用户名: 密码: 验证码:
抗烧结钙基吸收剂同时捕集CO_2/SO_2的循环反应特性及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制和减缓工业生产过程中CO_2的排放对于缓解全球变暖和温室效应具有重要意义。探索高效、抗烧结钙基吸收剂,并利用其吸碳/煅烧循环反应捕集CO_2是是控制CO_2排放的重要途径,而合成高性能吸收剂是其中的方法之一。目前对于合成钙基吸收剂的制备方法均较为复杂,应探索一种简单的方法制备高性能吸收剂;在对合成吸收剂循环吸收性能考察方面,需深入考察SO_2存在时,吸收剂同时捕集CO_2/SO_2的循环反应特性;在动力学方面,吸碳过程中快速反应与慢速反应的分界、合成吸收剂吸碳动力学、煅烧动力学以及反应过程中的本征动力学等问题都有待于进一步研究探讨。针对以上科学问题展开研究,可为钙基吸收剂循环吸收CO_2/SO_2的应用和深入探索奠定理论基础,具有重要的学术意义和应用前景。
     本文针对抗烧结钙基吸收剂捕集CO_2研究的不足,采用湿法混合的方法制备新型钙基吸收剂,考察了含钙前驱物、添加剂前驱物等因素对合成吸收剂的循环吸收CO_2反应能力及循环稳定性的影响规律,获得了循环反应性能较好的抗烧结钙基吸收剂;实验研究了其同时捕集CO_2/SO_2的反应特性,分析了SO_2存在对钙基吸收剂循环吸收CO_2反应性能的影响规律。对钙基吸收剂循环吸收CO_2反应宏观动力学特性进行了研究,探讨了吸碳反应时快速反应和慢速反应阶段的动力学模型,分析了吸碳及煅烧阶段的宏观动力学的关键参数。深入研究了钙基吸收剂吸碳反应的本征动力学特性,分析了不同反应驱动力作用下吸收剂的本征动力学常数及活化能,探讨了变级数反应的控制机理。
     考察了葡萄糖酸钙、乳酸钙和甲酸钙等有机物作为前驱物制备的钙基吸收剂的循环吸收CO_2特性,研究表明,由葡萄糖酸钙作为前驱物制得的G-CaO吸收剂具有最高的循环吸收率和循环稳定性。通过对添加剂元素和种类的考察发现,添加Mg元素可有效提高吸收剂的循环吸收率,而添加Al元素则可以大幅改善吸收剂的循环稳定性。经多循环测试,采用湿法混合制得的G(Ca)-G(Mg)75吸收剂的循环吸收率最高,而G(Ca)-L(Al)75循环稳定性最好,两种吸收剂为捕集CO_2的高性能吸收剂。吸收剂表现出不同的反应特性与其比表面积和孔容积有关,大的比表面积和孔容积有利于保持较高的反应活性。
     研究了合成钙基吸收剂同时捕捉CO_2/SO_2时的循环反应特性,观测了SO_2引起的吸收剂微观结构的变化。研究表明,SO_2的存在严重阻碍了吸收剂对CO_2的捕集,随循环次数的增加,吸收剂循环吸收CO_2的转化率降低,累积吸收SO_2的转化率增加,总的Ca的利用率先降低后不断增加,煅烧分解速率降低;SO_2存在时,随循环次数的增加,吸收剂颗粒团聚加剧,其比表面积迅速降低,出现严重烧结的大孔,是造成吸收剂吸收CO_2能力快速下降的主要原因;SO2浓度越高,吸收剂吸收CO_2能力下降的越快,吸收SO2的转化率越高。
     在对钙基吸收剂吸碳/煅烧循环宏观动力学研究中,提出在吸碳反应快速阶段采用Logistic方程拟合转化率随时间的变化曲线,并获得了钙基吸收剂的动力学模型方程;在慢速反应阶段采用Avrami方程能较好地描述吸收剂转化率随时间的变化;采用非等温法获得了吸收剂在煅烧反应阶段的关键动力参数;通过对吸收剂转化率随循环次数的分析预测,G(Ca)-G(Mg)75和G(Ca)-L(Al)75吸收剂经200次循环后转化率分别稳定在0.813和0.735。
     深入研究了钙基吸收剂吸碳反应的本征动力学特性,探讨了变级数反应的控制机理。研究表明,在本征动力学控制阶段,在不同反应驱动力(P_(CO_2) P_(CO_2,eq))下,吸收剂出现变级数反应,在(PCO_2PCO_2,eq)<10kPa时,吸碳反应为1级反应;在(PCO_2PCO_2,eq)≥10kPa时吸碳反应级数趋近于零;钙基吸收剂的本征反应速率常数与(PC O2PCO_2,eq)有关,而G(Ca)-G(Mg)75和G(Ca)-L(Al)75吸收剂在本征反应阶段的活化能分别为24.9kJ/mol和21.12kJ/mol;反应级数的变化说明了控制机理的变化,当反应级数为1时,吸碳反应受CaO+CO_2CaO·CO_2控制;当反应级数为0时,吸碳反应受CaO CO_2CaCO_3控制。
     本文较系统地研究了钙基吸收剂的制备及其循环吸收CO_2、同时捕集CO_2/SO_2的循环反应特性,得到了抗烧结、高性能的钙基吸收剂,探讨了其在同时捕集CO_2/SO2时的反应特性和规律,获得了吸碳/煅烧循环反应的动力学模型和关键参数,弄清了钙基吸收剂在本征动力学阶段变级数反应的控制机理。有助于推进钙基吸收剂循环吸收CO_2/SO2的深入研究,充实和丰富了CO_2捕集领域的研究成果,可为钙基吸收剂循环吸收CO_2/SO2的应用和深入探索提供理论支撑和依据。
It is significant to control and reduce CO2emissions in industrial processes forpreventing global warming and green house effect. Calcium-based sorbents with theircarbonation/calcinations cycles are widely employed as one of most importantapproaches for CO2capture. High efficiency and anti-sintering calcium-based sorbentsare pursed to improve cyclic reaction capacity. So far, most of methods for synthesizingcalcium-based sorbents are complex. A new simple method to produce high capacitysorbents should be found. For new synthesized sorbents, cyclic reaction characteristicfor co-capture CO2/SO_2should be investigated. The separation of rapid and slowreaction step for carbonation process, carbonation kinetics for calcium-based sorbents,calcination kinetics and intrinsic kinetics for carbonation should be further studied. Theabove scientific questions are focused and studied. The results can provide theoreticalsupport for co-capture CO2/SO_2with calcium-based sorbents. The research hasimportant academic value and application prospect.
     Current situation for CO2capture with calcium-based sorbents were concerned. Asimple wet mixing method for producing new sorbents was used. Effects ofcalcium-precursors, additives on cyclic CO2absorption capacity and stability wereinvestigated. The anti-sintering and high efficiency calcium-based sorbents weresynthesized. The co-capture CO2/SO_2characteristic for synthesized sorbents wasstudied. Effects of SO_2on cyclic CO2capture capacity of calcium-based sorbents wereanalyzed. Carbonation/carbonation kinetics for calcium-based sorbents was investigated.Models of rapid and slow reaction steps in carbonation were discussed. The key kineticparameters were obtained. The intrinsic kinetic for calcium-based sorbents wasspecially investigated. The reaction rate constant and activation energy in differentdriving power were analyzed. The control mechanism of variation reaction order wasdiscussed.
     The calcium-based sorbents produced from organic precursors such as calciumgluconate, calcium lactate and calcium formate were investigated for cyclic CO2capture.The results show that G-CaO sorbent produced from calcium gluconate exhibits thehighest cyclic absorption and stability. According to experimental study on additiveelements and categories, Mg elements can effectively improve cyclic absorptioncapacity while Al elements can improve cyclic stability. After many cycles tests, G(Ca)-G(Mg)75shows the best cyclic absorption efficiency while G(Ca)-L(Al)75has the highest cyclic stability. The two sorbents are high-efficiency calcium-based sorbents for CO2capture. The reaction characteristic for synthesized sorbents related to specific surface area and pore volume. The absorption reaction can be benefited on higher specific surface area and pore volume.
     Cyclic characteristic of co-capture CO2/SO2with synthesized calcium-based sorbents were investigated. The micro-structure changes of calcium-based sorbents caused by SO2were observed. The results show that SO2seriously impedes CO2capture by calcium-based sorbents. When number of cycles increase, CO2absorption capacity decreases while cumulative SO2absorption capacity increases. Total calcium utilization ratio first decreases and then increases while calcination decomposition ratio decreases with number of cycles. In co-capture CO2/SO2process, grains reunite becomes seriously with number of cycles, specific surface area decreases rapidly. Bigger pores caused by sintering were emerged. The above are major reasons for rapid decrease of CO2capture capacity. The CO2capture capacity decreases more quickly with higher SO2concentrations while cumulative SO2conversion ratio becomes much higher.
     In carbonation/calcination cycle kinetics study, Logistic equation was employed to fit conversion ration curve as a function of time at the rapid reaction step. Avrami equation can well describe the conversion ration variation with time. The key kinetic parameters in calcination stage were obtained by a non-isothermal method. According to conversion ration variation with number of cycles, conversion rations of G(Ca)-G(Mg)75and G(Ca)-L(Al)75stabilize after200cycles, with their value0.813and0.735respectively.
     In the intrinsic kinetics study of carbonation for calcium-based sorbents, the variable reaction order was found. The intrinsic reaction order changed abruptly from first-order to zero-order when the driving force (PCO2-PCO2,eq) exceeded an equilibrium value about lOkPa in this work. The intrinsic reaction rate constants were relative to (PCO2-PCO2,eq).The activation energies were found to be24.9kJ/mol and21.12kJ/mol for G(Ca)-G(Mg)75and G(Ca)-L(Al)75, respectively. The transition of reaction order suggested a shift of control mechanism. When the order was first, carbonation was controlled by whereas, controlled by when the order was zero. In this thesis work, a series of investigations for calcium-based sorbents was taken systematically, such as preparation of synthesis sorbents and cyclic reactioncharacteristics for CO_2capture and simultaneous CO_2/SO_2capture. Anti-sinteringcalcium-based sorbents were obtained with high reaction capacity. The reactioncharacteristics and pattern for simultaneous CO_2/SO_2capture were also concluded. Thekinetic model and key parameters were achieved for carbonation/calcination cyclicreaction. Besides, the control mechanism of variable order reaction for intrinsic surfacereaction stage was studied. This thesis work could help advancing the further researchfor simultaneous CO_2/SO_2capture and enriching the research findings for CO_2capture,and also gives a theory support for the utilization of calcium-based sorbents whensimultaneously capturing CO_2/SO_2.
引文
[1] G.韦德.能源与社会变化[M].北京:科学出版社,1983,2-6.
    [2]郑楚光.温室效应及其控制对策(第一版)[M].北京:中国电力出版社,2001,45-47.
    [3]吴昊.应对二氧化碳浓度上升问题的研究:CO2的捕获、储存与利用[J].中国安全科学学报,2008,18(8):5-11.
    [4]徐锋,朱丽华,吴强.温室效应及气体水合化控制方法[J].应用基础与工程科学学报.2010,18(3):390-397.
    [5]肖国举,张强,王静.全球气候变化对农业生态系统的影响研究进展[J].应用生态学报,2007,18(8):1877-1885.
    [6]李春鞠,顾国维.温室效应与二氧化碳的控制[J].环境保护科学,2000,26(98):13-15.
    [7]吴兑.温室气体与温室效应[M].北京:气象出版社,2003,47-50.
    [8]沈骊天.能源与社会[M].哈尔滨:黑龙江人民出版社,2001,1-10.
    [9] du Motay CPT. US Patent No.229339,1880.
    [10] Florin NH, Harris AT. Mechanistic study of enhanced H2synthesis in biomass gasifierswith in-situ CO2capture using CaO[J]. AIChE Journal2008,54(4):1096-1109.
    [11] Curran GP, Fink CE, Gorin E. Carbon dioxide-acceptor [coal] gasification process.Studies of acceptor properties[J]. Advances in Chemistry Series1967,69:141-150.
    [12] Fink CE, Sudbury JD, Curran GP. CO2acceptor gasification process. In: Symposium oncoal gasification and liquefaction. School of Engineering, University of Pittsburgh, USA,1974.
    [13] Paterson N, Elphick S, Dugwell DR, Kandiyoti R. Calcium-based liquid phaseformation in pressurized gasifier environments[J]. Energy&Fuels,2001,15(4):894-902.
    [14] Pfeifer C, Puchner B, Hofbauer H. In-situ CO2-absorption in a dual fluidized bedbiomass steam gasifier to produce a hydrogen rich syngas[J/OL]. International Journal ofChemical Reactor Engineering:A9,2007,5.
    [15] Ziock HJ, Brosha EL, Garzon FH, et al. Technical progress in the development of zeroemission coal technologies[C]. In: Proceedings of the28th international technicalconference on coal utilization&fuel systems, Clearwater, Florida, USA,2003,2:1199-1210.
    [16] Feng B, An H, Tan E. Screening of CO2adsorbing materials for zero emission powergeneration system[J]. Energy and Fuels,2007,21(8):426-434.
    [17] Nexant Inc. Zero Emission Coal Alliance project conceptual design and economics,http://www.nexant.com/docs/service/energy_technology/zeca.pdf,2003.
    [18] Wang JS, Anthony EJ, Abanades JC. Clean and efficient use of petroleum coke forcombustion and power generation[J]. Fuel,2004,83(10):1341-1348.
    [19] Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bedreactor for removal of CO2from combustion processes[J]. Chemical EngineeringResearch&Design,1999,77(A1):62-68.
    [20] Shimizu T, Hirama T, Hosoda H, Kitano K. A new process for CO2recovery from fluegas using calcium oxide[C]. In: Proceedings of the5th international symposium on CO2fixation and efficient utilization of energy. The45th international world energy systemconference, Tokyo, Japan, March4-6,2002,359-364.
    [21] Romeo LM, Abanades JC, Escosa JM, Pano J, Giminez A, Sanchez-Biezma A, et al.Oxyfuel carbonation/calcination cycle for low cost CO2capture in existing powerplants[J]. Energy Conversion and Management,2008,49(10):2809-2814.
    [22] Lisboma P, Martinez A, Lara Y, Romeo LM. Integration of Carbonate CO2CaptureCycle and Coal-Fired Power Plants[J]. Energy&Fuels,2010,24(7):728-736.
    [23] Epple B, Strohle J. Feasibility study on carbonate looping process for post combustionCO2-capture from coal fired power plants[C]. In:4th International symposium on in-situCO2recovery. London, Imperial College,2008.
    [24] Strohle J, Galloy A, Epple B. Feasibility study on the carbonate looping process forpost-combustion CO2capture from coal-fired power plants[J]. Energy Procedia,2009,1(1):1313-1320.
    [25] Abanades JC, Anthony EJ, Wang J, Oakey JE. Fluidized bed combustion systemsintegrating CO2capture with CaO[J]. Environmental Science&Technology,2005,39(8):2861-2866.
    [26] Sun P, Grace JR, Lim CJ, Anthony EJ. Removal of CO2by calcium-based sorbents inthe presence of SO2[J]. Energy Fuels,2007,21(1):163-170.
    [27] Li Y, Zhao C, Chen H, Liu Y. Enhancement of Ca-based sorbent multicyclic behavior inCa looping process for CO2separation[J]. Chem. Eng. Technol.,2009,32(4):548-555.
    [28] Blamey J, Anthony EJ, Wang J, Fennell PS. The calcium looping cycle for large-scaleCO2capture[J]. Energy FuelsProgress in Engergy and Combustion Science,2010,36(2):260-279.
    [29] Martavaltzi CS, Lemonidou AA. Development of new CaO based sorbent materials forCO2removal at high temperature[J]. Microporous and Mesoporous Materials,2008,110(1):119-127.
    [30] Barker R. Reversibility of the reaction CaCO3=CaO+CO2[J]. Journal of AppliedChemistry and Biotechnology,1973,23(10):733-742.
    [31] Alvarez D, Abanades JC. Determination of the critical product layer thickness in thereaction of CaO with CO2[J]. Industrial&Engineering Chemistry Research,2005,44(15):5608-5615.
    [32] Fennell PS, Pacciani R, Davidson JF, Dennis JS, Hayhurst AN. The use of limestoneparticles for the capture of CO2: its initial reactivity and loss of reactivity after repeatedcycles of calcination and carbonation[C]. In:9th FBC conference, Vienna, Austria,2006.
    [33] Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-limereaction[J]. AIChE Journal,1983,29(1):79-86.
    [34] Manovic V, Charland JP, Blamey J, Fennell PS, Lu DY, Anthony EJ. Influence ofcalcination conditions on carrying capacity of CaO-based sorbent in CO2loopingcycles[J]. Fuel,2009,88(10):1893-1900.
    [35] Stanmore B R, Gilot P. Review-calcination and carbonation of limestone during thermalcycling for CO2sequestration[J]. Fuel Processing Technology,2005,86(16):1707-1743.
    [36] Sun P, Grace JR, Lim CJ, Anthony EJ. The effect of CaO sintering on cyclic CO2capturein energy systems[J]. AIChE Journal,2007,53(9):2432-2442.
    [37] Alvarez D, Abanades JC. Pore-size and shape effects on the recarbonation performanceof calcium oxide submitted to repeated calcination/recarbonation cycles[J]. Energy&Fuels,2004,19(1):270-278.
    [38] Fennell PS, Pacciani R, Dennis JS, Davidson JF, Hayhurst AN. The effects of repeatedcycles of calcination and carbonation on a variety of different limestones, as measured ina hot fluidized bed of sand[J]. Energy&Fuels,2007,21(4):2072-2081.
    [39] Abanades JC, Alvarez D. Conversion limits in the reaction of CO2with lime[J]. Energy&Fuels,2003,17(2):308-315.
    [40] Lysikov AI, Salanov AN, Okunev AG. Change of CO2carrying capacity of CaO inisothermal recarbonation–decomposition cycles[J]. Industrial&Engineering ChemistryResearch,2007,46(13):4633-4638.
    [41] Abanades JC. The maximum capture efficiency of CO2using a carbonation/calcinationcycle of CaO/CaCO3[J]. Chemical Engineering Journal,2002,90(3):303-306.
    [42] Mess D, Sarofim AF, Longwell JP. Product layer diffusion during the reaction of calciumoxide with carbon dioxide[J]. Energy&Fuels,1999,13(5):999-1005.
    [43] Wang JS, Anthony EJ. On the decay behavior of the CO2absorption capacity ofCaO-based sorbents[J]. Industrial&Engineering Chemistry Research,2005,44(3):627-629.
    [44] Grasa GS, Abanades JC. CO2capture capacity of CaO in long series ofcarbonation/calcination cycles[J]. Industrial&Engineering Chemistry Research,2006,45(26):8846-8851.
    [45] Wang J, Anthony EJ. A common decay behavior in cyclic processes[J]. ChemicalEngineering Communications,2007,194:1409-1420.
    [46] Maciejewski M, Reller A. How (un)reliable are kinetic data of reversible solid-statedecomposition processes[J]. Thermochimica Acta,1987,110:145-152.
    [47] Darroudi T, Searcy A. Effect of CO2pressure on the rate of decompostion of calcite[J].The Journal of Physical Chemistry,1981,85(26):3971-3974.
    [48]王保文,郑瑛,贺铸,宋侃,郑楚光. CaO高温分离CO2过程的数值模拟[C].工程热物理学报,2006,27(6):1051-1053.
    [49] Abanades JC, Grasa G, Alonso M, et al. Cost structure of a post-combustion CO2capturesystem using CaO[J]. Environmental Science&Technology,2007,41(15):5523-5527.
    [50] Manovic V, Anthony EJ. CaO-based pellets supported by calcium aluminate cements forhigh-temperature CO2capture[J]. Environmental Science&Technology,2009,43(18):7117-7122.
    [51] McBride BJ, Zehe MJ, Gordon S. NASA Glenn coefficients for calculatingthermodynamic properties of individual species. Cleveland, Ohio, US: NationalAeronautics and Space Administration,2002.
    [52] Wang Y, Lin S, Suzuki Y. Study of limestone calcination with CO2capture:decomposition behavior in a CO2atmosphere[J]. Energy&Fuels,2007,21(6):3317-3321.
    [53] Grasa GS, Gonzalez B, Alonso M, Abanades JC. Comparison of CaO-Based SyntheticCO2Sorbents under Realistic Calcination Conditions[J]. Energy Fuels,2007,21(6):3560-3562.
    [54]李振山,蔡宁生,赵旭东,等. CaO与CO2循环反应动力学特征[J].燃烧科学与技术,2006,12(6):481-485.
    [55] Li YJ, Zhao CS, Chen HC, et al. Modified CaO-based sorbent looping cycle for CO2mitigation[J]. Fuel,2009,88(9):697-704.
    [56] Wang Y, Lin S, Suzuki Y. Limestone calcination with CO2capture (II): Decompositionin CO2/steam and CO2/N2atmospheres[J]. Energy&Fuels,2008,22(4):2326-2331.
    [57] Ewing J, Beruto D, Searcy AW. Nature of CaO produced by calcite powderdecomposition in vacuum and in CO2[J]. Journal of the American Ceramic Society,1979,62(11):580-584.
    [58] Sakadjian BB, Iyer MV, Gupta H, Fan LS. Kinetics and structural characterization ofcalcium-based sorbents calcined under subatmospheric conditions for thehigh-temperature CO2capture process[J]. Industrial&Engineering Chemistry Research,2006,46(1):35-42.
    [59] Sun P, Grace JR, Lim CJ, Anthony EJ. Sequential capture of CO2and SO2in apressurized TGA simulating FBC conditions. Environ. Sci. Technol.,2007,41(8):2943-2949.
    [60] Borgwardt RH. Sintering of nascent calcium oxide[J]. Chemical Engineering Science,1989,44(1):53-60.
    [61] German R. Surface area reduction during isothermal sintering[J]. Journal of theAmerican Ceramic Society,1976,59(9):379-383.
    [62] Coble R. Sintering crystalline solids. I. Intermediate-and final-state diffusion models[J].Journal of Applied Physics,1961,32:787-792.
    [63] Borgwardt RH. Calcium oxide sintering in atmospheres containing water and carbondioxide[J]. Industrial&Engineering Chemistry Research,1989,28(4):493-500.
    [64] Jia LF, Wang JS, Anthony EJ. Reactivation of fluidised bed combustor ash for sulphurcapture[J]. Chemical Engineering Journal,2003,94(2):147-154.
    [65] Smith IM. Properties and behaviour of SO2adsorbents for CFBC. London, UK: IEAClean Coal Centre,2007.
    [66] Sun P, Grace JR, Lim CJ, Anthony EJ. Investigation of attempts to improve cyclic CO2capture by sorbent hydration and modification[J]. Industrial&Engineering ChemistryResearch,2008,47(6):2024-2032.
    [67] Zeman F. Effect of steam hydration on performance of lime sorbent for CO2capture[J].International Journal of Greenhouse Gas Control,2008,2(2):203-209.
    [68] Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2capture technology-the U.S.department of energy’s carbon sequestration program[J]. International Journal ofGreenhouse Gas Control,2008,2(1):9-20.
    [69] Hughes RW, Lu D, Anthony EJ, Wu YH. Improved long-term conversion oflimestone-derived sorbents for in situ capture of CO2in a fluidized bed combustor[J].Industrial&Engineering Chemistry Research,2004,43(18):5529-5539.
    [70] Manovic V, Anthony EJ. Steam reactivation of spent CaO-based sorbent for multipleCO2capture cycles[J]. Environmental Science&Technology,2007,41(4):1420-1425.
    [71] Fennell PS, Davidson JF, Dennis JS, Hayhurst AN. Regeneration of sintered limestonesorbents for the sequestration of CO2from combustion and other systems[J]. Journal ofthe Energy Institute,2007,80(2):116-119.
    [72]李振山,房凡,蔡宁生.高浓CO2下CaCO3循环煅烧试验与模拟[J].热能动力工程,2007,22(6):642-646.
    [73]房凡,李振山,蔡宁生.钙基CO2吸收剂的种类和粒径对CCCR的影响[J].工程热物理学报,2008,29(4):698-702.
    [74]李振山,蔡宁生,黄煜煜,等. CaO循环吸收CO2的实验研究[J].燃烧科学与技术,2005,11(4):379-383.
    [75]李振山,房凡,蔡宁生.流化床内CaO循环碳酸盐化/煅烧实验研究[J].燃烧科学与技术,2008,14(6):529-532.
    [76] Mackenzie A, Granatstein DL, Anthony EJ, et al. Economics of CO2capture using thecalcium cycle with a pressurized fluidized bed combustor[J]. Energy&Fuels,2007,21(2):920-926.
    [77] Sun P, Grace JR, Lim CJ, et al. Determination of intrinsic rate constants of the CaO-CO2reaction[J]. Chemical Engineering Science,2008,63(1):47-56.
    [78]李英杰,赵长遂,李庆钊.作为新型CO2吸收剂的乙酸钙循环碳酸化特性[J].中国电机工程学报,2008,28(8):65-70.
    [79] Liu WQ, Low NW, Feng B, Wang GX. Calcium precursors for the production of CaOsorbents for multicycle CO2capture environ[J]. Sci. Technol.,2010,44(12):841-847.
    [80] Manovic V, Anthony EJ, Grasa G, Abanades JC. CO2looping cycle Performance of ahigh-purity limestone after thermal actuvation/doping[J]. Energy fuel,2008,22(5):3258-3264.
    [81] Curran GP, Gorin E. US Patent No.3516808,1970.
    [82] Li YJ, Zhao CS, Duan LB, Liang C, Li QZ, Zhou W, et al. Cycliccalcination/carbonation looping of dolomite modified with acetic acid for CO2capture[J].Fuel Processing Technology,2008,89(12):1461-1469.
    [83]房凡,李振山,蔡宁生.钙基CO2吸收剂循环反应特性的试验与模拟[J].中国电机工程学报,2009,29(14):30-35.
    [84] Manovic V, Anthony EJ. Long-term behavior of CaO-based pellets supported by calciumaluminate cements in a long series of CO2capture cycles[J]. Industrial&EngineeringChemistry Research,2009,48(19):8906-8912.
    [85] Borgwardt RH, Bruce KR, Blake J. An investigation of product-layer diffusivity for CaOsulfation[j]. Industrial and Engineering Chemistry Research,1987,26(5):1993-1998.
    [86] Agnihotri R, Mahuli SK, Chauk SS, Fan LS. Influence of surface modifiers on thestructure of precipitated calcium carbonate[J]. Industrial&Engineering ChemistryResearch,1999,38(6):2283-2291.
    [87] Gupta H, Fan LS. Carbonation-calcination cycle using high reactivity calcium oxide forcarbon dioxide separation from fuel gas[J]. Industrial&Engineering ChemistryResearch;2002,41(16):4035-4042.
    [88]王春波,卢广,宋春常.烟气中水分对循环流化床受热面上CaO碳酸化特性的影响[J].动力工程,2009,29(12):1139-1142.
    [89] Li Y, Zhao CS, Qu C, Duan L, Li Q, Liang C. CO2capture using CaO modified withethanol/water solution during cyclic calcination/carbonation[J]. Chemical Engineeringand Technology,2008,31(3):237-244.
    [90] Fang F, Li ZS,Cai NS. Design and cold mode experiment of dual bubbling fluidized bedreactors for multiple CCR cycles[C]. Proceedings of the20th International Conferenceon Fluidized Bed Combustion. Beijing, Tsinghua University Press,2009,533-539.
    [91] Fang F, Li ZS, Cai NS. Experiment and modeling of CO2capture from flue gases at hightemperature in fluidized bed reactor with ca-based sorbents[J]. Energy&Fuels,2009,23(1):207-214.
    [92] Li ZS, Cai NS, Huang YY. Effect of preparation temperature on cyclic CO2capture andmultiple carbonation-calcination cycles for a new Ca-based CO2sorbent[J]. Industrial&Engineering Chemistry Research,2006,45(6):1911-1917.
    [93] Li ZS, Cai NS, Huang YY, Han HJ. Synthesis, experimental studies, and analysis of anew calcium-based carbon dioxide absorbent[J]. Energy&Fuels,2005,19(4):1447-1452.
    [94] Aihara M, Nagai T, Matsushita J, Negishi Y, Ohya H. Development of porous solidreactant for thermal-energy storage and temperature upgrade usingcarbonation/decarbonation reaction[J]. Applied Energy,2001,69(3):225-238.
    [95] Pacciani R, Muller CR, Davidson JF, Dennis JS, Hayhurst AN. Synthetic Ca-based solidsorbents suitable for capturing CO2in a fluidized bed[J]. The Canadian Journal ofChemical Engineering,2008,86(3):356-366.
    [96] Pacciani R, Muller CR, Davidson JF, Dennis JS, Hayhurst AN. How does theconcentration of CO2affect its uptake by a synthetic Ca-based solid sorbent[J]. AIChEJournal,2008,54(12):3308-3311.
    [97] Lu H, Smirniotis PG. Calcium oxide doped sorbents for CO2uptake in the presence ofSO2at high temperatures[J]. Industrial&Engineering Chemistry Research,2009,48(11):5454-5459.
    [98] Lu H, Khan A, Smirniotis PG. Relationship between structural properties and CO2capture performance of CaO based sorbents obtained from different organometallicprecursors[J]. Industrial&Engineering Chemistry Research,2008,47(16):6216-6220.
    [99] Lu H, Reddy EP, Smirniotis PG. Calcium oxide based sorbents for capture of carbondioxide at high temperatures[J]. Industrial&Engineering Chemistry Research,2006,45(11):3944-3949.
    [100] Dennis JS, Pacciani R. The rate and extent of uptake of CO2by a synthetic,CaO-containing sorbent[J]. Chemical Engineering Science,2009,64(9):2147-2157.
    [101] Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-limereaction[J]. AICHE,1983,29(1):79-86.
    [102] Lee DK. An apparent kinetic model for the carbonation of calcium oxide by carbondioxide[J]. Chemical Engineering Journal,2004,100(2):71-77.
    [103] Gupta H, Fan LS. Carbonation-calcination cycle using high reactivity calcium oxide forcarbon dioxide separation from flue gas[J]. Industrial&Engineering ChemistryResearch,2002,41(6):4035-4042.
    [104] Johnsen K, Grace JR, et al. Modeling of sorption-enhanced steam reforming in a dualfluidized bubbling bed reactor[J]. Industrial&Engineering Chemistry Research,2006,45(12):4133-4144.
    [105] Kyaw K, Michito K, Hitoki M, et al. Study of carbonation reactions of Ca-Mg oxides forhigh temperature energy storage and heat transformation[J]. J. Chem. Eng. Jpn.,1996,29(1):112-118.
    [106]李清辉. CaO基高温CO2吸附剂研究[D].杭州:浙江大学,2007.
    [107]师琦,吴素芳,蒋明哲,李清辉.纳米钙基CO2吸附剂反应吸附与分解动力学[J].化工学报,2009,60(3):641-648.
    [108]冯云,陈延信.碳酸钙的分解动力学研究进展[J].硅酸盐通报,2006,25(3):140-145.
    [109]范浩杰,章明川,吴国新,等.碳酸钙热分解的机理研究[J].动力工程,1998,18(5):40-43.
    [110] Irfan A, Gulsen D. Calcination Kinetics of high purity limesyones[J]. Che. Eng. Journal,2001,83(6):131-137.
    [111] Keener S. Structureal pore development model for calcinations[J]. Chem. Eng. Comm,1992,117(10):279-291.
    [112] Borgwardt RH. Calcination kinetics and surface area of dispersed limestone particles[J].J. Aiche,1985,31(1):103-111.
    [113] Pilar L, Ana M, Yolanda L, Luis MR. Integration of Carbonate CO2Capture Cycle andCoal-Fired Power Plants[J]. Energy Fuels,2010,24(5):728-736.
    [114] Pachauri RK, Reisinger A. Climate change2007synthesis report[M]. Geneva,Switzerland: IPCC,2007,36.
    [115] The LIFAC process, http://www.pocotec.com/lifac.html.
    [116] Anthony EJ, Granatstein DL. Sulfation phenomena in fluidized bed combustionsystems[J]. Progress in Energy and Combustion Science,2001,27(2):215-236.
    [117] Anthony EJ, Bulewicz EM, Jia L. Reactivation of limestone sorbents in FBC for SO2capture[J]. Progress in Energy and Combustion Science,2007,33(2):171-210.
    [118] Li ZS, Cai NS, Croiset E. Process analysis of CO2capture from flue gas usingcarbonation/calcination cycles[J]. AIChE Journal,2008,54(7):1912-1925.
    [119] Gruncharov I, Pelovski Y, Bechev G, Dombalov I, Kirilov P. Effects of some admixtureson the decompostion of calcium sulphate[J]. Journal of Thermal Analysis,1988,33(3):597-602.
    [120] Wang M, Lee CG, Ryu CK. CO2sorption and desorption efficiency of Ca2SiO4[J].Int. J.Hydrogen Energy,2008,33(6):6368-6372.
    [121] Anthony EJ. Ca looping technology: current status, developments and futuredirections[J]. Greenhouse Gases: Science and Technology,2011,1(1):36-47.
    [122] Anthony EJ. Solid looping cycles: A new technology for coal conversion[J]. ChemicalEngineering Science,2008,47(6):1747-1754.
    [123] Ryu HJ, Grace JR, Lim CJ. Simultaneous CO2/SO2capture characteristics of threelimestones in a fluidized-bed reactor[J]. Energy&Fuels,2006,20(4):1621-1628.
    [124] Ives M, Mundy RC, Fennell PS, Davidson JF, Dennis JS, Hayhurst AN. Comparison ofdifferent natural sorbents for removing CO2from combustion gases, as studied in abench-scale fluidized bed[J]. Energy&Fuels,2008,22(6):3852-2-3857.
    [125] Lu DY, Hughes RW, Anthony EJ. Ca-based sorbent looping combustion for CO2capturein pilot-scale dual fluidized beds[J]. Fuel Processing Technology,2008,89(12):1386-1395.
    [126] Hughes RW, Lu D Y, Anthony EJ, et al. Design, process simulation and construction ofan atmospheric dual fluidized bed combustion system for in situ CO2capture usinghigh-temperature sorbents[J]. Fuel Processing Technology,2005,86(14):1523-1531.
    [127] Charitos A, Hawthorne C, Bidwe AR, et al. Parametric study on the CO2capureefficiency of the carbonate looping process in a10kW dual fluidized bed[C].Proceedings of the20th International Conference on Fluidized Bed Combustion, Beijing,Tsinghua University Press,2009:583-589.
    [128]文圆圆,李振山,张腾,等.钴基载氧剂制取O2-CO2混合气体的流化床实验[J].工程热物理学报,2010,31(3):527-530.
    [129] Dam-Johansen K, Ostergaard K. High temperature reaction between sulfur dioxide andlimestone: Ⅰ. Comparison of limestones in two laboratory reactors and a pilot plant[J].Chemical Engineering Science,1991,46(3):827-837.
    [130] Dam-Johansen K, Ostergaard K. High temperature reaction between sulfur dioxide andlimestone: Ⅱ. An improved experimental basis for a mathematical model[J]. ChemicalEngineering Science,1991,46(3):839-845.
    [131] Dam-Johansen K, Ostergaard K. High temperature reaction between sulfur dioxide andlimestone: Ⅲ. Agrain-micrograin model and its verification[J]. Chemical EngineeringScience,1991,46(3):847-8535.
    [132] Hansen PFB, Dam-Johansen K, Ostergaard K. High temperature reaction between sulfurdioxide and limestone: Ⅴ. The effect of periodically changing oxidizing and reducingconditions[J]. Chemical Engineering Science,1993,48(7):1325-1341.
    [133] Lllerup JB, Dam-Johansen K, Lunden K. High temperature reaction between sulfurdioxide and limestone: Ⅵ. The influence of high pressure[J]. Chemical EngineeringScience,1993,48(11):2151-2157.
    [134] Laursen K, Duo W, Grace JR, Lim J. Sulfation and reactivation characteristics of ninelimestones[J]. Fuel,2000,79(2):153-163.
    [135] Fan LS, Li FX, Ramkumar S. Utilization of chemical looping strategy in coalgasification processes[J]. Particuology,2008,6(3):131-142.
    [136] Sun P, Grace JR, Lim CJ, Anthony EJ. Co-capture of H2S and CO2in apressurized-gasifier-based process[J]. Energy&Fuels,2007,21(2):836-844.
    [137] Manovic V, Anthony EJ, Lu DY. Sulphation and carbonation properties of hydratedsorbents from a fluidized bed CO2looping cycle reactor[J]. Fuel,2008,87(13):2923-2931.
    [138] Manovic V, Anthony EJ. Sequential SO2/CO2capture enhanced by steam reactivation ofa CaO-based sorbent[J]. Fuel,2008,87(8):1564-1573.
    [139] Salvador C, Lu D, Anthony EJ, Abanades JC. Enhancement of CaO for CO2capture inan FBC environment[J]. Chemical Engineering Journal,2003,96(1):187-195.
    [140]马聪.改性钙基CO2高温吸附剂的研究[D].西安:西北大学,2010.
    [141] Manovic V, Anthony EJ. SO2retention by reactivated CaO-based sorbent from multipleCO2capture cycles[J]. Environmental Science&Technology,2007,41(12):4435-4440.
    [142] Manovic V, Anthony EJ. Screening of binders for pelletization of CaO-based sorbentsfor CO2capture[J]. Energy&Fuels,2009,23(10):4797-4804.
    [143] Liu WQ, Feng B, Wu YQ, Wang GX. Synthesis of Sintering-Resistant Sorbents for CO2Capture[J]. Environ.Sci. Technol.,2010,44(8):3093-3097.
    [144]师琦.纳米钙基CO2吸收剂吸碳与再生性能及动力学研究[D].杭州:浙江大学,2008.
    [145]白涛.钙基吸收剂二氧化碳吸附特性实验研究及模拟[D].北京:华北电力大学,2007.
    [146] Sun P. CO2Removal in Power Systems using Calcium-based Sorbents[D]. Canada:University of British Columbia,2007.
    [147] Baker EH. The calcium oxide-carbon dioxide system in the pressure range1-300atmospheres. J. Chem. Soc.,1962,464-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700