation for the portrait force of resistance of operation and working pump pressure was deduced. Based on this, the dynamic equations for driving and operation conditions were deduced respectively, which established a theory base for study and simulation control of automatic shift.
     Chapter 3 Study on automatic shift theory and control strategy for construction vehicles. Firstly, considering the fuel consumption rate of engine, the efficiency of torque converter and operation characters for construction vehicles, the best combination dynamical 3-parameter economical shift strategy for construction vehicles was advanced, then the shift points are deduced based on the common character curve of combination dynamical devices. Secondly, considering the non-steady and operation characters for construction vehicles, the dynamical 3-parameter economical shift strategy for construction vehicles was advanced, and the shift points are deduced by analytical method. Thirdly, the shift strategy considering power performance and fuel economy was made, then the coefficients of fuel economy and power performance are advanced to analysis the shift strategy. Finally, the improved BP network was used to perform control on automatic shift for construction vehicles.
     Chapter 4 Study on simulation of automatic shift system for construction vehicles. In order to validate the correctness and feasibility, the simulation system of automatic shift for construction vehicles was established based on the platform of SIMULINK and STATEFLOW of MATLAB simulation software. The simulation result showed that the average acceleration and velocity of dynamical shift strategy is higher than that of static shift strategy. In the same working condition and time, the farther vehicles can drive, the better the power character is. The best economical shift strategy can improve fuel economy greatly. Simulation showed the best dynamical shift strategy advanced in this paper is correct and feasible.
     Chapter 5 Study on control system of automatic shift. In this section we analyzed the design course of automatic shift control system specifically and emphasized on design of electronic control system. First, the whole design and method for electronic control system was advanced, and based on modularization design, the hardware and software design of electronic control system was introduced. Finally, anti-disturbing design was performed based on both hardware and software to ensure the stability and reliability in complicated environment, which made a good preparation for the experiment study in the next chapter, and established a base for the future installing vehicle experiment.
     Chapter 6 Experiment study. Firstly, Summarized the experiment system, including experiment purpose, experiment content, conformation and the main character parameters of test-bed and devices used in this experiment; Secondly emphasized on the best economy shift experiment, the best dynamic shift experiment and dynamical shift quality experiment; Finally, the experiment result was analyzed specifically. The correctness and feasibility of the dynamic three parameter best dynamical shift theory and combination dynamical three parameter best economical shift theory for construction vehicles advanced in this paper were validated. Besides, it is proved that shift quality can be improved greatly using best dynamic shift strategy.
     Chapter 7 Conclusion and expectation. The main study achievement, creation part and the existing problems in study were advanced, and the expectation for the future work was also put forward.
     The innovative research works in this Ph.D. dissertation is as follows:
     1. In order to decrease fuel consumption rate and improve the efficiency of transmission system, the optical economic shift theory of construction vehicle were put forward according to the characteristics of large power consumption by the working oil pump. According to the matching principle of engine and torque converter, by means of Matlab’s high data procession, the universal characteristic curve were drawn of the combinatorial power under different working oil pump pressure, and then the optical economic shift theory curve and the solution method for the optical shift points were obtained, after that, the three-parameter optical shift schedule of the combinatorial were made. The experimental results show that the optical economic shift schedule presented in the dissertation can improve the fuel economy and save energy.
     2. In order to improve the power performance of construction vehicle and considering the dynamic characteristic of construction vehicle, the optical power shift theory of construction vehicle were put forward aimed at high acceleration(throttle opening, vehicle velocity and working oil pump pressure), and solving process for the shift points of three-parameter optical shift theory were deduced. After that, the three-parameter optical shift schedule of the combinatorial power was obtained. The experimental results show that the optical economic shift schedule presented in the dissertation can improve the power performance and shift quality.
     3. According to the trade-off between economy performance and power performance, the economy and power coefficients and its calculation formula were deduced, an the economy and power performance of the shift schedule were analysed, and then shift theory consideration to the economy performance and power performance, after that, the shift strategy were made.
     4. According to the reliability and the practicality, the control methods based on the BP neural network improved by Fletcher-Reeves conjugate gradient were put forward to control automatic shift of construction vehicle. The experimental results show that the automatic shift system of construction vehicle can be controlled preferably by intelligent control method, and can be shifted automatically according to the shift parameters.
     The research results in the dissertation give reference for the practicality of the automatic gearshift of construction vehicle.
引文
[1]丁春凤,赵丁选,唐新星,等.工程车辆四参数自动变速系统的试验[J].农业机械学报.2006,37(1):16-18.
    [2]中华人民共和国国民经济和社会发展第十一个五年规划纲要,第五篇,第十九章[EB/OL]. 2006.3:人民网:http://politics.people.com.cn.
    [3]我国工程机械行业的现状和趋势综述[EB/OL]. 2006.03.09:http://www.mysteel.com/gc/cjzh/jdhy.
    [4]传统机械行业景气提前见底回升[EB/OL]. http://www.stockstar.com/info/darticle.asp.
    [5]中国建设工程招标网[Eb/Ol]. http://www.projectbidding.cn/default.html.
    [6]茅仲文.抓住机遇开拓东南亚工程机械市场[J].国际工程机械, 2003.3:46-53.
    [7]赵克利.提高工程车辆智能变速性能的综合控制研究[D].吉林大学博士学位论文, 2004.
    [8]叶勤.汽车自动变速器技术及其发展[J].重庆工程学院学报, 2006.05.20(5):23~27.
    [9]张广栋,张真忠,邱全近.汽车自动变速器的发展及应用[J].公路与汽运, 2006.02.15(1):15~17.
    [10] Yoshiaki Kato, Shigeyuki Hikage,Hideki Sado. Recent Trends in Drivetrain Technologies Overseas[J]. JSAE, 2004.58(9):10-16.
    [11] Haruo Houjoh. Present and Future Aspects of Drivetrain Technology[J]. JSAE, 2004.58(9):4-9.
    [12]高吕和,阎虎生.我国自动变速器的发展与现状分析[J].北京工业职业技术学院学报.2007,6(3):35-37,23.
    [13] O' Neill. Gearing up for the Future[J]. Automotive Engineer, 2003.28(8):4~6.
    [14]张俊智,王丽芳,葛安林.自动换挡规律的研究[J].机械工程学报, 1999.8:38-41.
    [15]彼得罗夫,路兆风译.汽车传动系自动操纵的理论基础[M].北京:人民交通出版社, 1963.
    [16]卢新田,许纯新,张勇.推土机的模糊换挡系统[J].吉林工业大学自然科学学报, 1999.29(3)):12~17.
    [17]张鹏,许纯新,朱振宇.轮式装载机模糊自动变速技术的研究[C].中国工程机械学会2003年年会论文集, 2003:248-252.
    [18]王学峰,许纯新,赵克利.基于模糊神经网络的工程车辆换挡试验系统开发[J].同济大学学报, 2001.9.29(9):1119-1123.
    [19]王学峰,赵克利,许纯新.工程机械模糊神经网络挡位决策方法[J].吉林工业大学自然科学学报, 2001.4.31(2):7-11.
    [20]唐新星.工程车辆两参数自动变速控制系统研究[D].吉林大学硕士学位论文, 2004.
    [21]葛安林,李焕松,武文治,等.动态三参数最佳换档规律的研究[J].汽车工程, 1992.14(4):239-247.
    [22]龚捷.以提高传动效率为目的的工程车辆自动变速换挡规律研究[D].吉林大学博士学位论文, 2002.
    [23]陈宁.工程车辆节能换挡规律智能控制方法研究[D].吉林大学博士学位论文, 2005.
    [24]丁春凤.工程车辆四参自动变速技术研究[D].吉林大学硕士学位论文, 2004.
    [25]龚捷,赵丁选,陈鹰,等.工程车辆自动变速器的节能换挡规律研究[J].机械工程学报.2004,40(3):84-87.
    [26]葛安林.自动变速器(十)--自动变速器的自动控制系统(中)[J].汽车技术, 2002(2):1-5.
    [27]王康,黄宗益,詹永红.装载机变速器的换挡操纵[J].工程机械, 2000.2:18-22.
    [28]黄宗益,李兴华.装载机静压传动[J].建筑机械, 1999.12:36~39.
    [29]赵丁选.工程车辆自动变速的基本原理.工程机械.2006,37(9).-27-30.
    [30]国家质量监督检验检疫总局,中国国家标准化管理委员会发布. GB19578-2004:乘用车燃料消耗量限值[M].中国标准出版社.
    [31]中华人民共和国国民经济和社会发展第十一个五年规划纲要,第一篇,第三章[EB/OL]. 2006.3:人民网:http://politics.people.com.cn.
    [32]中国石油新闻网[Eb/Ol].中国石油新闻网. http://www.sinopecnews.com.cn, 2005.4.27.
    [33]赵丁选,马铸,杨力夫,等.工程车辆液力机械传动系统的动力性分析[J].中国机械工程.2001,12(8):948-950.
    [34] Zhang Yong, Song Jian,Wu Di. Automatic Transmission Shift Point Control Under Different Driving Vehicle Mass[C]. SAE, 2002-01-1258.
    [35]张勇.车辆自动变速系统自适应模糊控制研究[D].吉林工业大学博士学位论文, 2000.02.
    [36] Robert Wallner,J?rg Zürn. Improvement in the Shift Comfort of Commercial Vehicle Transmissions[C]. SAE paper, 2000-01-3318.
    [37] Jack S.P Liu,Paul W. Erlandson. A Nonlinear Transient CAE Method for Vehicle Shift Quality Prediction [R]. SAE paper 2006-01-1640.
    [38]国家环境保护“十一五”规划[EB/OL].国发〔2007〕37号, 2007.11.22:http://www.gov.cn/zwgk.
    [39]王学峰.工程机械液力机械传动变速系统智能控制研究[D].吉林大学博士学位论文, 2002.
    [40]丁国强,周志立,贾鸿社,等.工程机械技术现状与智能化信息化趋势[J].矿山机械, 2003.08:14~18.
    [41]赵昱东.国外轮式装载机的新进展[J].建筑机械化, 2000.4:5-7.
    [42]王学峰,许纯新,卢新田,等.工程车辆变速器模糊智能控制系统研究[J].农业机械学报, 2000.31(6):28~31.
    [43]王学峰,许纯新,赵克利,等.工程机械模糊神经网络挡位控制试验研究[J].农业机械学报, 2002.33(1):1~5.
    [44]田力威,许纯新,赵丁选.轮式装载机模糊换档策略[J].中国公路学报, 1999.01.12(1):112~117.
    [45]赵克利,马乐,刘迹远.工程车辆智能换挡规律的仿真[J].中国公路学报, 2006.9.19(5):123-126.
    [46] Keli Zhao, Dewen Kong,Chunxin Xu. Simulation study on simulating human intelligent fuzzy control of construction vehicle automatic transmission[C]. Proceedings of the Sixth International Conference on Fluid Power Transmission and Control, 2005:814-818.
    [47]朱振宇.工程车辆自动变速智能控制系统试验研究[D].吉林大学博士学位论文, 2004.
    [48]戴群亮.基于CAN总线的工程车辆自动变速综合控制研究[D].吉林大学博士学位论文, 2003.
    [49]韩顺杰,赵丁选.基于四参数的工程车辆自动变速节能换挡策略[J].江苏大学学报(自然科学版), 2006.11.27(6):505-508.
    [50]王卓,王艳辉,贾利民,等.装载机节能换挡规律数学模型的推导[J].起重运输机械, 2005(4):26-27.
    [51]龚捷,赵丁选.工程车辆自动变速器换档规律研究及自动控制仿真[J].西安交通大学学报, 2001.09.35(9):930~934.
    [52] Zhang Hongyan, Zhao Dingxuan,Tan Xinxing. Four-parameter automatic transmission technology for construction vehicle based on Elman recursive neuralnetwork[J]. Chinese Journal of Mechanical Engineering (English Edition), 2008.21(1).
    [53]葛安林,黄秀权,程秀生,等.液力机械变速器的自动控制[J].汽车工程, 1986(4):16-26.
    [54] Fawaz S. Baltaji,Eric Olsen. Digital Connectivity Trends for In-Vehicle Infotainment Systems[C]. SAE:2006-21-0034, 2006.10.
    [55]张建珍,过学迅.车辆自动变速器的研究现状及发展趋势[J].技术导向, 2007.01:37~39.
    [56]张耀宏.工程机械智能化的现状[J]. View Abroad, 2004.04:72~74.
    [57] Chyi-Tsong Chen,Shih-Tein Peng. Intelligent process control using neural fuzzy techniques[J]. Journal of Process Control, 1999.9:493~503.
    [58] Toshimichi Minowa, Tatsuya Ochi,Hiroshi Kuroiwa. Smooth Gear Shift Control Technology for Clutch-to-Clutch Shifting[C]. SAE:1999-01-1054.
    [59] Daniel Gama Florencio, Euglen Reis Assis,Cesar Henrique Ferreira Amendola. The Manual Transmission Automated– Gearshift Quality Comparison to a Similar Manual System[R]. SAE, 2004-01-3363.
    [60] Yuji Fujii, William E. Tobler,Gregory M. Pie. Review of Wet Friction Component Models for Automatic Transmission Shift Analysis[C]. SAE, 2003-01-1665.
    [61]何忠波,白鸿柏,张培林,等.提高AMT车辆换挡品质控制策略与试验研究[J].汽车工程, 2006.28(9):839~843.
    [62]赵丁选,杨镝,陈宁.工程车辆自动变速器换挡品质试验研究[J].建设机械技术与管理.2006,19(1):78-81.
    [63]陈宁,赵丁选,张志义,等.工程车辆换挡品质控制的研究[J].工程机械.2005,36(1):23-26.
    [64]智国平.基于动力传动系统联合控制的装载机自动换挡系统开发[D].吉林大学硕士学位论文, 2004.
    [65] Takahisa Nagao. Development of SATV [super all terrain vehicle] and HMT [hydro mechanical transmission] system[C]. SAE, 2002-01-1448.
    [66]张光裕,许纯新.工程机械底盘设计[M].北京:机械工业出版社, 1988.11.
    [67]吕海涛,孔江生,刘振生.浅谈液力机械传动[J].农机使用与维修, 2004.02:17~17.
    [68]陈秀玲. ZL40/50装载机传动系统的改进设计与试验研究[D].吉林大学硕士学位论文, 2005.
    [69] Nobuhiko Emori Toshihiko Nishiyama, Koutarou Wakamoto. Development of Diesel Particulate Filter for Construction Machines[C]. SAE TECHNICAL PAPER SERIES, 2003-01-0385.
    [70]权龙,王巍巍.金属带式无级变速传动研究中的发动机建模[J].农业机械学报, 2004.35(01):44~47.
    [71] Quan Zheng, Krishnaswamy Srinivasan,Giorgio Rizzoni. Transmission Shift Controller Design Based on a Dynamic Model of Transmission Response[J]. Control Engineering Practice, 1999.7:1007~1014.
    [72]阴晓峰,谭晶星,雷雨龙,等.基于神经网络发动机模型的动态三参数换挡规律[J].机械工程学报, 2005.41(11):174~177.
    [73]徐立友,周志立,张明柱,等.拖拉机液压机械无级变速传动系统与发动机的合理匹配[J].农业工程学报, 2006.22(9).
    [74] Jingxing Tan Xiaofeng Yin, Yulong Lei,Anlin Ge. Combined Control Strategy for Engine Rotate Speed in the Shift Process of Automated Mechanical Transmission[C]. SAE paper, 2004-01-0427.
    [75]许维达.柴油机动力装置匹配[M].机械工业出版社, 2000,10(1).
    [76]滕万庆.柴油机调速新技术[M].哈尔滨工程大学出版社, 2000.03(1):20-20.
    [77]蒋德明.内燃机原理(修订本)[M].北京:中国农业机械出版社, 1993.6.3.
    [78]徐方大,宋正亚.柴油机速度及扭矩特性的探讨[J].江苏理工大学学报:自然科学版.1999,20(4):45-48.
    [79]梁玲,周经渊.发动机速度特性的数学模型[J].长沙铁道学院学报.1995,13(3):48-51.
    [80]张明柱,周志立,徐立友,等.柴油发动机调速特性时连续性数学模型研究[J].农业工程学报.2004,20(3):74-77.
    [81]彭长清.误差与回归[M].北京:兵器工业出版社, 1991.
    [82] Zhang Q Wu K. Hanse A, et al. A multiple locallylinearized diesel engine model [J]. Transactions of the ASAE,2002,45(2):273-280.
    [83]黄建明.机械式自动变速器的控制策略研究[D].重庆大学博士学位论文, 2004.
    [84]王丽芳.电控机械式自动变速器关键技术研究[D].吉林大学博士学位论文, 1997.
    [85] K. S. Hong, K. J. Yang,K. I. Lee. Object-oriented modeling for gasoline engine and automatic transmission systems[J]. Computer Applications in Engineering Education, 1999.7(2):107-119.
    [86]石祥钟.液力变矩器内部三维流动数值模拟与特性预测方法研[D].吉林大学博士学位论文, 2005.
    [87] K.-H. Sternemann, M.M. Didic,H. Hofer. Simulation of a torque converter production considering quality attributes[J]. Computers in Industry, 1999.40:259~265.
    [88]褚亚旭.基于CFD的液力变矩器设计方法的理论与实验研究[D].吉林大学博士学位论文, 2006.
    [89]唐振科.工程机械底盘设计[M].黄河水利出版社, 2004.
    [90]唐经世.工程车辆底盘学[M].成都:西南交通大学出版社, 1999.
    [91]商高高,何仁.发动机与液力变矩器共同工作特性的分析[J].江苏理工大学学报(自然科学版), 2000.11.21(6):65-68.
    [92]徐寅生,汪立亮,赵晓忠.现代汽车自动变速器原理与检修[M].北京:电子工业出版社, 2000.
    [93]周复光.铲土运输机械设计与计算[M].水利电力出版社, 1988.
    [94]黄宗益,徐希民.铲土运输机械设计[M].北京:机械工业出版社, 1989.5.
    [95]吉林大学汽车工程学院.汽车运用工程多媒体网络教程[J/OL]. http://202.198.16.51/software/xuhongguo/qcyygc/chapter2/2.2.2.htm.
    [96]毛务本,钱建栋,郎德虎.一种计算汽车加速时间的新方法[J].江苏理工大学学报(自然科学版), 2000.21(1):32-35.
    [97]卢新田.履带式推土机自动变速控制技术的研究[D].吉林工业大学博士学位论文, 1999.10.
    [98]余志生.汽车理论[M].北京:机械工业出版社, 1996.
    [99]余荣辉,孙冬野,秦大同.机械自动变速系统动力性换挡控制规律[M].农业工程学报2006.04,37(4):1-4.
    [100]雷晓东.电控机械自动变速系统换档控制策略研究[D].重庆大学硕士学位论文, 2005.
    [101] Kuzak.Dm, Shieds.B.D,Lee J J. Powertrain control strategy determination for computer-controlled transmissions[J]. Int. j. of Vehicle Design, 1987.8(1):13~36.
    [102]周末.自动变速器换档规律的研究[D].武汉理工大学硕士学位论文, 2006.04.
    [103] Ge Anlin, Jiang Jiaji,Wu Wenzhi. Research on Dynamic 3-Parameter Shift Schedule of Automatic Transmission[C]. SAE paper:912488.
    [104]边淑君.发动机与液力变矩器匹配计算的软件开发[J].工程机械,2007,38(6):10-13.
    [105]李小华,罗福强,汤东.多项式插值法绘制发动机万有特性曲线[J].农业工程学报, 2004.20(5):138-141.
    [106]王红岩.金属带式无级变速传动系统分析、匹配与综合控制的研究[D].吉林大学博士学位论文, 1998.
    [107]董伟.汽车坡路行驶发动机与无级变速器综合控制研究[D].吉林大学博士学位论文, 2007.
    [108]熊翔辉.计算机绘制万有特性曲线方法的探讨[J].江西工业大学学报, 1989.11(1):8-13.
    [109]王向东.万有特性曲线的计算机图形处理及其方法[J].内燃机工程, 1987.8(2):59-65.
    [110]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社, 1993.
    [111]张连方,刘炽棠,顾宏中.柴油机原理(第一版)[M].上海交通大学出版社, 1987.11.
    [112] A Haj-Fraj,F Pfeiffer. Optimal control of gear shift operations in automatic transmissions[J]. Journal of the Franklin Institute 338, 2001:371-390.
    [113] Wang Wenbo. Dynamic powertrain system modeling and simulation with applications for diagnostics design and control[D]. [Ph.D dissertation],University of Wisconsin-Madison, 2000.
    [114] Manish Kulkarni, Taehyun Shim,Yi Zhang. Shift dynamics and control of dual-clutch transmissions[J]. Mechanism and Machine Theory, 2007(42):168–182.
    [115] Andreas Abe, Uwe Schreiber,Jens Schindler. Engine and Gearbox Modeling and Simulation for Improving the Shifting Behavior of Powertrains with Manual or Automated Transmission[C]. 2006 SAE World Congress Detroit, Michigan,April 3-6, 2006, 2006.
    [116] Steven A. Crawford, Timothy A. Mcmahan,Richard G. Van Ryper. Improving Automatic Transmission Quality with High Performance Polyimide Rotary Seal Rings[R]. SAE:980734, International Congress and Exposition Detroit, Michigan 1998.2.
    [117]李东兵.工程车辆自动变速器换档品质控制研究[D].吉林大学硕士学位论文, 2005.
    [118]赵丁选,王卓,张景波.改善工程车辆换档品质的变结构模糊控制系统研究[J].农业机械学报, 2003.34(1):8-10.
    [119]陈宁,赵丁选,龚捷,等.工程车辆自动变速挡位决策的遗传径向基神经网络方法[J].吉林大学学报:工学版.2005,35(3):258-262.
    [120]张红彦,赵丁选,陈宁,等.基于遗传算法的工程车辆自动变速神经网络控制[J].中国公路学报.2006,19(1):117-121.
    [121] S.S Halilcevic,Gubina a F. Automatic transmission network capability assessment scheme in daily scheduling using neural networks[C]. Power Tech Conference Proceedings, 2003 IEEE Bologna, 2003.06.2(2):23-26.
    [122] Yi Jun, Wang Xuelin,Hu Yuj In. Fuzzy Control and Simulation on Automatic Transmission of Tracked Vehicle in Complicated Driving Conditions[C]. Vehicular Electronics and Safety, IEEE International Conference, 2006:259-264.
    [123]张志义,赵丁选,陈宁.工程车辆模糊自动换挡策略研究[J].农业机械学报.2005,36(10):26-29.
    [124]张志义,赵丁选,于微波.工程车辆三参数模糊换挡策略的研究[J].起重运输机械.2007(2):37-40.
    [125]王卓,赵丁选,等.工程车辆挡位决策的自适应神经模糊推理系统[J].农业机械学报.2002,33(6):1-4.
    [126] Chih-Lyang, Hwang,Cheng-Ye Hsieh. A neuro-adaptive variable structure control for partially unknown non-linear dynamic systems and its application[C]. IEEE Trans. Contr. Syst. Tecchol, 2002.10(2):263-217.
    [127] Shijing Wu,Hongshan Lu. Fuzzy Neural Network Control in Automatic Transmission of Construction Vehicle[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, 2006.06:2512-2516.
    [128]傅京孙(美)著,钱学深译.模式识别及其应用[M].北京:科学出版社, 1983.10.
    [129]韦巍.智能控制技术的研究现状和展望[J].机电工程, 2000.17(6):1-4.
    [130]诸志龙.汽车动力传动系统一体化智能控制技术研究[D].安徽农业大学硕士学位论文, 2004.
    [131] Cai Zixing. Intelligent Control: Principles, Techniques and Applications[J]. Singapore, World Scientific, 1997.
    [132]张志义.工程车辆三参数模糊自动换挡规律研究[D].吉林大学博士学位论文, 2007.
    [133]杨志刚.汽车自动变速系统智能控制方法研究[D].重庆大学博士学位论文, 2003.10.
    [134]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社, 1998.
    [135]徐丽娜.神经网络控制[M].哈尔滨:哈尔滨工业大学出版社, 1999.5.
    [136]王文成.神经网络及其在汽车工程中的应用[M].北京:北京理工大学出版社, 1998.7.
    [137]陈长征,罗跃刚,白秉三,等.结构损伤监测与智能诊断[M].北京:科学出版社, 2001.
    [138]高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报, 1998.21(1):80-86.
    [139]胡郁葱,徐建闽,吴一民,等.基于BP神经网络的车辆定位融合模型[J].华南理工大学学报(自然科学版), 2004.02.32(2):46-49.
    [140]孙增圻,张再兴,邓志东.智能控制理论与技术[M].清华大学出版社, 1997.4.
    [141] R. Fletcher,C.M. Reeves. Function minimization by conjugate gradients[J]. The Computer Journal, 1964.7(2):149-154.
    [142] Dai Yuhong. Further insight into the convergence of the Fletcher-Reeves method[J]. Science in China, 1999.9.42(9):905-916.
    [143]王卓.工程车辆自动变速系统的智能控制研究[D].吉林大学博士学位论文, 2003.
    [144] Jinming Yang, Jason Bauman,Al Beydoun. An Effective Model-Based Development Process Using Simulink/Stateflow for Automotive Body Control Electronics[C]. Commercial Vehicle Engineering Congress and Exhibition,Chicago, Illinois, USA.SAE:2006-01-3501.
    [145] Scott Ranville. Case study of commercially available tools that apply formal methods to a Matlab/Simulink/Stateflow model[C]. 2004-01-1765. SAE 2004 World Congress and Exhibition.
    [146]张葛祥,李娜. MATLAB仿真技术与应用[M].清华大学出版社, 2003.
    [147] Yuhai Wang, Jian Song,Xingkun Li. Simulation of AMT Autoshift Process Based on Matlab/Simulink/Stateflow. SAE:2004-01-2055. SAE Automotive Dynamics, Stability and Controls Conference and Exhibition.
    [148]苏晓生.掌握MATLAB6.0及其工程应用[M].北京:科学出版社, 2002.
    [149]黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防工业出版社, 2001.
    [150]杨益明.汽车使用性能与检测[M].人民交通出版社, 2002.7.
    [151]刘溧,金亚英,杜晓明. ZL50装载机自动变速电控系统的研制[J].建筑机械, 2002(2):24-26.
    [152]刘溧,耿聪,杜晓明,等. ZL50装载机自动换挡电子控制单元的开发研究[J].中国公路学报, 2004.04.17(2):124~126.
    [153]杨辉,张洪坤.基于单片机设计的机械式自动变速器[J].自动化技术与应用, 2004.23(9):33-35.
    [154]闫磊.工程车辆四参数换挡规律研究及单片机控制系统开发[D].吉林大学硕士学位论文, 2004.
    [155]张宏冲,范巨薪,牛明奎.单片机在电控机械式自动变速系统中的应用[J].电子技术应用, 1999.10:15-17.
    [156]朱振宇,许纯新,张鹏.工程车辆自动变速器PIC单片机控制系统设计[J].建筑机械, 2003.12:68-70.
    [157]阳宪惠.现场总线技术及其应用[M].北京:清华大学出版社, 2002.
    [158]李金刚,刘永鸿.基于AT89C51型单片机的CAN总线智能节点设计[J].国外电子元器件, 2006.8:26-29.
    [159]李朝青.单片机与DSP外围数字IC技术手册[M].北京航空航天大学出版社, 2003.
    [160]尚涛.液压挖掘机作业及行走系统节能控制研究[D].吉林大学博士学位论文, 2005.
    [161]国香恩.液压挖掘机节能模糊控制系统研究[D].吉林大学博士学位论文, 2004.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700