用户名: 密码: 验证码:
高放废物处置库北山预选区区域地下水流模拟及岩体渗透特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高放废物地质处置的目的就是将高放废物与人类环境有效隔离。高放废物处置库的围岩通常为低渗透的岩体,其安全性在很大程度上取决于围岩对核废物的屏障功能和作为核素迁移载体的裂隙水运动特征。因此,开展处置库场址水文地质评价工作尤为重要。本文依托“甘肃北山预选区选址和场址评价及地质处置技术研究”项目,开展北山地区区域水文地质评价研究。研究首先通过建立大区域地下水流数值模型,模拟区域地下水循环模式,宏观上分析和认识地下水迁移路径,为高放废物处置库选址评价提供区域水文地质依据,并分析潜在的处置库地下水排泄区域;其次,在预选场址尺度上,开展北山预选区重点岩体渗透性空间分布规律研究,通过岩体离散裂隙网络模型的建立和模拟计算,分析围岩裂隙渗透特征,建立预选场址岩体渗透性能评价方法,为处置库选址和场址评价提供数据、方法和理论支持。
     本文通过对研究区地下水均衡要素、流场及水文地质参数分布的分析和描述,建立了研究区水文地质概念模型,利用GMS软件构建了地下水稳定流数值模拟模型,并利用观测孔水位数据进行模型参数识别。通过模拟计算,对研究区地下水系统水均衡及水质点运移进行了模拟分析。研究表明,1)研究区地下水系统多年平均总补给量为12042.19×104m3/a,总排泄量为12128.5×104m3/a,均衡差为-86.31×104m3/a。地下水主要补给来源是大气降水入渗和沟谷洪流入渗,其值为1418.19×104m3/a。地下水的主要排泄方式为蒸发,蒸发量为9589.17×104m3/a,其次为向相邻含水层的侧向排泄,其中,向黑河下游平原区的侧向排泄量为1068.74×104m3/a,向河西走廊地区的侧向排泄量为1178.21×104m3/a;2)北山预选区区域地下水的主流向是自西向东流动,排泄区为黑河下游平原及河西走廊地区;3)地下水质点轨迹模拟结果表明,从马鬃山地区到河西走廊地区的时间大约需要7.2~16.3万年,而运移到黑河下游平原最快约19.6万年,最慢需要68万年;模型模拟结果表明研究区地下水循环路径长、循环速度慢,且与外界水交换量少,符合高放废物处置库选址的基本条件。
     本研究以野外裂隙实测数据为基础,统计分析了BS16钻孔围岩芨芨槽岩体的渗透特征。研究结果表明,1)BS16钻孔围岩渗透系数变化范围为
     10-7m/s~10-14m/s,岩体渗透性在垂向上呈波动分布,空间分布规律不明显;2)BS16钻孔围岩的主渗透方向优势走向为35°、298°和70°,渗透主值各向异性比率C1值主要分布区间为1.3~1.8,平均值为1.46;C2值主要分布在3左右,占总数概率25%。
     在分析BS16钻孔围岩裂隙发育特征基础上,本文利用Fracman软件建立了BS16钻孔围岩芨芨槽岩体的三维裂隙网络模型,分析了岩体裂隙连通性。研究表明,1)BS16钻孔围岩裂隙按产状分为5组,裂隙优势产状分别为239∠74°、303∠66°、56∠63°、136∠72°和97∠12°。五组裂隙的倾向、倾角基本上服从正态函数曲线分布(第五组裂隙倾向除外),而裂隙间距与迹长主要服从负指数函数曲线分布型式;裂隙在垂向上具有明显分层性,按裂隙密度将围岩在垂向上分为6层,裂隙产状服从正态函数分布;2)BS16钻孔围岩离散裂隙网络模型模拟分析表明,水力连通裂隙集中分布在260m~480m深度范围内,且优势走向为320°,70°和100°;500m深度以下围岩裂隙水力连通性差,是适宜的高放废物处置库建造深度。
Deep geological disposal of high-level radioactive waste is considered to bemore stable and safer way to isolate high-level radioactive waste from humanenvironment. Normally, the surrounding rock is expected to be low-permeable matrix.The safety of geological disposal depends on the screen effect of surrounding rockand fluid flow with nuclear waste transport through complex fractured rocks.Therefore, it is critical to conduct hydrogeological assessment at potential disposalsites of interest. Based on the project of “Technical study on the selection andevaluation of potential sites and their relevant geological disposal issues in GansuBeishan region”, this study, at the scale of potential selection site, further made effortson characterizing groundwater circulation, developing a regional numerical model,analyzing controlling factors on groundwater circulation, macroscopically capturinggroundwater flow path, and providing hydrogeological evidences for high-levelradioactive disposal at Beishan region. Additionally, at the scale of potential selectionsite, we conducted researches on capturing spatial distribution of hydraulicconductivity for tentative rocks of interest, developing discrete fracture networkmodeling to simulate hydraulic properties of surrounding rocks, building up a methodto evaluate permeability of matrix, all of which were aimed to provide statistical andtheoretical evidences for selecting and evaluating potential sites.
     The study developed a hydrogeological conceptual model based on the analyzingand mapping corresponding hydrogeological aspects, including groundwater budget,flow net, and relevant spatial distribution of hydraulic properties. Furthermore, wedeveloped stead-state groundwater numerical model through GMS and used observeddata to calibrate the numerical model. According to the numerical results, we analyzedwater budget for the studied area, and used particle tracking method to simulatenuclear waste movement travelling through the fractured reservoir. Results from thisstudy show that:(1) The average annual recharge to studied groundwater system isaround12042.19×104m3/a, while the average annual discharge is12128.50×104m3/a, with deficiency amounting to-86.31×104m3/a. The recharge magnitude to thegroundwater system is mainly composed of infiltration from precipitation and leakagefrom flood in valleys, which is1418.19×104m3/a. On the other hand, groundwater ismainly discharged in terms of evapotranspiration, which is around9589.17×104m3/a,followed by the lateral discharge to adjacent groundwater system, among which with1068.74×104m3/a is discharged to the downstream of Hehei plain area, whereas with1178.21×104m3/a is discharged to Hexi Corridor region;(2) Groundwater flows bylarge from west to east, where the studied discharge areas are the downstream ofHehei plain and the Hexi Corridor region;(3) According to the particle trackingmethod, it takes around7.2~16.3×106years for particle traveling from theMazongshan area to the Hexi Corridor region, while the shortest and longestresidence time for particle traveling from the Mazongshan area to the downstream ofHehei plain are19.6×106and68×106years. As expected, it takes very long path forparticle circulating through the studied groundwater system and thus results in longresidence time. Moreover, little water mixing and exchanging during circulationprocess. Therefore, Beishan area is considered to be a favorable site for the purpose ofhigh-level radioactive disposal.
     Based on the data from in-site fracture measurements, this study statisticallyanalyzed hydraulic properties of surrounding rocks around drilling well BS16. Theresults show that:(1) Hydraulic conductivity of surrounding rocks about BS16variesfrom10-7m/s~10-14m/s, and shows a fluctuating distribution in the vertical directionwithout a determined spatial pattern;(2) The principle directions of hydraulicconductivity for surrounding matrix are35°,298°and70°, respectively. Theanisotropic ratio C1ranging between1.3~1.8with average value to be1.46; theaverage anisotropic ratio C2is around3, taking up25%of ensemble samples.
     Upon analyzing the characteristics of fracture development around BS16, thisstudy developed discrete fracture network through Fracman software, and furtheranalyzed the connectivity of fractures. The results show that:(1) The preferentialattitudes of fractures can be categorized into five groups, which are239∠74°, 303∠66°,56∠63°,136∠72°and97∠12°, respectively. The inclinations anddip angles of those groups normally follow normal Gaussian distribution, except forthe inclination of the fifth group. Additionally, the fracture spacing and length follownegative exponential function. Note that there is a clear vertical stratification forfractured rocks, which can be categorized into six layers according to the fracturedensity distribution. Fracture attitude follows normal Gaussian distribution.(2)According to the results from discrete fracture network modeling at BS16, hydraulicconnection for fracture network is concentrated on the depth between260m~480m,with preferential fracture orientations amounting to320°,70°, and100°. Below thedepth about500m, there is poor hydraulic connection for fracture network, and thus itis a favorable depth for geological disposal of high-level radioactive waste.
引文
[1]王驹,陈伟明,苏锐,等.高放废物地质处置及其若干关键科学问题.岩石力学于工程学报,2006,25(4):801~812
    [2]王驹,范显华,徐国庆,等.中国高放废物地质处置十年进展.北京:原子能出版社,2004
    [3]王驹,徐国庆,邡华铃,等.中国高放废物地质处置研究进展:1985~2004.世界核地质科学,2005,22(1):5~16
    [4]郭永海,吕川河.高放废物处置库选址中低渗透介质地质研究的几个问题.工程地质学报,2003,11(2):133~137
    [5]周汾,浦婉华.裂隙岩体各向异性渗透特性及其野外测定方法.水利水电科学研究院科学研究论文集第8集,1982:114-134
    [6]郭永海,王驹,金远新.世界高放废物地质处置库选址研究概况及国内进展.地学前缘,2001,8(2):327~332
    [7]徐国庆.加拿大和美国高放废物地质处置研究概况.国外铀金地质,2001,18(3):169~175
    [8] U.S. Department of Energy.1986f. Environmental Assessment, Yucca Mountain Site,Nevada Research and Development Area, Nevada. DOE/RW-0073. Washington, DC: Office ofCivilian Radioactive Waste Management
    [9] U.S. Department of Energy.1998. Viability Assessment of a Repository at Yucca Mountain.DOE/RW-0508. Office of Civilian Radioactive Waste Management
    [10] U.S. Department of Energy.2002b. Environmental Impact Statement for a GeologicRepository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at YuccaMountain, Nye County, Nevada. DOE/EIS-0250F
    [11] U.S. Department of Energy.2007. Supplemental Environmental Impact Statement for aGeologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Wasteat Yucca Mountain, Nye County, Nevada. DOE/EIS-0250F-S1.)
    [12] Bel, J.J., Wickham, S.M. and Gens, R.M.F.,2006. Development of the Super containerdesign for deep geological disposal of high-level heat emitting radioactive waste in Belgium, in:Nuclear Waste XXIX, Proc. International Radioactive Waste Management Conference, October2006
    [13] ONDRAF/NIRAS,2001.Technical Overview of the SAFIR-2report, ONDRAF/NIRASPublication NIROND2001-05E, Belgian Agency for Radioactive Waste and Enriched FissileMaterials, Brussels, Belgium
    [14] ONDRAF/NIRAS,1989. SAFIR (Safety Assessment and Feasibility Interim Report)Summary Report (English), ONDRAF/NIRAS Publication, Belgian Agency for RadioactiveWaste and Fissile Materials, Brussels, Belgium
    [15] ik s, T.1985. Site investigations for the disposal of spent fuel-Investigation program,YJT-85-29, TVO Power Company, Helsinki, Finland (in Finnish)
    [16] Posiva,1996. Final disposal of spent fuel in the Finnish bedrock, detailed site investigations1993-1996, POSIVA-96-19, Posiva Oy, Helsinki, Finland (in Finnish)
    [17] Posiva,2000. Disposal of spent fuel in Olkiluoto bedrock. Program for research,development and technical design for the pre-construction phase. POSIVA2000-14, Posiva Oy,Helsinki, Finland
    [18] Posiva,2003b. ONKALO Underground Characterization and Research Program (UCRP).Posiva Oy, Olkiluoto, Finland. Posiva Report POSIVA2003-03
    [19] Posiva,2007a. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto-Summary Report. POSIVA2007-06Posiva Oy, Olkiluoto, Finland
    [20] ANDRA,2005a. Dossier2005Argile, Synthesis of an evaluation of the feasibility of ageological repository in an argillaceous formation, ANDRA, Chatenay-Malabry, France
    [21] ANDRA,2005c. Dossier2005Argile, Safety evaluation of a geological repository, ANDRA,Chatenay-Malabry, France
    [22] NAB,2009. Assessment Report No.3on Research Studies and the Studies in to theManagement of Radioactive Waste and Materials, French National Assessment Board, Paris,France
    [23] Lempert, J.P. and Biurrun, E.,1999. Deep geological radioactive waste disposal in Germany:lessons learned and future perspectives. Paper No.16, IAEA International Symposium IAEA-357,Technologies for the Management of Radioactive Waste from Nuclear Power Plants and BackEnd Nuclear Fuel Cycle Activities, International Atomic Energy Agency, Vienna, Austria
    [24] BMWi,2008. Final Disposal of High-Level Radioactive Waste in Germany–The GorlebenRepository Project, Federal Ministry of Economics and Technology, Berlin
    [25] BMU,2009. Safety Requirements Governing the Final Disposal of Heat-GeneratingRadioactive Waste, Federal Ministry for the Environment, Nature Conservation and NuclearSafety, Berlin, Germany
    [26] AECB,1985. Regulatory Document R-71: Deep Geological Disposal of Nuclear Fuel Waste:Background Information and Regulatory Requirements Regarding the Concept AssessmentPhase. Atomic Energy Control Board (super ceded by CNSC), Ottawa, Ontario, Canada
    [27] AECL,1994. Environmental Impact Assessment on the Concept for Disposal of Canada’sNuclear Fuel, AECL Document AECL-10711, COG-93-1, Atomic Energy of Canada Ltd.,Whiteshell, Canada
    [28] Chandler, N.A.,2003. Twenty years of underground research at Canada’s URL, WM’03,Proceedings of International Radioactive Waste Management Conference, Tucson, Arizona,February23-27,2003
    [29] SKB,1986. RD&D-Program86, Handling and final disposal of nuclear waste. Program forresearch, development and other measures, Swedish Nuclear Fuel and Waste Management Co.,Stockholm
    [30] SKB,2000. Integrated account of method, site selection and program prior to the siteinvestigation phase (Published in English as SKB TR-01-03), Swedish Nuclear Fuel and WasteManagement Co, Stockholm, Sweden
    [31] SKB,2009. Final repository for spent fuel in Forsmark–basis for decision and reasons forsite selection, SKB Document1221293, June2009
    [32]王驹.高放废物深地质处置:回顾与展望.铀矿地质,2009,25(2):71~77
    [33]王驹,徐国庆,金远新,陈伟明,郭永海,杨天笑.甘肃北山区域地壳稳定性研究[M].北京:地质出版社,2000
    [34]王驹,徐国庆,金远新.论高放废物地质处置库围岩.世界核地质科学,2006,23(4):222~231
    [35]郭永海,王驹,王志明,等. CFC在中国高放废物处置库预选区地下水研究中的应用.地球学报,2006,27(3):253~258
    [36]郭永海,王驹,肖丰,等.高放废物处置库北山预选区地下水同位素组成特征及其意义.地球学报,2008,29(6):735~739
    [37]郭永海,王驹,刘淑芬,等.应用同位素方法识别高放废物处置库预选场址地下水的形成.质谱学报,2005,26(z):53~54
    [38]郭永海,王驹,王志明,等.高放废物处置库甘肃北山预选区地下水资源的分布和形成.工程勘察,2008,(z1):194~197
    [39]苏锐.低渗透裂隙介质渗透特征评价技术及其应用研究:[博士学位论文].北京:和工业北京地质研究院,2007
    [40]王驹,陈伟明,张鹏,等.钻孔雷达在高放废物处置库场址评价中的应用—以北山1号孔为例.铀矿地质,2005,21(6):360~363
    [41]陈伟明,王驹.高放废物地质处置性能评价.世界核地质科学,2005,22(1):14~23
    [42]陈伟明,王驹,李云峰,等.花岗岩中高放废物地质处置库系统分析方法研究.世界核地质科学,2009,26(3):160~166
    [43]赵宏刚,王驹,苏锐,等.甘肃北山旧井地段三维地质建模及RockFlow在核素迁移研究中的应用.见:中国岩石力学与工程学会废物地下处置专业委员会成立大会暨首届学术交流大会论文集.北京:中国岩石力学与工程学会废物地下处置专业委员会,2006,41~47
    [44]宗自华,王驹,苏锐,等. BS03钻孔周围裂隙特征缝隙及3D裂隙网络模拟.见:第二届废物地下处置学术研讨会论文集.甘肃墩煌:中国岩石力学与工程学会废物地下处置专业委员会,2008
    [45]刘月妙,蔡美峰,王驹,等.高放废物地质处置库预选缓冲材料压缩性能研究.铀矿地质,2007,23(2):91~95
    [46]刘月妙,王驹,谭国焕,等.高放废物处置北山预选区深部完整岩石基本物理力学性能及时温效应.岩石力学与工程学报,2007,26(10):2034~2042
    [47]刘月妙,温志坚.用于高放射性废物深地质处置的粘土材料研究.矿物岩石,2003,23(4):42~45
    [48]杨春和,王贵宾,王驹,等.甘肃北山预选区岩体力学与渗流特性研究.岩石力学与工程学报.2006,25(4):825~832
    [49]钟霞,王驹,黄树桃,等.基于GIS技术的岩体裂隙分形特征研究.铀矿地质,2011,27(1):61~64
    [50]董艳辉,李国敏,黎明.甘肃北山大区域地下水流动模拟.科学通报.2009,54:3790-3792.Dong Y H, Li G M, Li M. Numerical modeling of the regional ground water flow in Beishanarea, Gansu Province. Chinese Sci Bull,2009,54:3112-3115
    [51]董艳辉,李国敏.甘肃北山区域地下水随机模拟研究.第三届废物地下处置学术研讨会.
    [52] Barenblatt G.I., et al. Basic concepts in the theory of seepage of homogeneous liquids infissured rocks[J], PMM, Sov. Appl. Math. Mech.,1960,24,852-864
    [53]郭永海,杨天笑,刘淑芬.高放废物处置库甘肃北山预选区水文地质特征研究.铀矿地质.2001,17(3)
    [54]蒋小伟,万力,胡晓农.基于压水试验数据的砂泥岩裂隙岩体渗透结构分析.自然科学进展.2008(3):355-360
    [55] TSANG Y W, TSANG C F, Channel model of flow through fractured media[J]. WaterResources Research,1987,23(3):467-479
    [56] Snow D T. Anisotropic permeability of fractured media. Water Resources Research.1969,5(6):1273~1289
    [57] Long J C S, Remer J S, Wilson C R. Witherspoon P A. Porous media equivalents for networks of discontinuous fractures.Water Resources Research.1982,18(3):645~658
    [58] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointedrock masses. Water Resources Research.1986,22(13):1845~1856
    [59] Bear, J. Dynamics of Fluids in Porous Media [M], American Elsevier’s Pub. Co., New York,NY.1972
    [60] Hsieh, P.A., S.P. Neuman, G.K. Stiles, E.S. Simpson. Field determination of the threedimensional hydraulic conductivity tensor of anisotropic media,2, Methodology and applicationto fractured rocks [J], Water Resources Research,1985.21(11):1667-1676
    [61] Marsily, G.de.1985. Flow and transport in fractured rocks: Connectivity and scale effect,Proc. Int. Assoc. of Hydro geologists, Hydrogeology of rocks of low permeability [J], Tucson,memoirs, XVII,267-277
    [62] Neuman, S.P., J.S. Depner.1988. Use of variable-scale pressure test data to estimate the loghydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona[J],Journal of Hydrology,102(1-4):475-501
    [63] Pruess, K., T.N. Narasimhan,1985. Practical method for modeling fluid and heat flow infractured porous media [J], Society of Petroleum Engineers Journal,25(1):14-26
    [64]杜延龄,许国安.复杂岩基三维渗流有限元分析研究[J].水利学报,1991.,(7):19-26
    [65]周志芳,钱孝星.坝基各向异性岩体内渗透力的三维边界元分析[J].岩土工程学报,1992,(2):44-49
    [66]周志芳,钱孝星.三峡工程坝基扬压力三维有限元分析[J].河海大学学报,1993,自然科学版,(5):94-99
    [67]张有天,张武功.裂隙岩石渗透特性渗流数学模型及系数量测.岩石力学.1982,(8):41-52
    [68]田开铭,万力.各向异性裂隙介质渗透性的研究与评价.北京:学苑出版社,1989,3-21.
    [69]田开铭.论裂隙岩石的水文地质模型.勘测科学技术.1984,(4):27-34
    [70] F.A.D’Agnese, C.C.Faunt, M.C.Hill,et al. Death valley regional ground-water flow modelcalibration using optimal parameter estimation methods and geoscientific informationsystems[J].Advances in Water Resources,1999,22(8):777-790
    [71] Louis, C., Rock Hydraulics in Rock Mechanics[A], Edited by L. Muller,Springer-Verlag,Vienna,1974
    [72] Maini Y N T, Noorishad J,Sharp J.1972,The oretical and field considerations in thedetermination of the in-situ hydraulic parameters in fractured rock [J].In:Proc.Symposium onPercolation Through Fissured Rock.Stuttgart:[s.n.]
    [73] Wilson C R. Witherspoon P A. Steady state flow in rigid net works of fractures. WaterResources Research.1974,10(2):328-335
    [74] Long J C S, Remer J S, Wilson C R. Witherspoon P A. Porous media equivalents fornetworks of discontinuous fractures.Water Resources Research.1982,18(3):645~658
    [75]高鹭陵,王珊林.等效连续介质模型有效性判定方法研究.吉林水林.2000,(8):14-15.
    [76] Hsieh P A, Neumann S P. Field determination of the three dimensional hydraulicconductivity tensor of anisotropic media:1, theory [J]. Water Res our. Res.,1985,21(11):1655-1665
    [77]田开铭,万力.交叉孔压水试验法确定三维各向异性渗透张量.水文地质工程地质.1990,(04):5-17
    [78] Sagar B, RunchalA. Permeability of fractured rock: Effect of fracture size and dataconcretion. Water Resources Research.1982,18(2):266-274
    [79] Long J C S, Witherspoon P A. The relationship of the degree of interconnection topermeability in fractured networks. Journal of Geophysical Research.1985,90(B4):3087-3098
    [80]王恩志,王洪涛.各向异性裂隙岩体渗透系数计算方法探讨.武汉水利电力大学学报.1997,30(2):49-53
    [81]纪成亮,李晓昭,王驹等.裂隙岩体渗透系数确定方法研究.工程地质学报.2010,(02):235-240
    [82] Louis C,Maini Y N.1970.Determination of in-situ hydraulic parameters in jointedrock[C].Proceedings of the Second Congress of the International Society for Rock Mechanics [J],Belgrade:Yugoslavian Science Press,1:235-245
    [83]毛昶熙,陈平.岩石裂隙渗流的计算与试验.水利水运科学研究.1984,(3):29-37
    [84]毛昶熙,段祥宝,李定方.网络模型程序化及其应用.水利水运科学研究.1994,(3):197-207
    [85] Nordqvist A W, Tsang Y W, Tsang C F. A variable aperture fracture network model for flowand transport in fractured rocks. Water Resources Research.1992,28(6):1703-1713
    [86] Dershowitz W S. A new three dimensional model for flow in fractured rock. Int. AssocHydrogeology.1985,(17):441-448
    [87]万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型.水利水运科学研究.1993,(4):347-353
    [88]王恩志.双重介质地下水流耦合离散模型的研究.工程勘察,1992,(4):29-34
    [89]潘国营,武强.焦作矿区双重介质裂隙网络渗流与渗流模型研究.中国岩溶,1998,17(4):363-369
    [90]薛禹群,张幼宽,林加勇.双重介质渗流模型及其里兹有限元解在矿坑涌水量推测中的应用[J].水文地质工程地质,1984,(2):99-106
    [91]陈崇希.岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究[J].地球科学-中国地质大学学报,1995.,(4):361-366
    [92]柴军瑞,仵彦卿.岩体多重裂隙网络渗流模型研究[J].煤田地质与勘探,2000,28(2):33-36
    [93]王洪涛,聂永丰等.耦合岩体主干裂隙和网络状裂隙渗流分析及应用.清华大学学报,1998,38(12):23-26
    [94]杨栋,赵阳升,断康廉.广义双重介质岩体水力学模型及有限元模拟[J].岩石力学与工程学报,2000,19(2):182-185
    [95]杜小凯,任靑文等.一种裂隙岩体渗流场有限元分析的改进模型.水力发电,2007,33(12):25-28
    [96]黄勇,周志芳.基于区域分解算法的地下水耦合模型及其应用.工程地质学报,2007,15(01):103-105
    [97]区域水文地质普查报告—马鬃山煤矿幅.解放军00927部队.酒泉,1978
    [98]区域水文地质普查报告—公婆泉幅.解放军00927部队.酒泉,1976
    [99]区域水文地质普查报告—石板井幅.解放军00927部队.酒泉,1975
    [100]郭永海,王驹,肖丰,等.高放废物处置库甘肃北山预选区地下水的形成.高校地质学报,2010,16(1):13~18
    [101]刘淑芬,郭永海,王驹,等.高放废物地质处置库北山预选区地下水的形成和分布.铀矿地质,2007,23(6):356~363
    [102]郭永海,王驹,王志明等.高放废物处置库甘肃北山预选区地下水动态特征.铀矿地质,2010,26(1):46~50
    [103]郭永海,王驹,吕川河,等.高放废物处置库甘肃北山野马泉预选区地下水化学特征及水—岩作用模拟.地学前缘,2005,12(S):117~123
    [104]郭永海,王驹,王志明,等.从北山地下水化学特征推论地下水的形成及区域循环.中国矿物岩石地球化学学会第11届学术年会论文集.北京.2007,26(z):607~609
    [105]李国敏,赵春虎,郭永海,等.高放废物地质处置场甘肃北山预选区区域地下水循环模式与意义.中国矿物岩石地球化学学会第11届学术年会论文集.北京.2007,26(z):610~611
    [106]区域水文地质普查报告—明水幅.解放军00927部队.酒泉,1975
    [107]区域水文地质普查报告—红石山幅.解放军00927部队.酒泉,1977
    [108]区域水文地质普查报告—旧井幅.解放军00927部队.酒泉,1976
    [109] Garbrecht J, Campbell J. TOPAZ: an automated digital landscape analysis tool fortopographic evaluation, drainage identification, watershed segmentation and sub catchmentparameterization. TOPAZ User Manual, USDA-ARS, Oklahoma,1997
    [110] Bear J, Verruit A,1987.“Modeling groundwater flow and pollution”. D. Reidel publishingcompany, P.O.Box17,3300AA Dorfrecht, Holland. ISBN1-55608-014-X.
    [111] Bear J, Bachmat Y,1990.“Introduction to Modeling of Transport Phenomena in PorousMedia.” Kluwer Academic Publishers, Dordrecht, The Netherlands. ISBN0-7923-0557-4
    [112] Wayne R. Belcher. Death Vally Regional Ground-Water Flow System, Nevada andCalifornia-Hydrogeologic Framework and Transient Ground-Water Flow Mode[R]. U.S.Geological Survey, Scientific Investigations Report2004-5205,2004
    [113] Beleher, W. R, and Sweetkind, D. S, eds,2010, Death Valley regional groundwater flowsystem, Nevada and California-Hydrogeologic framework and transient groundwater flow model:U.S. Geological Survey Professional Paper1711,398p
    [114]Jiang, X.-W., L. Wan, X.-S. Wang, S. Ge, and J. Liu (2009), Effect of exponential decay inhydraulic conductivity with depth on regional groundwater flow, Geoph. Res. Let.,36(24),L24402.
    [115]Zhou, Q., H.-H. Liu, F. J. Molz, Y. Zhang, and G. S. Bodvarsson (2007), Field-scaleeffective matrix diffusion coefficient for fractured rock: Results from literature survey, Journalof Contaminant Hydrology,93(1),161-187.
    [116]苏锐,宗自华,王驹.高分辨率声波钻孔电视及其在核废物地质处置深部岩体研究中的应用.岩石力学与工程学报,2005,24(16):2922~2928

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700