用户名: 密码: 验证码:
柔性仿生波动鳍推进理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的不断发展,人类对陆地资源的开发需求日益膨胀,势必将导致资源的逐步耗竭。约占地球总面积71%的海洋蕴藏着巨大的潜力和无穷的奥妙,因此,设计高性能的水下推进器去探索海底的未知世界和丰富的资源已成为各国关注的热点和核心问题之一。鱼类作为海洋的主要“居民”经过上亿年的进化和自然选择,形成了适合海洋环境的独特形态和运动方式。其中波动鳍推进模式具有高效、高机动性和低流体扰动并且易于向水下推进器移植等显著优点,为未来水下推进器的仿生设计提供了新的选择,具有重要的理论研究价值和广阔的应用前景。
     本文以蓝点魟鱼类为研究对象,在详细观察分析其生物形态和波动运动特征以及生理结构的基础上,基于蓝点魟胸鳍结构、运动特征及推进功能开展仿生波动鳍的研究。论文主要围绕仿生波动鳍的结构设计、数值计算和实验验证三方面展开,并在如何利用新型智能材料作为驱动源研制仿生鱼鳍方面做了初步尝试和探讨,为仿生水下推进器的发展方向抛砖引玉,主要研究内容如下:
     1.仿生鱼鳍波动推进系统的设计与分析。结合实验室早期对仿生对象蓝点魟的定性观察和引用了L.J.Rosenberger等人大量的相关研究结论,深入开展了仿生对象生物形态、胸鳍波动运动特征以及生理结构等方面的研究,给出了这些参数随着游速变化的定量趋势,为仿生鱼鳍波动推进机构的设计和控制提供了客观依据和科学指导。根据仿生对象研究启示,基于模块化设计理念,在国内率先研制成功仿生蓝点魟模型。深入分析了仿生蓝点魟鱼鳍鳍条的运动学和动力学特性,与此同时建立了鱼鳍波动推进的运动学与动力学模型,并对鱼鳍波动推进力和推进速度进行了理论推导。针对仿生蓝点魟推进系统与控制系统一体化设计的技术特点,提出了蓝点魟胸鳍用于推进与姿态控制的控制方法,通过主动调节多个设计参数实现推进器的巡游、转弯、沉浮等基本运动方式,结合水下红外传感器阵列实现避障功能。
     2.仿生鱼鳍波动推进的数值计算。建立了以仿生蓝点魟为样本的简化二维及三维胸鳍波动运动模型,以不可压缩非稳定的N-S方程为主控方程,基于有限体积法与非结构网格的SIMPLE算法的控制方程离散,结合动网格技术,对仿生鳍条摆动过程和鱼鳍波动过程进行数值计算,综合分析了运动学参数、波动模式、波动鳍鳍面形状、鳍条刚度和倾角对游动性能的影响。给出了鱼鳍波动游动时流场信息以及总体受力情况,显示出了反卡门涡街的形成,并从涡动力学角度揭示了推力产生的流体力学机理。数值计算结果的正确性在随后的实验研究得以验证。
     3.仿生鱼鳍波动推进的实验研究。根据测试对象和测试内容的不同,分为鳍条摆动过程实验测试和仿生波动鱼鳍测量实验。鳍条摆动过程实验测试系统由运动机构及其控制系统、流场显示系统和测力系统组成。运动机构及其控制系统能模拟鳍条摆动的运动过程,流场显示系统能获得摆动运动流场涡结构的演化过程,测力系统能正确测量摆动运动过程中鳍条所受升阻力的变化规律。仿生鱼鳍波动实验系统则包括游速测量系统、推进力测量系统和功率测量系统组成,采用正交试验设计方案,分别使用极差分析和方差分析对波频、波幅、波长等运动学参数,波动模式,鱼鳍鳍面形状以及他们之间交互作用对游动速度、推进力、效率的影响进行详细的分析。同时还进行了鳍条刚度对游动性能影响的对比实验。实验结果较好地验证了理论推导和数值计算结论的可信性和正确性。
     4.仿生鱼鳍装置的初步改进。机电系统在工作原理、外形和性能等方面都与动物肌肉存在很大区别,尤其是缺乏类似动物“肌腱”的高性能储能元件。因此,本文在利用更接近肌肉驱动特征的智能材料作为驱动源的柔性仿生鱼鳍研究上做了一些探讨性工作。通过分析比较目前常见和相对比较成熟的几种智能材料的性能,最终选定N_iT_i形状记忆合金材料。同时针对柔性仿生鱼鳍的结构特点以及形状记忆合金材料本身的特性,提出了以一对差动方式安装的具有单向形状记忆效应的薄板状形状记忆合金作为鳍条基本单元,以应变传感器检测和反馈形状记忆合金薄板弯曲形变量,以模糊控制作为基本运动控制算法,实现了柔性鱼鳍的摆动和波动运动。通过实验给出了形状记忆合金鳍条弯曲输出力与薄板厚度的关系,鳍条最大偏转角度与厚度的关系以及加热电流占空比与鳍条最大偏转角度的关系,对仿生鱼鳍的设计进行了初步的优化。
With the development of our society, the resource of the earth is gradually exhausted. The ocean which occupies more than 70% of surface area of our earth contains huge potential and infinite profound. Therefore, the development of high performance Automatic Underwater Vehicle (AUV) to explore the unknown areas and rich resource of the undersea environment has become one of the popular voice recently all over the world. Fishes, the main residents of the ocean with billions of years' evolution and nature selection, have grown special characteristics of shapes and motion modes that are suitable for ocean condition. Among them the undulatory fin propulsion mode has the special advantages on high swimming efficiency, high maneuverability, less disturbance and convenience of being transplanted to underwater vehicles. Generally speaking, such a bio-propulsion mode provides a novel scheme for the development of future aquatic robots, it possesses values of both theoretical research and prospective for wide applications.
     This thesis takes Bluespotted stingray as a research object. After detailed investigations on its morphology, kinematics character and inner physiology structure, we propose a bionic undulatory fin based on pectoral fin structure, kinematics as well as propulsive function, including bionic design scheme, computational fluid dynamic (CFD) and the corresponding experimental validation. Furthermore, a new actuator driven by smart material is initially investigated, which provides an innovative idea and another choice for the bionic design of underwater vehicles. Through this research work, we may draw the following four points:
     1. Bionic design and analysis of the undulatory fin propulsion system.
     According to our qualitative observation combined with research work done by Rosenberger et al on Bluespotted stingray, we present morphology, undulatory kinematics character and inner physiology structure of its widely expanded pectoral fin as well as some quantitive conclusions of the variation of these parameters with propulsion velocity. It provides adequate guidance for bionic design and control of undulatory mechanical fin. Inspired by Bluespotted stingray and modular design motivation, we build a Bluespotted stingray model. According to our knowledge, it's the first Rajiform underwater robot in China. Hereby, the kinematical and dynamic performance of a single fin ray together with the whole fin is in-depth studied, followed by the analysis on thrust and velocity generated by undulatory motion of the mechanical fin. On the integrative design of the propellant system and the control system of our bionic Bluespotted stingray, a novel control method has been proposed for propulsion and gesture control. By actively modulating multi design parameters combined with infrared sensor array, we finally achieve several locomotion behaviors including: cruising, turning, depth control and obstacle avoidance.
     2. Computational Fluid Dynamic analysis of the undulatory fin propulsion system. Set up both 2D and 3D simplified undulatory kinematical equations. The governing equations are the incompressible, unsteady Navier-Stokes equation that is discretized using the finite volume method (FVM) with an implicit segregated solver approach. The pressure velocity coupling of the continuity equation was achieved using the SIMPLE algorithm. By combining with unstructured mesh and adaptive re-meshing, we implement the numerical analysis on oscillatory motion of fin ray and undulatory motion of bio-fin. The flowing aspects have been investigated to reveal the contribution to the propulsion performance: kinematical parameters, undulatory modes, fin shapes, stiffness and obliquity of fin rays. The field information around swimming fin and the force coefficient are obtained from the calculation. With these results, we analyze the forming mechanism of reverse Karman vortex streets and producing of thrust of fin during its motion by vortex dynamics. To be more important, these computational results of the undulatory fin model have been validated by experimental tests.
     3. Experimental tests on the undulatory fin propulsion system. The experiment is divided into two main parts: the tests on fin ray with oscillatory motion and the tests on fin with undulatory motion according. The equipment for the fin ray tests consists of motion control system, digital particle image velocimetry (DPIV) system and force measurement system. The motion control system can imitate the oscillatory motion of fin rays, the DPIV can display the vortex structure in the wake, while the force measurement system is used for lift and drag testing during oscillating. The equipment for the fin tests consists of velocity measurement system, propulsion force measurement system and power measurement system. We adopt orthogonal experimental design and use both range analysis and variance analysis to make a detailed study on the influence of kinematics parameters (such as frequency, amplitude, wavelength), undulatory modes, fin shapes as well as their correlations on propulsion velocity, thrust and efficiency. In addition, we test the influence of fin stiffness on propulsion performance. The experimental tests show the feasibility and creditability of the theoretic and computational conclusions.
     4. Improvement of the undulatory fin propulsion system. There exists great difference between electro-mechanical system and animal muscle on driven principle, form, performance, etc., particularly lacks efficient energy storage element that similar to the muscle tendon of animals. Therefore, we further carry out research on smart material driven bio-fin, the character of which is much close to muscles. After comparing the performance of several recently available smart materials, we finally choose N_iT_i Shape Memory Alloy (SMA). According to the structure of flexible bio-fin along with the characteristic of SMA, a couple of differentially equipped SMA plates with single Shape Memory Effect (SME) act as the function of fin ray. The deformation information is detected and feedback by strain transducer, and then achieve both oscillatory and undulatory motion of the flexible fin through Fuzzy Logic Control (FLC) algorithm. The preliminary experiments present the relationship between the bending force and the thickness of SMA plate, the relationship between the maximal bending angle and the thickness of SMA plate, and the relationship between the maximal bending angle and the heating current. This is meant for an initial optimal design of SMA bio-fin.
引文
[1]张代兵.波动鳍仿生水下推进器及其控制方法研究[D].国防科技大学,2007,博士论文.
    [2]封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势[J].高技术通讯.9:55-59,1999.
    [3]彭学伦.水下机器人的研究现状与发展趋势[J].机器人技术与应用.4:43-47,2004.
    [4]Webb P.W.Maneuverability-General Issues[J].IEEE Journal of Oceanic Engineering.29(3):547-555,2004.
    [5]Yuh J.Design and Control of Autonomous Underwater Robots:A survey[J].Autonomous Robots.8:7-24,2000.
    [6]Williams S.B,Newman P.M,Rosenblatt J,Dissanayake G,Durrant-Whyte H.F.Autonomous Underwater Navigation and Control[J].Robotica.19(5):481-496,2001.
    [7]Blidberg D.R.Autonomous Underwater Vehicles:A Tool for the Ocean[J].Unmanned Systems.9(2):10-15,1991.
    [8]俞经虎.仿生机器鱼运动分析研究[D].中国科学技术大学博士学位论文.2004.
    [9]赵延明.新型仿生机器鱼的初步设计[D].北京邮电大学硕士学位论文.2004.
    [10]Lighthill J.Mathematical Biofluiddynamics[J].SIAM,1975.
    [11]船舶推进效率.国际船艇.http://www.tongii.edu.cn/-Yanadv/ship/paperg.htm.
    [12]陈政宏,李志扬.浅谈流体终生物的推进方法.http://www.sciscape.ora/articles/fish-swim.
    [13]王君仁编著.仿生学札记[M].沈阳-辽宁人民出版社,1980.
    [14]迟冬祥,颜国正.仿生机器人的研究状况及其未来发展[J].机器人,2001.23(5):476-480.
    [15]吉爱红,戴振东,周来水.仿生机器人的研究进展[J].机器人,2005.27(3):284-288.
    [16]Lijima D,Yu W,Yokoi H,et al.Obstacle Avoidance Learning for a Multi-agent Linked Robot in the Real World[C].Proc.2001 IEEE Int.Conf.on Robotics and Automation.New York:IEEE Press,2001,523-528.
    [17]Bandyopadhyay P.R.Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles [J].Integ.and Comp.Biol.,2002,42:102-117.
    [18]Gordon M.S.,J.R.Hove,P.W.Webb,et al.Boxfishes as Unusually Well-controlled Autonomous Underwater Vehicles[J].Physiol.Biochem.Zool.,2000,73:663-671.
    [19]Barrett D.,M.Grosenbaugh,and M.Triantafllou.The Optimal Control of Flexible Hull Robotic Undersea Propelled by an Oscillating Foil[C].Proc.1996 IEEE AUV Symposium,1996:1-9.
    [20]M.S.Triantafyllou,F.S.Hover,A.H.Techet,et al.Review of Hydrodynamic Scaling Laws in Aquatic Locomotion and Fishlike Swimming[J].Applied Mechanics Reviews,2005,58: 226-236.
    [21]P.R.Bandyopadhay,J.M.Castano,J.Q.Rice,et al.Low Speed Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles[J].J.Fluids Eng.,1997,119:136-144.
    [22]M.Sfakiotakis,D.M.Lane,J.B.C.Davies.Review of Fish Swimming Modes for Aquatic Locomotion[J].IEEE J.Oceanic Eng.,1999,24(2):237-252.
    [23]C.M.Breder.The Locomotion of Fishes[J].Zoologica,vol.4,pp:159-297,1926.
    [24]Beamish,F.W.H.Swimming capacity.In Fish Physiology,Vol.7(Hoar,W.S.& Randall,D.J.,eds),New York,London:Academic Press.pp:101-187.1978.
    [25]Lindsey,C.C.Form,Function and Locomotory Habits in Fish[J].Fish Physiology.7:1-100,1978.
    [26]Webb,P.W.& Blake,R.W.Swimming in Functional Vertebrate Morphology(Hildebrand,M.,Bramble,D.M.,Liem,K.F.& Wake,D.B.,eds),Harvard:Belknap Press.pp.111-128,1985.
    [27]Webb,P.W.Form and Function in Fish Swimming[J].Sci.Amer,1984.251(1):58-68.
    [28]Webb,P.W.Body Form,Locomotion and Foraging in Aquatic Vertebrates.American Zoologist.24:107-120,1984.
    [29]Webb,P.W.Swimming in the Physiology of Fishes(Evans,D.H.,ed.),New York:CRC Marine Science Series.pp:3-24,1998.
    [30]Videler J.J.Fish Swimming[M].Chapman & Hall.1993.
    [31]Blake R.W.Fish locomotion[M].Cambridge:Cambridge University Press,1983.
    [32]谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模与控制[D].国防科技大学博士学位毕业论文.2006.
    [33]Webb PW.The Biology of Fish Swimming.In Mechanics and Physiology of Animal Swimming(ed.L.Maddock,Q.Bone and J.M.V.Rayner)[M].Cambridge:Cambridge University Press,1994.
    [34]Yates G.Fish Propulsion Mechanics[M].New York:Praeger Publishers,1983.
    [35]Lighthill M.J.Aquatic Animal Propulsion of High Hydromechanical Efficiency[J].J Fluid Mech.44:265-301,1970.
    [36]Lighthill M.J.Hydromechanics of aquatic animal propulsion[J].Ann Rev Fluid Mech.1:413-446,1969.
    [37]Fish F.E.Performance Constraints on the Maneuverability of Flexible and Rigid Biological Systems[C].Eleventh International Symposium on Unmanned Untethered Submersible Technology.Durham,NH:Autonomous Undersea Systems Institute.pp:394-406,1999.
    [38] Schrank A. J, Webb P. W. Do Body and fin Form Affect the Abilities of Fish to Stabilize Swimming during Maneuvers through Vertical and Horizontal Tubes? [J]. Env Biol Fish. 53:365-371, 1998.
    [39] Blake R. W. Fish Functional Design and Swimming Performance [J]. Journal of Fish Biology. 65(5): 1193-1222,2004.
    [40] Epstein M, Colgate JE, Maclver MA. A Biologically Inspired Robotic Ribbon Fin [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, workshop on Morphology, Control, and Passive Dynamics. Edmonton Alberta Canada, 2005.
    [41] Wang G, Shen L, Hu T. Kinematic Modeling and Dynamic Analysis of the Long-based Undulation Fin [C]. The 9th International Conference on Control, Automation, Robotics and Vision (ICARCV06). Singapore, IEEE Xplore. pp: 639-643, 2006.
    [42] Webb P W, Weihs D. Fish Biomechanics. Praeger, New York. 1983.
    [43] Bandyopadhyay R. Trends in Biorobotic Autonomous Undersea Vehicles Promode [J]. IEEE Journal of Oceanic Engineering. 30(1): 109-139,2005.
    
    [44] 沈林成,王光明.仿鱼长鳍波动推进器研究的进展与分析[J].国防科技人学学报.27(4):96-100.2005.
    [45] Maclver M. A, Fontaine E, Burdick J. W. Designing Future Underwater Vehicles: Principles and Mechanisms of the Weakly Electric Fish [J]. Journal of Oceanic Engineering. 39(3): 651-659,2004.
    [46] J Gray. Studies in Animal Locomotion. VI. The Propulsive Powers of the Dolphin [J]. Journal of Experimental Biology. 1936. Vol.13. P192-199.
    [47] Lang, T. and Daybell, A. Porpoise Performance Tests in a Sea-water Tank. NAVIVEPS Report 8060, United States Naval Ordnace Test Station, China Lake, CA, 1963.
    [48] Hoyt, J. Hydrodynamic Drag Reduction due to Fish Slimes. In T. Wu, C. Brokaw, and C. Brennan, editors, Proceedings of the symposium on swimming and flying in nature: New York, Plenum Press. 2: 653-672, 1975.
    [49] Kramer, M.O. Boundary Layer Stabilization by Distributed Damping. J. Aeronaut. Sci., 24: 459-460,1957.
    [50] Barrett, D., Triantafyllou, M., Yue, D., Grosenbaugh, M. and Wolfgang, M. Drag Reduction in Fish-like Locomotion [J].J. Fluid Mech., 392: 183-212, 1999.
    [51] Taylor, G. I. Analysis of the swimming of microscopic oranisms. Proc. R. Soc. Lond. A, 209: 447-461,1951.
    [52] Taylor, G. I. The Action of Waving Cylindrical Tails in Propelling Microscopic Roganisms. Proc. R. Soc. Lond. A, 211: 225-239, 1952.
    [53]Taylor,G.I.Analysis of Swimming of Long Narrow Animals[J].Proc.R.Soc.Lond.A,214:158-183,1952.
    [54]谭湘强.液体中微机器人的运动机理与实验研究[D].广东工业大学博士学位论文.2002.
    [55]敬军.鱼类C形起动的运动特性及机理研究[D].中国科学技术大学博士学位论文,2005.
    [56]Munk,M.M.The Aerodynamic Forceson Airship Hulls.Nat.Adv.Com.Aero.,Rep.no.184,1924.
    [57]Lighthill,M.J.,Higher Approximations in Aerodynamic Theory.In Princetoa aeronautical paperbacks,Press,P.U.,Editor.1960.s
    [58]Lighthill,M.J.Note on the Swimming of Slender Fish[J].Fluid Mech.9:305-320,1960.
    [59]Wolfgang,M.J.,J.M.Anderson,M.A.Grosenbaugh,D.K.P.Yue,and M.S.Triantafyllou.Near-Body Flow Dynamics in Swimming Fish[J].Journal of Experimental Biology,vol.202,pp:2303-2327,1999.
    [60]Lighthill,M.J.Large-amplitude Elongated-body Theory of Fish Locomotion.Proc.R.Soc.Long.B.,179:125-138,1971.
    [61]M.G.Chopra,T.Kambe.Large-amplitude Lunate-tail Theory of Fish Locomotion[J].Journal of Fluid Mechanics.74:161-162,1976.
    [62]M.G.Chopra,T.Kambe.Hydromechanics of Lunate-tail Swimming Propulsion,Part 2[J].Journal of Fluid Mechanics.79(1):49-69,1977.
    [63]Ahmandi A.R.and Widnall S.E.Energetics and Optimum Motion of Oscillating Lifting Surfaces of Finite Span[J].J.Fluid Mech.,162:261-282,1986.
    [64]Van Dam,C.P.,Efficiency Characteristics of Crescent-shaped Wings and Caudal Fins[J].Nature,325:435-437,1986.
    [65]Cheng H.K.and Murillo L.E.Lunate-tail Swimming Propulsion as a Problem of Curved Lifting Line in Unsteady Flow.Part 1.Asymptotic Theory[J].J.Fluid Mech.,143:327-350,1984.
    [66]G.Karpouzian,G.Spedding,and H.K.Cheng.Lunate-tail Swimming Propulsion.Part 2.Performance Analysis[J].J.Fluid Mech.,210:329-351,1990.
    [67]Wu,Y.Y.Swimming of a Waving Plate[J].J.Fluid Mech.10:321-344,1961.
    [68]Wu,T.Y.Hydrodynamics of Swimming Propulsion.1.Swimming of a Two-dimensional Flexible Plate at Variable Forward Speeds in an Inviscid Fluid[J].J.Fluid Mech.46:337-355,1971.
    [69]Wu,T.Y.Hydrodynamics of swimming propulsion.2.Some Optimum Shape Problems[J].J.Fluid Mech.46:521-544,1971.
    [70]Wu,T.Y.Hydrodynamics of swimming propulsion.3.Swimming and Optimum Movements of Slender Fish with Side Fins[J].J.Fluid Mech.46:545-568,1971.
    [71]Cheng,J.Y.,Zhuang,L.X.and Tong,B.G.Analysis of Swimming Three-dimensional Waving Plates[J].J.Fluid Mech.232:341-355,1991.
    [72]Tong,B.G..Zhuang,L.X.and Cheng,J.Y.The Hydrodynamic Analysis ofFish Swimming Performance and its Morphological Adaptation.Surveys in Fluid Dynamics-Ⅲ,Sadhana.18:719-728,1993.
    [73]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用[J].自然杂志.20:1-7,1998.
    [74]Wu,T.Y.Mathematical Biofluiddynamics and Mechanophysiology of Fish Locomotion Math[J].Meth.Appl.Sci.24:1541-1564,2001.
    [75]Wu,T.Y.On Theoretical Modeling of Aquatic and Aerial Animal Locomotion[J].Adv.in Appl.Mech.38:291-353,2001.
    [76]Miriam A.A.Mechanical Properties of the Dorsal Fin Muscle of Seahorse(Hippocampus)and Pipefish[J].J.Exp.Zoo.,293:561-577,2002.
    [77]J.H.Long,J.B.Adcock,and R.G.Root.Force Transmission via Axial Tendons in Undulating Fish:a Dynamic Analysis ComBiochem[J].Physiol.,133A:911-929,2002.
    [78]M.J.Mchenry,C.A.Pell,and J.H.Long.Mechanical Control of Swimming Speed:Stiffness and Axial Wave Form in Undulating Fish Models[J].J.Exp.Biol.,198:2293-2305,1995.
    [79]J.Y.Cheng and R.Blickhan.Bending Moment Distribution along Swimming Fish[J].J.Theor.Biol.,168:337-348,1994.
    [80]J.Lighthill and R.Blake.Biofluiddynamics of Balistiform and Gymnotiform Locomotion.Part 1.Biological Background and Analysis by Elongated-body Theory[J].Journal of Fluid Mechanics.212:183-207,1990.
    [81]J.Lighthill.Biofluiddynamics of Balistiform and Gymnotiform Locomotion.Part 2.The Pressure Distribution Arising in Two-dimensional Irrotational Flow from a General Symmetrical Motion of a Flexible Flat Plate Normal to Itself[J].Journal of Fluid Mechanics.213:1-10,1990.
    [82]J.Lighthill.Biofluiddynamics of Balistiform and Gymnotiform Locomotion.Part 3.Momentum Enhancement in the Presence of a Body of Elliptic Cross-section[J].Journal of Fluid Mechanics.213:11-20,1990.
    [83]J.Lighthill.Biofluiddynamics of Balistiform and Gymnotiform Locomotion.Part 4.Shortwavelength Limitations on Momentum Enhancement[J].Journal of Fluid Mechanics.213:21-28,1990.
    [84]Blake,R.W.On Seahorse Locomotion[J].J.Marine Biol.Assoc.,58:939-949,1976.
    [85]Blake,R.W.On Balistiform Locomotion[J].J.Marine Biol.Assoc.,58:73-80,1978.
    [86]Blake,R.W.The Swimming of the Mandarin Fish Synchropus Picturatus(Callronyiidae:Teleostei)[J].J.Marine Biol.Assoc.,59:421-428,1979.
    [87]Blake,R.W.Undulatory Median fin Propulsion of two Teleosts with Different Modes of Life [J].Can.J.Zool.,58:2116-2119,1980.
    [88]Blake,R.W.Swimming in the Electric Ells and Knifefishes[J].Can.J.Zool.,61:1432-1441,1983.
    [89]Daniel T.L.Forward Flapping Flight from Flexible Fins[J].Canadian Journal of Zoology.66:630-638,1988.
    [90]王光明.仿鱼柔性长鳍波动推进理论与实验研究[D].国防科技大学博士毕业论文,2007.
    [91]Triantafyllou M.S.,Triantafyllou G.S.and Gopalkrishnan R.Wake Mechanics for Thrust Generation in Oscillating Foils.Physics of Fluids[J].3(12):2835-2837,1991.
    [92]Triantafyllou G.S.,Triantafyllou M.S.and Grosenbauch M.Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion[J].J.Fluids Struct.7:205-224,1993.
    [93]Triantafyllou M.S.,Barrett D.S.,Yue D.K.P.et al.A new Paradigm of Propulsion and Maneuvering for Marine Vehicles[J].Trans.Soc.Naval Architects Marine Eng,104:81-100,1996.
    [94]Triantafyllou M.S.,Triantafyllou G.S.,and Yue D.K.Hydrodynamics of Fishlike Swimming[J].Annual Review of Fluid Mechanics.32:33-53,2000.
    [95]Weihs,D.A.Hydrodynamical Analysis of Fish Turning Maneuvers.Proc.R.Soc.London.Ser.B,182:59-72,1972.
    [96]Weihs,D.The Mechanism of Rapid Starting of Slender Fish[J].Biorheology,10:343-350,1973.
    [97]童秉纲,陆夕云.关于飞行和游动的生物力学研究[J].力学进展,34(1):1-8,2004.
    [98]Dong G.J,Lu X.Y.Numerical Analysis on the Propulsive Performance and Vortex Shedding of Fish-like Travelling Wavy Plate[J].Int.J.Numer.Methods Fluids.48:1351-1373,2005.
    [99]Lighthill,J.,and R.W.Blake.Biofluiddynamics of Balistiform and Gymnotiform Locomotion.Part 1.Biological Background,and Analysis by Elongated-body Theory[J].Journal of Fluid Mechanics.212:183-207,1990.
    [100]Kagemoto,H.,M.J.Wolfgang,D.K.P.Yue,and M.S.Triantafyllou.Force and Power Estimation in Fish-like Locomotion Using a Vortex-Lattice Method[J].Journal of Fluid Engineering,122:239-253,2000.
    [101]Jordan,C.E.Coupling Internal and External Mechanics to Predict Swimming Behavior:a General Approach? [J]. American Zoologist. 36: 710-722, 1996.
    [102]Pedley, T. J., and S. J. Hill. Large-amplitude Undulatory Fish swimming: Fluid Mechanics Coupled to Internal Mechanics [J]. Journal of Experimental Biology. 202: 3431-3438,1999.
    [103] Cheng, J. Y., and G. L. Chahine. Computational Hydrodynamics of Animal Swimming: Boundary Element Method and Three Dimensional Vortex Wake Structure [J]. Comparative Biochemistry and Physiology Part A. 131: 51 -60, 2001.
    [104] Dickinson, M. H. Unsteady Mechanisms of Force Generation in Aquatic and Aerial Locomotion [J]. American Zoologist. 36: 537-554, 1996.
    [105]Triantafyllou, M. S., G. S. Triantafyllou, and D. K. P. Yue. Hydrodynamics of Fishlike Swimming [J]. Annual Review of Fluid Mechanics. 32: 33-53,2000.
    [106] Wu T. Y. Mathematical Biofluiddynamics and Mechanophysiology of Fish Locomotion [J]. Mathematical Methods in the Applied Sciences. 24: 1541-1564, 2001.
    [107]Schultz, W. W., and P. W. Webb. Power Requirements of Swimming: Do new Methods Resolve old Questions? [J]. Integrative and Comparative Biology. 42: 1018-1025,2002.
    [108] Liu H., R. Wassersug, and K. Kawachi. A Computational Fluid Dynamics Study of Tadpole Swimming [J]. Journal of Experimental Biology, 199: 1245-1260, 1996.
    [109] Liu H., R. Wassersug, and K. Kawachi. The Three-Dimensional Hydrodynamics of Tadpole Locomotion [J]. Journal of Experimental Biology, 200: 2807-2819, 1997.
    [110] Carling, J., T. L. Williams, and G. Bowtell. Self-propelled Anguilliform Swimming: Simultaneous Solution of the Two-dimensional Navier-Stokes Equations and Newton's Laws of Motion [J]. Journal of Experimental Biology, 201: 3143-3166, 1998.
    [111]Anderson, E. J., W. R. McGillis, and M. A. Grosenbaugh. The Boundary Layer of a Swimming Fish [J]. Journal of Experimental Biology. 204: 81-102, 2001.
    [112] W. W. Schultz, Q. N. Zhou, and P. W. Webb. A Two-dimensional Model of Fish Swimming [C]. Mechanics and Physiology of Animal Swimming Meeting, Marine Biological Association, Plymouth, U.K., April, 1991.
    [113] Liu H., CP Ellington, K Kawachi, et al. A Computational Fluid Dynamic Study of Hawkmoth Hovering. Journal of Experimental Biology, 201: 461-477, 1998.
    [114] Liu H. and K. Kawachi. A Numerical Study of Undulatory Swimming [J]. Journal of Computational Physics, 155:223-247, 1999.
    [115] Fauci L. J. A Computational Model of the Fluid Dynamics of Undulatory and Flagellar Swimming [J]. American Zoologist. 36: 599-607, 1996.
    [116] Dillon, R. H., and L. J. Fauci. An Integrative Model of Internal Axoneme Mechanics and External Fluid Dynamics in Ciliary Beating [J]. Journal of Theoretical Biology, 207: 415-430, 2000.
    [117]Zhu,Q.et al.Three-dimensional Flow Structures and Vorticity Control in Fish-like Swimming[J].J.Fluid Mech.,468:1-28,2002.
    [118]Ramamurti,R.,et al.Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse:Threedimensional Unstesdy Computations with fin Deformation[J].J.Exp.Bio,205:2997-3008,2002.
    [119]Ramamurti,R.,Lohner,R.and Sandberg,W.C.Computation of Unsteady Flow Past a Tuna with Caudal fin Oscillation[J].Advances in Fluid Mechanics.9:169-178.Southampton,UK:Computational Mechanics Publications.1996.
    [120]Ramamurti R.and Sandberg,W.C.Simulation of Flow about Flapping Airfoils Using a Finite Element Incompressible Flow Solver[J].AIAA J.39:253-260,2001.
    [121]Sandberg,W.C.and Ramamurti,R.Unsteady Flow Computational Technology for Flapping Fins:A Status Report[C].In Proc.Unmanned Undersea Submersibles Technology Symposium,pp.182-194.Durham,NH:Autonomous Undersea Systems Institute.1999.
    [122]Ramamurti R.,Lohner,R.and Sandberg,W.C.Computation of the 3-D Unsteady Flow past Deforming Geometries[J].Int.J.Comp.Fluid Dyn.13:83-99,1999.
    [123]Ramamurtil R.,William C.Sandberg,Rainald Lohner,Jeffrey A.Walker and Mark W.Westneat.Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse:Three-dimensional Unsteady Computations with fin Deformation[J].The Journal of Experimental Biology.205:2997-3008,2002.
    [124]R.Ramamurti,W.C.Sandberg and R.Lohner.The Influence of fin Rigidity and Gusts on the Force Production in Fishes and Insects:A Computational Study[C].AIAA-2004-0404,Washington,D.C.,2004.
    [125]胡文蓉.鱼类单向机动运动二维流动特征的数值研究[D].南京航空航天大学博士学位论文,2003.
    [126]吴锤结,王亮.鱼类最优游动规律研究[J].空气动力学新进展论文集.北京,2003.
    [127]Wu,C.J.and Wang,L.Unsteady Moving Boundary CFD and Optimal Control Method with Applications in the Adaptive Optimal Control of Fluid Flow with Smart Surface[C],Proceedings of 2003 National Congress of Computational Mechanics.Beijing,2003.
    [128]Hu W.R.,Tong B.G.,and Liu H.A Computational Study on Backward Swimming Hydrodynamics in the eel[J].Journal of Hydrodynamics.17(4):438-447,2005.
    [129]Shen,L.,Zhang,X,Yue,D.K.P.and Triantafyllou,M.S.Turbulent Flow over a Flexible Wall Undergoing a Streamwise Travelling Wave Motion[J].J.Fluid Mech.,484:197-221,2003.
    [130]Wu C.J.,Xie Y.Q.,Wu J.Z.Fluid Roller Bearing Effect and Flow Control[J].Acta Mechanica.19(5):476-484,2003.
    [131]Lu X.Y,Yin X.Z.Propulsive Performance of Fish-like Traveling Wavy Wall[J].Acta Mechanica,175:197-215,2005.
    [132]夏全新,鲁传敬,吴磊.鱼类波状摆动推进的数值模拟[J].水动力学研究与进展A辑.20:921-928.2005.
    [133]Kern S,Koumoutsakos P.Simulations of Optimized Anguilliform Swimming[J].J Exp Biol 209:484t-4857,2006.
    [134]Singh S.N.,A.Simha,and R.Mittal.Biorobotic AUV Maneuvering by Pectoral Fins:Inverse Control Design Based on CFD Parameterization.IEEE Journal of Oceanic Engineering.29(3):777-785,2004.
    [135]Sarkar S.,Venkatraman K.Numerical Simulation of Thrust Generating Flow Past a Pitching Airfoil[J].Computers & Fluids.2005.
    [136]Lewin,G.C.,and H.Haj-Hariri.Modelling Thrust Generation of a Two-dimensional Heaving Airfoil in a Viscous Flow[J].Journal of Fluid Mechanics.492:339-362.2003.
    [137]Hiroyoshi Suzuki and Naomi Kato.A Numerical Study on Unsteady Flow Around a Mechanical Pectoral Fin[J].International Journal of Offshore and Polar Engineering.15(3):161-167,2005.
    [138]M.Bozkurttas,H.Dong,R.Mittal,P.Madden and G.V.Lauder.Hydrodynamic Performance of Deformable Fish Fins and Flapping Foils[C].44rd AIAA Aerospace Sciences Meeting and Exhibit,Reno,Nevada.pp:1392-1403,2006.
    [139]R.Ramamurti.Computational Fluid Dynamics Study for Optimization of a fin Design.[C].AIAA-2006-3658,Washington,D.C.,2006.
    [140]Takashi.A Fundamental Study for the Flow Field around Undulating Side Fins and Hydrodynamic Forces Action on Fins.
    [141]李非.背鳍/背臀鳍波动推进原理实验研究及仿真[D].国防科技大学硕士学位论文.2005.
    [142]T.J.Hu,L.C.Shen,G.M.Wang.A Novel CFD-based Approach of Biopropulsor Allocation Optimization for Underwater Robots[C].Proceedings of ICMEM2005 International Conference on Mechanical Engineering and Mechanics October 26-28,2005,Nanjing,China.
    [143]Hu T.J.,Shen L.C.,G P.L.CFD Validation of the Optimal Arrangement of the Propulsive Dorsal Fin of Gymnarchus niloticus[J].Journal of Bionic Engineering.3:139-146,2006.
    [144]杨少波,韩小云,卞文杰,刘北南.胸鳍摆动式鱼类的泳动仿真[J].计算机辅助工程.15:109-112.2006.
    [145]Y.H.Zhang,J.H.He,J.Yang.A Computational Fluid Dynamics(CFD)Analysis of Undulatory Mechanical Fin Driven by Shape Memory Alloy [J]. International Journal of Automation and Computing. 3(4): 374-381, 2006.
    [146] Y. H. Zhang, J. H. He, J. Yang. Computational Research on Modular Undulating Fin for Biorobotic Underwater Propulsor [J]. Journal of Bionic Engineering. 4(1): 25-32. 2007.
    [147] Y. H, Zhang, J. H. He, J. Yang. Posture Control of Shape Memory Alloy Biomimetic Pectoral Fin [C]. IEEE International Conference on Mechatronics and Automation (ICMA 2007), Haerbin China. 2007.
    [148] Y. H. Zhang, S. W. Zhang, J. Yang. Morphologic Optimal Design of Bionic Undulating Fin Based on Computational Fluid Dynamics [C]. IEEE International Conference on Mechatronics and Automation (ICMA 2007), Haerbin China. 2007.
    [149] Bone, Q. On the Function of the two Types of Myotomal Muscle Fibre in Elasmobranch Fish [J]. J. Mar. Biol. Assn UK 46, 321-349, 1966.
    [150]Rayner M. D. and Keenan M. J. Role of Red and White Muscles in the Swimming of Skipjack Tuna [J]. Nature. 214: 392-393, 1967.
    [151]Greer-Walker, M. Growth and Development of the Skeletal Muscle Fibers of the cod (Gadus morhua) [J]. J. Cons. Perm. Int. Explor. Mar. 33: 228-244, 1970.
    [152] Johnston I. A. and Goldspink G. A Study of Glycogen and Lactate in the Myotomal Muscles and Liver of the Coalfish (Gadus virens) during Sustained Swimming [J]. J. Mar. Biol. Assn UK 53, 17-26, 1973.
    [153] Johnston I. A. and Goldspink G. A Study of the Swimming Performance of the Crucian Carp Carassius Carassius in Relation to the Effects of Exercise and Recovery on Biochemical Changes in the Myotomal Muscles and Liver [J]. J. Fish Biol. 5: 249-260, 1973.
    [154] Johnston 1. A., Davison W. and Goldspink, G. Energy Metabolism of Carp Swimming Muscles [J]. J. Comp. Physiol. 114: 203-216, 1977.
    [155] Bone Q., Kiceniuk J. and Jones D. R. On the Role of the Different Fibre Types in Fish Myotomes at Intermediate Swimming Speeds [J]. Fish. Bull.USA. 76: 691-699, 1978.
    [156]Hochachka P. W., Hulbert W. C. and Guppy M. The Tuna Power Plant and Furnace. In The Physiological Ecology of Tunas (ed. G. D. Sharp and A. E. Dizon), pp. 153-174. New York: Academic Press, 1978.
    
    [I57]Grillner S. and Kashin S. On the Generation and Performance of Swimming in Fish. In Neural Control of Locomotion (ed. R. M. Herman, S. Grillner, P. S. G. Stein and D. G. Stuart), pp. 181-201. New York: Plenum Press, 1976.
    
    [158] Williams T. L, Grillner S., Smoljaninov V. V., Wallen P., Kashin S. and Rossignol S. Locomotion in Lamprey and Trout: the Relative Timing of Activation and Movement [J]. J. Exp.Biol. 143:559-566, 1989.
    [159]He P., Wardle C. S. and Arimoto T. Electrophysiology of the Red Muscle of Mackerel, Scomber Scombrus and its Relation to Swimming at low Speeds [C]. In The 2nd Asian Fisheries Forum (ed. R. Hirano and I. Hanyu), pp. 469-472. Manila: Asian Fisheries Society. 1990.
    [160] Van, Leeuwen J. L., Lankheet M. J. M., Akster H. A. and Osse J. W. M. Function of Red Axial Muscles of Carp (cyprinus-carpio): Recruitment and Normalized Power Output during Swimming in Different Modes [J]. J. Zool. 220:123-145,1990.
    [161] Jayne B. C. and Lauder G. V. Red and White Muscle Activity and Kinematics of the Escape Response of the Bluegill Sunfish during Swimming [J]. J. Comp. Physiol. A 173: 495-508, 1993.
    [162] Jayne B. C. and Lauder G. V. Red Muscle Motor Patterns during Steady Swimming in Largemouth Bass: Effects of Speed and Correlations with Axial Kinematics [J]. J. Exp. Biol. 198: 1575-1587, 1995.
    [163]Gillis G. Neuromuscuiar Control of Anguilliform Locomotion: Patterns of Red and White Muscle Activity during Swimming in the American Eel Anguilla Rostrata [J]. J. Exp. Biol. 201:3245-3256,1998.
    [164]Knower T., Shadwick R. E., Katz S. L., Graham J. B. and Wardle C. S. Red Muscle Activation Patterns in Yellowfin and Skipjack Tunas during Steady Swimming [J]. J. Exp. Biol. 202: 2127-2138, 1999.
    [165] Shadwick R. E., Katz S. L, Korsmeyer K. E., Knower T. and Covell J. W. Muscle Dynamics in Skipjack Tuna: Timing of Red Muscle Shortening in Relation to Activation and Body Curvature during Steady Swimming [J]. J. Exp. Biol. 202: 2139-2150, 1999.
    [166] Wardle C. S., Videler J. J. and Altringham J. D. Tuning in to Fish Swimming Waves: Body Form, Swimming Mode and Muscle Function [J]. J. Exp.Biol. 198: 1629-1636, 1995.
    [167] Katz S. L. and Shadwick R. E. Curvature of Swimming Fish Midlines as an Index of Muscle Strain Suggests Swimming Muscle Produces net Positive Work [J]. J. Theor. Biol. 193: 243-256, 1998.
    [168] Altringham J. D., Wardle C. S. and Smith C. I. Myotomal Muscle Function at Different Locations in the Body ofa Swimming Fish [J].J. Exp. Biol. 182: 191-206, 1993.
    [169] Wardle C. S. and Videler J. J. The Timing of the Electromyogram in the Lateral Myotomes of Mackerel and Saithe at Different Swimming Speeds [J]. J. Fish Biol. 42: 347-359, 1993.
    [170]Coughlin D. J. and Rome L. C. The Roles of Pink and Red Muscle in Powering Steady Swimming in Scup, Stenotomus Chrysops [J]. Amer. Zool. 36: 666-677, 1996.
    [171] Rome L. C., Swank D. and Corda D. How Fish Power Swimming [J]. Science 261: 340-343, 1993.
    [172] Johnson T. P., Syme D. A., Jayne B. C, Lauder G. V. and Bennett A. F. Modeling Red Muscle Power Output during Steady and Unsteady Swimming in Largemouth Bass [J]. Am. J. Physiol. 267:481-488, 1994.
    [173]Shadwick R. E., Steffensen J. F., Katz S. L. and Knower T. Muscle Dynamics in Fish during Steady Swimming [J]. Amer. Zool. 38: 755-770, 1998.
    [174]Ellerby D. J., Altringham J. D., Williams T., and Block B. A. Slow Muscle Function of Pacific Bonito (Sarda chiliensis) during Steady Swimming [J]. J. Exp. Biol. 203: 2001-2013, 2000.
    [175] Syme D. A. and Shadwick R. E. Effects of Longitudinal Body Position and Swimming Speed on Mechanical Power of Deep Red Muscle from Skipjack Tuna (Katsuwonus pelamis) [J]. J. Exp. Biol. 205: 189-200,2002.
    [176]D'Aout K., Curtin N. A., Williams T. L. and Aerts P. Mechanical Properties of Red and White Swimming Muscles as a Function of the Position along the Body of the Eel Anguilla Anguilla [J]. J. Exp. Biol. 204: 2221-2230,2001.
    [177] Syme D. A. Functional Properties of Skeletal Muscle. In: Shadwick R. E, Lauder G. V. (eds) Fish Biomechanics in Fish Physiology. Academic, San Diego. 23: 179-240, 2006.
    
    [178] 郑洁皎,胡佑红,俞卓伟.表面肌电图在神经肌肉功能评定中的应用[J].中国康复理论与实践.13(8):741-742,2007.
    [179] Hughes G. M. and Shelton G. Respiratory Mechanisms and Their Nervous Control in Fish [J]. Advances in Comparative Physiology and Biochemistry (ed. O. Lowenstein), 1, 275-364. London: Academic Press Inc. 1962.
    [180] Hughes G. M. and Ballintijn C. M. Electromyography of the Respiratory Muscles and Gill Water Flow in the Dragonet [J]. J. Exp. Biol. 49: 583-602, 1968.
    [181] S. J. Zottoli. Correlation of the Startle Reflex and Mauthner Cell Auditory Responses in Unrestrained Goldfish. J. Exp. Biol. 66: 243-254, 1977.
    [182] Reilly S. M. and G. V. Lauder. The Strike of the Tiger Salamander: Quantitative Electromyography and Muscle Function during Prey Capture [J]. Journal of Comparative Physiology. 167: 827-839,1990.
    [183] Jayne, B. C, G. V. Lauder, S. M. Reilly, P. C. Wainwright. The Effect of Sampling Rate on the Analysis of Digital Electromyograms from Vertebrate Muscle [J]. Journal of Experimental Biology. 154: 557-565, 1990.
    [184] Westneat M. W. Functional Morphology of Aquatic Flight in Fishes: Kinematics, Electromyography, and Mechanical Modeling of Labriform Locomotion [J]. Am. Zool. 36: 582-598, 1996.
    [185]T. Knower, R. E. Shadwick, S. L. Katz. J. B. Graham, and C. S. Wardle. Red Muscle Activation Patterns in Yellowfin (Thunnus albacares) and Skipjack (Katsuwonus pelamis) Tunas during Steady Swimming [J]. J. Exp. Biol. 202: 2127-2138, 1999.
    [186] J. M. Wakeling and I. A. Johnston. White Muscle Strain in the Common Carp and Red to White Muscle Gearing Ratios in Fish [J]. J. Exp. Biol. 202: 521-528, 1999.
    [187] D. J. Coughlin. Power Production during Steady Swimming in Largemouth Bass and Rainbow Trout [J]. J. Exp. Biol. 203: 617-629,2000.
    [188]Jeanine M. Donley and Robert E. Shadwick. Steady Swimming Muscle Dynamics in the Leopard Shark Triakis Semifasciata [J]. J. Exp. Biol. 206: 1117-1126, 2003.
    [189] Eric D. Tytell and George V. Lauder. The C-start Escape Response of Polypterus Senegalus: Bilateral Muscle Activity and Variation during Stage 1 and 2 [J]. J. Exp. Biol. 205: 2591-2603,2002.
    [l90]Shennan A. Weiss, Steven J. Zottoli, Samantha C. Do, Donald S. Faber, and Thomas Preuss. Correlation of C-start Behaviors with Neural Activity Recorded from the Hindbrain in Free-swimming Goldfish (Carassius auratus) [J]. J. Exp. Biol. 209: 4788-4801,2006.
    [191] Julie E. Schriefer and Melina E. Hale. Strikes and Startles of Northern Pike (Esox lucius): A Comparison of Muscle Activity and Kinematics between S-start Behaviors [J]. J. Exp. Biol.: 535-544, 2004.
    [192]Ellerby D. J. and Altringham J. D. Spatial Variation in Fast Muscle Function of the Rainbow Trout Oncorhynchus Mykiss during Fast-starts and Sprinting [J]. J. Exp. Biol. 204: 2239-2250,2001.
    [193]Westneat and J Walker. Motor Patterns of Labriform Locomotion: Kinematic and Electromyographic Analysis of Pectoral fin Swimming in the Labrid Fish Gomphosus Varius [J]. J. Exp. Biol. 200: 1881-1893, 1997.
    [194] Lauder G. V. Pectoral Fin Locomotion in Fishes: Three Dimensional Kinematics and Electromyography [J]. Am. Zool. 35, 3A, 1995.
    [195]Reilly S. M. Quantitative Electromyography and Muscle Function of the Hind Limb during Quadrupedal Running in the Lizard Sceloporus Clarki [J]. Zoology. 98: 263-277, 1995.
    [196] Shadwick R, Gemballa S. Structure, Kinematics, and Muscle Dynamics in Undulatory Swimming. In: Shadwick RE, Lauder GV (eds) Fish biomechanics vol 23 in fish physiology. Academic, San Diego, pp 241-280,2006.
    [197] E. G. Drucker and G. V. Lauder. Locomotor Function of the Dorsal Fin in Rainbow Trout: Kinematic Patterns and Hydrodynamic Forces [J]. J. Exp. Biol. 208: 4479-4494, 2005.
    [198] G. Wu, Y. Yang, and L. Zeng. Routine Turning Maneuvers of Carp Cyprinus Carpio koi: Effects of Turning Rate on Kinematics and Hydrodynamics [J]. J. Exp. Biol. 210: 4379-4389, 2007.
    [199] E. M. Standen and G. V. Lauder. Hydrodynamic Function of Dorsal and Anal Fins in Brook Trout (Salvelinus fontinalis) [J]. J. Exp. Biol. 210: 325-339, 2007.
    [200] J. Walker and M. Westneat. Labriform Propulsion in Fishes: Kinematics of Flapping Aquatic Flight in the Bird Wrasse Gomphosus Varius (Labridae) [J]. J. Exp. Biol. 200: 1549-1569, 1997.
    [201] G. V. Lauder and T. Prendergast. Kinematics of Aquatic Prey Capture in the Snapping Turtle Chelydra Serpentina [J]. J. Exp. Biol. 164: 55-78, 1992.
    [202] K. D'Aout and P. Aerts. Kinematics and Efficiency of Steady Swimming in Adult Axolotls (Ambystoma mexicanum) [J]. J. Exp. Biol. 200: 1863-1871, 1997.
    [203] B. J. BorreJl, J. A. Goldbogen, and R. Dudley. Aquatic Wing Flapping at Low Reynolds Numbers: Swimming Kinematics of the Antarctic Pteropod, Clione Antarctica [J]. J. Exp. Biol. 208: 2939-2949, 2005.
    [204] Lauder G. V. Prey Capture Hydrodynamics in Fishes: Experimental Tests of two Models [J]. Journal of Experimental Biology. 104:1-13, 1983.
    [205] Lauder G. V. and T. Prendergast. Kinematics of Aquatic Prey Capture in the Snapping Turtle, Chelydra Serpentine [J]. Journal of Experimental Biology. 164: 55-78, 1992.
    
    [206]王光明,沈林成,胡天江,李非.柔性长鳍波动推进试验及分析[J].国防科技大学学报.28(1):98-102,2006.
    [207] Harris M. A and K. Steudel. The Relationship between Maximum Jumping Performance and Hind Limb Morphology/Physiology in Domestic Cats (Felis Silvestris Catus) [J]. Journal of Experimental Biology. 205: 3877-3889,2002.
    [208] Domenici and R.W. Blake. The Kinematics and Performance of the Escape Response in the anglefish(Pterophyllumeimekei)[J]. J.Exp. Biol. 156: 187-205, 1991.
    [209] Domenici and R.W. Blake. The Effect of Size on the Kinematics and Performance of Anglefish (Pterophyllum eimekei) [J]. Can. J. Zool., 71: 2319-2326, 1993.
    [210] T. Beddow, J. Leeuwen, and I. Johnston. Swimming Kinematics of Fast Starts are Altered by Temperature Acclimation in the Marine Fish Myoxocephalus Scorpius [J]. J. Exp. Biol. 198: 203-208,1995.
    [211] A. Gibb. Kinematics of Prey Capture in a Flatfish, Pleuronichthys Verticalis [J]. J. Exp. Biol. 198: 1173-1183, 1995.
    [212] P. Domenici and R. W. Blake. The Kinematics and Performance of Fish Fast-start Swimming [J]. J. Exp. Biol. 200: 1165-1178, 1997.
    [213] I. L. Spierts and J. L. Leeuwen. Kinematics and Muscle Dynamics of C- and S-starts of Carp (Cyprinus carpio L.) [J]. J. Exp. Biol. 202: 393-406, 1999.
    [214] S. Wohl and S. Schuster. The Predictive Start of Hunting Archer Fish: a Flexible and Precise Motor Pattern Performed with the Kinematics of an Escape C-start [J]. J. Exp. Biol. 210:311-324,2007.
    [215] P. W. Webb. Kinematics of Pectoral Fin Propulsion in Cymatogaster Aggregata [J]. J. Exp.Biol. 59: 697-710, 1973.
    [216] E. Drucker and J. Jensen. Pectoral Fin Locomotion in the Striped Surfperch. II. Scaling Swimming Kinematics and Performance at a Gait Transition [J]. J. Exp. Biol. 199: 2243-2252, 1996.
    
    [217] L. J. Rosenberger. Functional Morphology of Undulatory Pectoral Fin Locomotion in the Stingray Taeniura Lymma (Chondrichthyes: Dasyatidae) [J]. The Journal of Experimental Biology. 202: 3523-3539, 1999.
    [218] L. J. Rosenberger. Pectoral Fin Locomotion in Batoid Fishes: Undulation versus Oscillation [J]. The Journal of Experimental Biology. 204: 379-394, 2001.
    [2l9]Melina E. Hale, Ryan D. Day, Dean H. Thorsen, and Mark W. Westneat. Pectoral Fin Coordination and Gait Transitions in Steadily Swimming Juvenile Reef Fishes [J]. J. Exp. Biol. 209: 3708-3718,2006.
    [220] A. C Gibb, K. A. Dickson, and G. V. Lauder. Tail Kinematics of the Chub Mackerel Scomber Japonicus: Testing the Homocercal Tail Model of Fish Propulsion [J]. J. Exp. Biol. 202:2433-2447,1999.
    [221] J. R. Hove, L. M. O'Bryan, M. S. Gordon, P. W. Webb, and D. Weihs. Boxfishes(Teleostei: Ostraciidae) as a Model System for Fishes Swimming with Many Fins: Kinematics [J]. J. Exp. Biol. 204: 1459-1471,2001.
    [222] R. Bainbridge. Caudal Fin and Body Movement in the Propulsion of some Fish [J]. J. Exp. Biol. 40: 23-56, 1963.
    [223] J. C. Nauen and G. V. Lauder. Hydrodynamics of Caudal fin Locomotion by Chub Mackerel, Scomber japonicus (Scombridae) [J]. J. Exp. Biol. 205: 1709-1724, 2002.
    [224] E. D. Tytell, E. M. Standen, and G. V. Lauder. Escaping Flatland: Three-dimensional Kinematics and Hydrodynamics of Median Fins in Fishes [J]. J. Exp. Biol. 211: 187-195, 2008.
    [225] E. M. Standen and G. V. Lauder. Dorsal and Anal fin Function in Bluegill Sunfish Lepomis Macrochirus: Three-dimensional Kinematics during Propulsion and Maneuvering [J]. J. Exp. Biol. 208: 2753-2763,2005.
    [226] Paul W. Webb. Kinematics of Plaice, Pleuronectes Platessa, and Cod, Gadus Morhua, Swimming near the Bottom [J]. J. Exp. Biol. 205: 2125-2134,2002.
    [227]Kathryn A. Dickson, Jeanine M. Donley, Chugey Sepulveda, and Lisa Bhoopat. Effects of Temperature on Sustained Swimming Performance and Swimming Kinematics of the Chub Mackerel Scomber Japonicus [J]. J. Exp. Biol. 205: 969-980, 2002.
    [228]Zeng L. J., H. M. Sumoto, and K. Kawachi. Simultaneous Measurement of the Position and Shape of a Swimming Fish by Combining a Fringe Pattern Projection Method with a Laser Scanning Technique [J]. Optical Eng., 37: 1500-1504, 1998.
    [229] H. Wang, L. J. Zeng, and C. Yin. A Video Tracking System for Measuring the Position and Body Deformation of a Swimming Fish [J]. Rev. Sci. Instrum., 73: 4381-4384, 2002.
    [230] Wu G., Yang Y. and Zeng L. Novel Method Based on Video Tracking System for Simultaneous Measurement of Kinematics and Flow in the Wake of a Freely Swimming Fish [J]. Rev. Sci. Instrum. 77, 114302, 2006.
    [231]G. Wu, Y. Yang, and L. Zeng. Routine Turning Maneuvers of Koi Carp Cyprinus Carpio Koi: Effects of Turning Rate on Kinematics and Hydrodynamics [J]. J. Exp. Biol. 210: 4379-4389, 2007.
    [232] G. Wu, Y. Yang, and L. Zeng. Kinematics, Hydrodynamics and Energetic Advantages of Burst-and-coast Swimming of Koi Carps (Cyprinus carpio koi) [J]. J. Exp. Biol. 210: 2181-2191,2007.
    
    [233] 郭春钊,汪增福.基于序列图像的鱼游运动机理分析[J].实验力学.20(3):525-531,2005. [234] Stamhuis E. J. and Videler J. J. Quantitative Flow Analysis around Aquatic Animals Using Laser Sheet Particle Image Velocimetry [J]. J. Exp. Biol. 198:283-294, 1995.
    [235] Anderson J. Vorticity Control for Efficient Propulsion [D]. PhD dissertation, Maschusetts Institutes of Technology and the Woods Hole Oceanographic Institution, Department of Ocean Engineering, 1996.
    [236]Muller U., Heuvel B., Stamhuis S., and Videler J. Fish Foot Prints: Morphonology and Energetics of the Wake behind a Continuously Swimming Muller(Chelon Labrosus Risso) [J]. J. Exp. Biol. 200: 2893-2906, 1997.
    [237] E. G. Drucker and G. V. Lauder. Locomotor Function of the Dorsal Fin in Teleost Fishes: an Experimental Analysis of Wake Forces in Sunfish [J]. J. Exp. Biol. 204: 2943-2958, 2001.
    [238] E. G. Drucker, G. V. Lauder. Wake Dynamics and Fluid Forces of Turning Maneuvers in Sunfish [J]. J. Exp. Biol. 204: 431-442, 2001.
    [239] E. G. Drucker, G. V. Lauder. Locomotor Forces on a Swimming Fish: Three Dimensional Vortex Wake Dynamics Quantified Using Digital Particle Image Velocimetry [J]. J. Exp. Biol. 202:2393-2412, 1999.
    [240] E. G. Drucker, G. V. Lauder. A Hydrodynamic Analysis of Fish Swimming Speed: Wake Structure and Locomotor Force in Slow and Fast Labriform Swimmers [J]. J. Exp. Biol. 203: 2379-2393, 2000.
    [241]Li X. M., Lu X. Y., and Yin X. Z. Visualization on Fish's Wake [C]. SPIE, 4537: 473-476, 2002.
    [242] Li X. M., Wu Y. F., Lu X. Y., and Yin X. Z. Measurements of Fish's Wake by PI V [C]. Proc. SPIE on Optical Technology and Image Processing for Fluids and Solids Diagnostics, Beijing, 2002.
    [243] J. C. Nauen and G. V. Lauder. Quantification of the Wake of Rainbow Trout (Oncorhynchus Mykiss) Using Three-dimensional Stereoscopic Digital Particle Image Velocimetry [J]. J. Exp. Biol. 205: 3271-3279, 2002.
    [244] Wilga C. D., and Lauder G. V. Hydrodynamic Function of the Shark's Tail [J]. Nature. 430: 850,2004.
    [245] Bozkurttas, M., H. Dong, R. Mittal, P. Madden, G. V. Lauder. Hydrodynamic Performance of Deformable Fish Fins and Flapping Foils [J]. American Institute of Aeronautics and Astronautics, AIAA 2006-1392: 1-11,2006.
    [246] Peng, J. F., John O. D., Peter G. M., and G. V. Lauder. Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin [J]. The Journal of Experimental Biology. 210:685-698, 2007.
    [247]Alben, Silas, Peter G. M. and G. V. Lauder. The Mechanics of Active Fn-shape Control in Ray-finned Fishes [J]. Journal of the Royal Society Interface. 4: 243-256, 2007.
    [248] Tytell, E. D. and J. K. Alexander. Bluegill Lepomis Macrochirus Synchronize Pectoral Fin Motion and Opercular Pumping [J]. Journal of Fish Biology. 70:1268-1279,2007.
    [249] Lauder G. V. and Peter M. Fish Locomotion: Kinematics and Hydrodynamics of Flexible Foil-like Fins [J]. Experiments in Fluids. 43:641-653, 2007.
    [250] E. D. Tytell. Median Fin Function in Bluegill Sunfish Lepomis Macrochirus: Streamwise Vortex Structure during Steady Swimming [J]. The Journal of Experimental Biology 209, 1516-1534,2006.
    [251] Wolfgang M. J., Triantafyllou M. S. and Yue D. K. P. Visualization of Complex Near-body Transport Process in Flexible-body Propulsion [J]. J. Visual-Japan. 2: 143-151, 1999.
    [252]Sakakibara J., Nakagawa M., and Yoshida M. Stereo-PIV Study of Flow Around a Maneuvering Fish[J].Exp.In.Fluids.36:282-293,2004.
    [253]Ulrike K.Muller,Jos G.M.van den Boogaart,and Johan L.van Leeuwen.Flow Patterns of Larval Fish:Undulatory Swimming in the Intermediate Flow Regime[J].J.Exp.Biol.211:196-205,2008.
    [254]Dubois A.B.,G.A.Cavagna,and R.S.Fox.Pressure Distribution on the Body Surface of Swimming Fish[J].J.Exp.Biol.60:581-591,1974.
    [255]Dubois A.B.and C.S.Ogilvy.Forces on the Tail Surface of Swimming fish:Thrust,Drag and Acceleration in Bluefish(Pomatomus Saltatrix)[J].J.Exp.Biol.77:225-241,1978.
    [256]Lauder G.V.and L.E.Lanyon.Functional Anatomy of the Bluegill Sunfish,Lepomis Macrochirus:In Vivo Measurement of Bone Stain[J].J.Exp.Biol.84:33-55,1980.
    [257]Harper,D.G.and R.W.Blake.Prey Capture and the Fast Star Performance of Rainbow Trout Salmo Girdneri and Nrthern Pke Esoxlucius[J].Exp.Biol.150:321-342,1990.
    [258]王光明,沈林成.水下仿鱼推进器的分析[J].兵工自动化.25(5):7-9,2006.ss
    [259]http://web.mit.edu/towtank/www/tuna
    [260]http://web.mit.eduttowtanklwww/pike
    [261]Anderson,J.M.& Kerrebrock,P.A.The Vorticity Control Unmanned Undersea Vehicle (VCUUV):An Autonomous Robot Tuna.Proc 11th Intl.Symp.on Unmanned Untethered Submersible Tech.,Durham,NH,USA.
    [262]J.Liu and H.Hu,A Methodology of Modelling Fish-like Swim Patterns for Robotic Fish,Proc.of IEEE International Conference on Mechatronics and Automation(ICMA 2007),pages 1316-1321,Harbin,Heilongjiang,China,5-8 August 2007.
    [263]H.Hu,J.Liu,I.Dukes and G.Francis,Design of 3D Swim Patterns for Autonomous Robotic Fish,Proceedings of IEEE/RSJ Int.Conf.on Intelligent Robots and Systems,pages 2406-2411,Beijing,China,9-15 October 2006.
    [264]J.Liu,H.Hu and D.Gu,A layered control architecture for autonomous robotic fish,Proceedings of IEEE/RSJ Int.Conf.on Intelligent Robots and Systems,pages 312-317,Beijing,China,9-15 October 2006.
    [265]H.Hu,Biologically Inspired Design of Autonomous Robotic Fish at Essex,Proceedings of the IEEE SMC UK-RI Chapter Conference,on Advances in Cybernetic Systems,pages 3-8,Sheffield,September 7-8,2006.
    [266]喻俊志,王硕,谭民.多仿生机器鱼控制与协调[J].机器人技术与应用.3:27-35,2003.
    [267]K.Mcisaac,J.Ostrowski.A Geometric Approach to Anguilliform Locomotion:Modelling of an Underwater Eel Robot[C].Proceedings of the 1999 IEEE Conference of Robotics and Automation(ICRA 1999).pp:2843-2848,1999.
    [268]T.Knusten(Advisors:J.Ostrowski,K.Mcisaac).Designing an underwater eel-like robot and developing anguilliform locomotion control,htp://www.ee.upenn.edu/-sunfes/tpast Porjects/Papers00/KnutsenTamara.pdf.
    [269]http://www.me.berkeley.edu/hellcalibot.html.
    [270]G.Dogangil,E.Ozcicek,and A.Kuzucu.Design,Construction,and Control of a Robotic Dolphin[C].IEEE International Conference on Robotics and Biomimetics.HongKong,2005.
    [271]http://www.chnd.net.cn/HTML/2008/zsbl200802/200811749.html.
    [272]K.H.Low.Parametric Study of Modular and Reconfigurable Robotic Fish with Oscillating Caudal Fin Mechanisms[C].IEEE International Conference on Mechatronic and Automation (ICMA07).Harbin,China.2007.
    [273]向忠祥,张向明,刘令勋.尾鳍推进装置的研究[J].武汉造船.6:23-26,1994.
    [274]王龙,喻俊志,胡永辉.机器海豚的机构设计与运动控制[J].北京大学学报(自然科学版).42(3):294-301,2006.
    [275]苏玉民,黄胜,庞永杰等.仿鱼尾潜器推进系统的水动力分析[J].海洋工程.20(2):54-59,2002.
    [276]成巍,苏玉民,秦再白等.一种仿生水下机器人的研究进展[J].船舶丁程.26(1):5-8,2004.
    [277]成巍,李喜斌,孙俊岭等.仿生水下机器人运动控制方法研究[J].机器人技术与应用.4:37-42,2004.
    [278]成巍.仿生水下机器人仿真与控制技术研究[D].哈尔滨工程大学博士学位论文,2004.
    [279]刘军考,陈维山,陈在礼.仿生机器鱼的运动学参数及实验研究[J].中国机械工程.13(16):1354-1357,2002.
    [280]刘军考.仿鱼水下推进器理论与实验研究[D].哈尔滨工业大学博士论文,2001.
    [281]喻俊志,陈尔奎,王.硕,谭.民.仿生机器鱼研究的进展与分析[J].控制理论与应用.20(4):485-491,2003.
    [282]梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展Ⅰ—鱼类推进机理[J].机器人,24(2):107-111,2002.
    [283]梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅱ—小型实验机器鱼的研制[J].24(3):234-238,2002.
    [284]梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅲ—水动力学实验研究[J].24(4):304-308,2002.
    [285]梁建宏,王田苗,魏洪兴,刘淼,王晓君.水下仿生机器鱼的研究进展Ⅳ—多仿生机器鱼协调控制研究[J].机器人.24(5):413-417,2002.
    [286]梁建宏,邹丹,王松.SPC-Ⅱ机器鱼平台及其自主航行实验[J].北京航空航天大学学报,31(7):709-713,2005.
    [287]梁建宏,王田苗,魏洪兴.仿生机器鱼的技术研究进展及关键问题探讨[J].机器人技术与应用,3:14-19,2003.
    [288]喻俊志,陈尔奎,王硕梁,梁建宏,谭民.一种多仿生机器鱼协作系统的设计与初步实现[J].系统仿真学报.10:1316-1320,2002.
    [289]http://pyrb.dayoo.com/html/2007-01/29/content_22676955.htm.
    [290]俞经虎,竺长安,陈刚等.弹性装置提高机器鱼推进效率的研究[J].机器人.26(5):416-420,2004.
    [291]俞经虎.仿生机器鱼运动分析研究[D].中国科学技术大学博士学位论文,2004.
    [292]http://www.univs.cn/newweb/univs/ouc/1970-01-01/120651.html
    [293]http://www.gzkj.gov.cn/kjxcd/newsDetail.jsp?infold=75770&clld=289&page=4&type=65
    [294]M.Yamakita,N.Kamamichi,T.Kozuki,K.Asaka and Z.W.Luo.A Snake-Like Swimming Robot Using IPMC Actuator and Verification of Doping Effect[J].
    [295]S.Guo,T.Fukuda,N.Kato,and K.Oguro.Development of Underwater Micro Robot Using ICPF Actuator[J].In Proc.IEEE Int.Conf.Robotics and Automation.pp:1829-1834,1998.
    [296]S.Guo,Y.Sasaki,T.Fukuda.A Fin Type of Microrobot in Pipe.Proc.of the 2002International Symposium on Micro Machine and Human Science(MHS' 22),Nagoya,pp:93-98,2002.
    [297]S.Guo,T.Fukuda,K.Asaka.A New Type of Fish-like Underwater Microrobot[J].IEEE/ASME Transactions on Mechatronics,8:136-141,2003.
    [298]X.Ye,S.Xu,S.Guo,K.Wang and Y.Yang.A New Type of Underwater Microrobot Driven By Single ICPF Actuator[C].Proceeding of the 6th World Congress on Control and Automation.pp:8953-8957,Dalian,China,Jun.21-23,2006.
    [299]T.Fukuda,H.Hosokai,I.Kikuchi.Distributed Type of Actuators of Shape Memory Alloy and Its Application to Underwater Mobile Robotic Mechanisms[C].Proceedings of the 1990IEEE International Conference on Robotic and Automation.pp:1316-1321,1990.
    [300]章永华,马记,何建慧等.基于人工肌肉的仿生机器鱼关节机构设计及力学分析[J].机器人.28(1):40-44,2006.
    [301]章永华,何建慧,吴月华等.基于功能材料的柔性多关节水下仿鱼形推进器设计及分析[J].机器人.28(04):367-373,2006.
    [302]Ayers,J.,Wilbur,C.,Olcott,C.Lamprey Robots[C].In:Proceedings of the International Symposium on Aqua Biomechanisms.T.Wu and N,Kato,[eds].Tokai University,2000.
    [303]K.H.Low,J.Yang,Y.H.Zhang.Initial Prototype Design and Investigation of an Undulating Body by SMA[C].IEEE CASE 06,Shanghai,China.2006.
    [304]O.K.Rediniotis,L.N.Wilson,D.C.Lagoudas,M.M.Khan.Development of a Shape Memory Alloy Actuated Biomimetic Hydrofoil[J].Journal of Intelligent Material Systems and Structures.13:35-49,2002.
    [305]Shinjo N.,Swain G.W.Use of Shape Memory Alloy for the Design of an Oscillatory Propulsion System[J].IEEE Journal of Ocean Engineering.29(3):750-755,2004.
    [306]T.Tao,Y.C.Liang,M.Taya.Bio-inspired Actuating System for Swimming Using Shape Memory Alloy Composites[J].International Journal of Automation and Computing.3(4):366-373,2006.
    [307]李尚荣.NiTi记忆合金动态特性实验研究及其在仿生机器鱼上的应用[D].中国科学技术大学博士学位论文,2006.
    [308]A.Suleman,C.Crawford.Design and Testing of a Biomimetic Tuna Using Shape Memory Alloy Induced Propulsion[J].Computers and Structures.86(3):491-499,2008.
    [309]T.Fukuda,A.Kawamoto,F.Arai,H.Matsuura.Steering Mechanism of Underwater Micro Mobile Robot[C].Proceedings of the 1995 IEEE International Conference on Robotic and Automation.pp:363-368,1995.
    [310]Borgen,M.G.,Washington,G.N.and Kinzel,G.L.Design and Evolution of a Piezoelectrically Actuated Miniature Swimming Vehicle[J].IEEE/ASME Transactions on Mechatronics.8(1):66-76,2003.
    [311]Washington,G.The Intelligent Structures and Systems Laboratory,Miniature Swimming Vehicles,URL:http://rclsgi.eng.ohio-state.edu/~gnwashin/parts/swim.htm,2004.
    [312]Yoon,K.J.,Park,K.H.,Lee,S.K.,Goo,N.S.& Park,H.C.Analytical Design Model for a Piezo-composite Unimorph Actuator and Its Verification Using Lightweight Piezo-composite Actuators[J].Smart Mat.Struc.13:459-467,2004.
    [313]S.Heo,T.Wiguna,H.C.Park & N.S.Goo.Effect of Artificial Caudal Fin on Performance of a Biomimetic Fish Robot Actuated by Piezoelectric Actuators[C].Nanjing,China,2007.
    [314]Z.G.Zhang,M.Gondo,N.Yamashita,A.Yamamoto and T.Higuchi.Design and Control of a Fish-like Robot Using an Electrostatic Motor[C].2007 IEEE International Conference on Robotics and Automation.Roma,Italy,974-979,2007.
    [315]http://www.festo.com/INetDomino/coorp_sites/zh/1b433eb8d078cbd2c1256c7e0039bf43.ht m
    [316]Biomechatronic.Biomechatronics-A Swimming Robot Actuated by Living Muscle Tissue.http://biomech.media.mit.edu/research/pro23.htm,2004.
    [317]Herr,H.and Dennis,B.A Swimming Robot Actuated by Living Muscle Tissue[J].Journal of NeuroEngineering and Rehabilitation.http://biomech.media.mit.edu/images/pro_2 /Muscle_Robot_Final.pdf, 2004.
    [318]Sfakiotakis M., Lane D. M., Davies B. C. An Experimental Undulating-fin Device Using the Parallel Bellows Actuator [C]. Proceedings of the 2001 IEEE International Conference on Robotics & Automation. 2356-2362, 2001.
    [319] Robinson G., Davies J. B. C. The Parallel Bellows Actuator. Proc. Robotica '98. Brasov, Romania. 195-200,1998.
    [320] Davies, J.B.C., Lane, D.M., Robinson, G.C., Obrien, D.J., Pickett, M, Sfakiotakis, M, Deacon, B. Subsea Applications of Continuum Robots [C]. Proc. International Symposium on Underwater Technology. Tokyo, Japan. 363-369, 1998.
    [321]Boileau, R., L. Fan, and T. Moore, Mechanization of Rajiform Swimming Motion: The Making of Robo-Ray [D]. University of British Columbia. 2002.
    [322]MacIver M. A.. The Computational Neuroethology of Weakly Electric Fish: Body Modeling, Motion Analysis, and Sensory Signal Estimation, Ph.D. Dissertation. University of Illinois at Urbana-Champaign. 2001.
    [323]MacIver M. A., E. Fontaine, and J. W. Burdick. Designing Future Underwater Vehicles: Principles and Mechanisms of the Weakly Electric Fish [J]. Journal of Oceanic Engineering. 39(3): 651-659,2004.
    
    [324]Milam M. B., K. Mushambi, and R. M. Murray. A New Computational Approach to Realtime Trajectory Generation for Constrained Mechanical System [C]. In Conf. Decision and Control. (1): 845-851,2000.
    [325]Epstein M., Colgate J. E., MacIver M. A. A Biologically Inspired Robotic Ribbon Fin [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, workshop on Morphology, Control, and Passive Dynamics. Edmonton Alberta Canada, 2005.
    [326] Epstein M., Colgate J. E., Maclver M. A. Generating Thrust with a Biologically-Inspired Robotic Ribbon Fin [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp: 2412-2417, 2006.
    [327] Punning A., et al. A Biologically Inspired Ray-like Underwater Robot with Electroactive Polymer Pectoral Fins [J]. IEEE Mechatronics and Robotics (MechRob'04). Aachen, (2): 241- 245,2004.
    [328] Punning A., M. A., M. Kruusmaa, A. Aabloo. Empirical Model of a Bending IPMC Actuator [C]. Proceedings of the SPIE - The International Society for Optical Engineering. 6168: 517-524, 2006.
    [329] M. Anton, A. Punning, A. Aabloo, M. Listak, M. Kruusmaa. Towards a Biomimetic EAP Robot [C]. Towards Autonomous Robotic Systems (TAROS 2004); Clochester, UK; 06.- 08.19.2004. Clochester, UK: University of Essex. 1-7, 2004.
    [330] A. Punning, P. Ritslaid, A. Aabloo, M.Kruusmaa. An Autonomous Biologically Inspired Ray-like Robot with Ion-Polymer Metal Composite Actuators. 2006.
    [331]Toda Y, Suzuki T., Uto S., Tanaka, N. Fundamental Study on a Fish-Like Body with Two Undulating Side Fins [C]. Second International Symposium on Aqua Bio-Mechanism. Japan, 2003.
    [332]Toda Y., Hieda S., Sugiguchi T. Laminar Flow Computation around a Plate with Two Undulating Side Fins [J]. Journal of Kansai Society of Naval Architects. 237: 71-78, 2002.
    [333]Toda Y., Fukui K., Sugiguchi T. Fundamental Study on Propulsion of a Fish-like Body with Two Undulating Side [C]. Proc. of Asia Pacific Workshop on Marine Hydronamics, Kobe, Japan, 227-232, 2002.
    
    [334] http://www.technovelgv.com/ct/Science-Fiction-Nevvs.asp?NewsNum=815
    [335]Toda Y., H. Ikeda, and N. Sogihara. The Motion of a Fish-like Under-Water Vehicle with Two Undulating Side Fins [C]. Third International Symposium on Aqua Bio-Mechanism, 2006.
    [336] K. Takagi et.al. Development of a Rajiform Swimming Robot Using Ionic Polymer Artificial Muscles [C]. Proceedings of the 2006 1EEE/RSJ International Conference on Intelligent Robots and Systems. pp: 1861-1866, 2006.
    [337]M.Yamamura, K.Takagi, Z.W.Luo, K.Asaka, Y.Hayakawa, M.Onishi and S.Hirano. An Autonomous Ray-Like Swimming Robot with IPMC Artificial Muscle [C]. The Third Conference on Artificial Muscle, Poster Session, 2006.
    [338] K. H. Low, A. Willy. Biomimetic Motion Planning of an Undulating Robotic Fish Fin [J]. Journal of Vibration and Control. 12(12): 1337-1359,2006.
    [339] K. H. Low and A. Willy. Controllable Swimming Modes of Robotic Fish with Modular and Flexible Fin Mechanisms [J]. Journal ofVibration and Control, USA, 2006.
    [340] K. H. Low. Locomotion Consideration and Implementation of Robotic Fish with Modular Undulating Fins: Analysis and Experimental Study [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp: 2424 - 2429, 2006.
    [341] K. H. Low. Locomotion and Depth Control of Robotic Fish with Modular Undulating Fins [J]. International Journal of Automation and Computing. 4: 28-37, 2006.
    [342] Willy A. and K. H. Low. Development and Initial Experiment of Modular Undulating Fin for Untethered Biorobotic AUVs [C]. Proceedings of the 2005 IEEE.International Conference on Robotics and Biomimetics, June 29 - July 3, 2005, Hong Kong and Macau, 45-50,2005.
    [343] Willy A, Low, K. H. Initial Experimental Investigation of Undulating Fin [C]. The IEEE International Conference on Intelligent Robots and Systems.Edmonton,Canada,2005.
    [344]Low,K.H.,Willy,A.Development and Initial Investigation of NTU Robotic Fish with Modular Flexible Fins.Proceedings of the IEEE International Conference of Mechatronics &Automation.Niagara,Canada,958-963,2005.
    [345]K.H.Low.Biomimetic Design and Workspace Study of a Compact and Modular Undulating Fin Body Segments[C].International Conference on Mechatronics and Automation(ICMA 2007).pp:129-134,2007.
    [346]王光明,沈林成.柔性长鳍波动推进机理分析[C].第24届中国控制会议.2:1563-1566,2005.
    [347]王光明,沈林成.柔性长鳍波动推进动量传递的有效性分析[C].第25届中国控制会议.2006.
    [348]谢海斌,张代兵,沈林成.基于柔性长鳍波动推进的仿生水下机器人设计与实现[J].机器人.28(5):525-529,2006.
    [349]徐海军,潘存云,谢海斌.仿鱼柔性长背鳍波动运动机构的设计与仿真[J].机械制造.43(493):21-23,2005.
    [350]谢海斌,沈林成,胡天江.“尼罗河魔鬼”柔性长鳍运动曲面建模与仿真[J],国防科技大学学报.27(5):62-66,2005.
    [351]沈林成,王光明.仿鱼长鲔波动推进器研究的进展与分析[J].国防科技大学学报.27(4):96-100,2005.
    [352]胡天江,李非,沈林成.“尼罗河魔鬼”长背鳍波动包络线的提取算法[J].国防科技大学学报.27(5):67-72,2005.
    [353]谢海斌,沈林成,胡天江.柔性长鳍仿生装置波动控制技术研究[J].国防科技大学学报.28(3):99-103,2006.
    [354]王光明,胡天江,李非,沈林成.长背鳍波动推进游动研究[J].机械工程学报.42(3):88-92,2006.
    [355]Wang G.M.,Shen L.C.,Ye Y.Y.,Hu T.J.New Underwater Robot Propelled by Undulations of Long-based Fin[C].International Conference on Mechanical Engineering and Mechanics.Nanjing.475-478,2005.
    [356]Wang G.M.,Shen L.C.,Hu T.J.Kinematic Modelling and Dynamic Analysis of the Longbased Undulation Fin of Gymnchus Niloticus[C].The 9th International Conference on the Simulation of Adaptive Behavior.Roma,Italy,2006.
    [357]Li F.,Hu T.J.,Wang G.M.,Shen L.C.Locomotion of Gymnarchus Niloticus:Experiment and Kinematics.Journal of Bionics Engineering.2(3):115-121,2005.
    [358]Hu T.J.,Li F.,Wang G.M.,Shen L.C.Morpholocial Measurement and Analyses of Gymnarchus Niloticus.Journal of Bionics Engineering.2(1):25-31,2005.
    [359]Hu T.J.,Shen L.C.,Wang G.M.A Novel CFD-Based Approach of Biopropulsor Allocation Optimization for Underwater Robots[C].International Conference on Mechanical Engineering and Mechanics.Nanjing.331-336,2005.
    [360]Hu T.,Li F.,Wang G.,Shen L.A Contour-detecting Algorithm for Undulation by the Longbased Dorsal Fin of Gymnarchus niloticus[J].Journal of National University of Defense Technology.27(5):67-72,2005.
    [361]Hu T.J.,Wang G.M.,Li F.,Shen L.C.A Novel Conceptual Fish-like Robot Inspired by Rhinecanthus Aculeatus[C].The 9th International Conference on Control,Automation,Robotics and Vision(ICARCV06).Singapore.639-643,2006.
    [362]Hu T.J.,Li F.,Wang G.M.,Shen L.C.Bionic Inspirations of Fish-like Robots from Rhinecanthus Aculeatus[C].IEEE International Conference on Mechatronics and Automation(IEEE ICMA06).Luoyang.639-643,2006.
    [363]谢海斌,沈林成,薛宏涛.仿鱼鳍推进水下机器人流体动力测试系统研究[J].测试技术学报.2006.
    [364]谢海斌.柔性长鳍波动推进流体动力测试平台研究[C].第25届中国控制会议.哈尔滨,pp:1905-1909,2006.
    [365]杭观荣,王振龙,王扬威,李健.基于肌肉性静水骨骼原理的仿鸟贼鲔推进器[J].上海交通大学学报.2008.
    [366]章永华,何建慧,张世武.《NiTi形状记忆合金驱动的仿生鱼鳍研究》.机器人,第29卷3期,2007,207-213.
    [367]章永华,何建慧,张世武.《仿生鱼鳍中形状记忆合金驱动器的水下变形精度分析》.机器人,第29卷4期,2007,320-326.
    [368]Y.H.Zhang,J.H.He,J.Yang.A Computational Fluid Dynamics(CFD)Analysis of Undulatory Mechanical Fin Driven by Shape Memory Alloy[J].International Journal of Automation and Computing.3(4):374-381,2006.
    [369]Y.H.Zhang,J.H.He,J.Yang.Computational Research on Modular Undulating Fin for Biorobotic Underwater Propulsor[J].Journal of Bionic Engineering.4(1):25-32,2006.
    [370]Y.H.Zhang,S.R.Li,J.Ma.Development of an Underwater Oscillatory Propulsion System Using Shape Memory Alloy[C].IEEE International Conference on Mechatronics and Automation(ICMA2005),Niagara Falls Canada,2005.
    [371]Y.H.Zhang,J.H.He,J.Yang.Initial Research on Development of a Flexible Pectoral Fin Using Shape Memory Alloy[C].IEEE International Conference on Mechatronics and Automation(ICMA 2006),LuoYang China,2006.
    [372] Y. H. Zhang, S. W. Zhang, J. Yang. Posture Control of Shape Memory Alloy Biomimetic Pectoral Fin [C]. IEEE International Conference on Mechatronics and Automation (1CMA 2007), Haerbin China, 2007.
    
    [373] Y. H. Zhang, S. W. Zhang, J. Yang. Morphologic Optimal Design of Bionic Undulating Fin Based on Computational Fluid Dynamics [C]. IEEE International Conference on Mechatronics and Automation (ICMA 2007), Haerbin China, 2007.
    
    [374] Y. H. Zhang, J. Yang. Research on Active Deformation Control of Shape Memory Alloy Driven Flexible Biorobotic Fish Fins [C]. World Forum on Smart Materials and Smart Structures Technology (SMSST2007). Nanjing, China, 2007.
    
    [375] Y. H. Zhang, J. H. He, J. Yang. Design and Investigation of Shape Memory Alloy Driven Flexible Pectoral Fin [C]. IEEE International Conference on Robotics and Biomimetics (ROBIO2006), Kunming China, 2006.
    [376] Clark, R. P. and A. J. Smits, Thrust Production and Wake Structure of a Batoid-Inspired Oscillating Fin [J]. Journal of Fluid Mechanics. 562: 415-429, 2006.
    
    [377] P. L. Brower. Design of A Manta Ray Inspired Underwater Propulsive Mechanism for Long Range, Low Power Operation [D]. Master of Science of Tufts University in Mechanical Engineering. 2006.
    
    [378]Imae. Imae. 2005 [cited 2005 9/13/05]; Website featuring the japanese hobbyist's manta ray.Translated by babelfish.altavista.com]. Available from: http://www.imasy.or.jp/-imae/kagaku/.
    [379]Kato,N. Locomotion by Mechanical Pectoral Fins [J]. J. of Marine Science and Technology (SNAJ). 3(93): 113-121, 1998.
    [380]Kato, N. Hydrodynamic Characteritics of Mechanical Pectoral Fin [J]. ASME J. Fluids Eng., 121:605-613,1999.
    [381]Kato, N. Control Performance of Fish Robot With Mechanical Pectoral Fins in Horizontal Plane [J]. IEEE J. Oceanic Eng. 25(1): 121-129, 2000.
    
    [382] N. Kato, B. W. Wicaksono and Y. Suzuki. Development of Biology-Inspired Autonomous Underwater Vehicle "Bass 111" with High Maneuverability [C]. Proceedings of the 2000 International Symposium on Underwater Technology. 84-89, 2000.
    
    [383] Fish F. E., Lauder G. V., Mittal R., Techet A. H., Triantafyllou M. S., Walker J. A., Webb. P. W. Conceptual Design for the Construction of a Biorobotic AUV Based on Biological Hydrodynamics [C]. Proceedings of 13th International Symposium on Unmanned Submersible Technology, New Hampshire,. 2003.
    
    [384] B. P. Trease, K. J. Lu, S. Kota. Biomimetic Compliant System for Smart Actuator-Driven Aquatic Propulsion: Preliminary Results [C]. Proceedings of IMECE'03 ASME International Mechanical Engineering Congress. Washington, D.C., November 15-21, 2003.
    [385] J. Palmisano, R. Ramamurti, K. J. Lu, J. Cohen, W. Sandberg, and B. Ratna. Design of a Biomimetic Controlled-Curvature Robotic Pectoral Fin [C]. IEEE International Conference on Robotics and Automation, Rome, Italy, 2007.
    [386]Tangorra J., Anquetil P., Fofonoff T., Chen A., Zio M. D. and Hunter I. The Application of Conducting Polymers to a Biorobotic Fin Propulsor [J]. Bioinsp.& Biomim. 2: S6-S17,2007.
    [387]Lauder G. V., Madden P. G. A., Hunter I., Tangorra J., Davidson S., Proctor L, Mittal R., Dong H., and Bozkurttas M. Design and Performance of a Fish-like Propulsor for AUVs [C]. Proc. 14th Symp. on Unmanned Untethered Submersible Technology. 2005.
    [388]Lauder G. V., Madden P. G. A., Mittal R., Dong H. and Boskurttas M. Locomotion with Flexible Propulsors I: Experimental Analysis of Pectoral Fin Swimming in Sunfish [J]. Bioinsp.& Biomim. S25-34,2006.
    [389] Tangorra J., Davidson S., Madden P., Lauder G. and Hunter I. A Biorobotic Pectoral Fin for Autonomous Undersea Vehicles [C]. Proc. IEEE EMBS (New York), 2006.
    [390] Tangorra J., Davidson S., Hunter I., Madden P., Lauder G. V., Dong H., Bozkurttas M. and Mittal R. The Development of a Biologically Inspired Propulsor for Unmanned Underwater Vehicles [J]. Journal of Oceanic Engineering. 32(3): 533-550, 2007.
    [391] Low K. H., Prabu S., Yang J., Zhang S. W., Zhang Y. H. Design and Initial Testing of a Single- Motor-Driven Spatial Pectoral Fin Mechanism [C]. International Conference on Mechatronics and Automation, ICMA 2007. 503-508, Harbin, China, 2007.
    [392]Bandyopadhyay, P. R. et al. Biomimetics Research at NUWC. Video (Edited), 14 Mts., Naval Undersea Warfare Center, Newport, Rhode Island. 2000.
    [393] X. Y. Deng. Biomimetic Micro Underwater Vehicle with Oscillating Fin Propulsion: System Design and Force Measurement [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation ICRA 2005. 3312 - 3317,2005.
    [394] P. Kodati, J. Hinkle, and X. Y. Deng. Biomimetic Micro Underwater Vehicle: Design and Hydrodynamics [C]. In Proc. of ASME Intl. Mechanical Engineering Congress and Exposition (IMECE), Chicago, IL, USA, 2006.
    [395] P. Kodati. Biomimetic Micro Underwater Vehicle with Ostraciiform Locomotion: System Design, Analysis and Experiments [D]. Masters thesis. University of Delaware, 2006.
    [396] P. Kodati and X. Y. Deng. Towards the Body Shape Design of a Hydrodynamically Stable Robotic Boxfish [C]. IEEE/RSJ International Con-ference on Intelligent Robots and Systems 2006.
    [397] N. Ono, M. Kusaka, M. Taya and C. Y. Wang. Design of fish fin actuators using shape memory alloy composites [J]. Smart Structures and Materials. 5388: 305-312,2004.
    [398] Hubbard, Richard L. Buoyancy, fins and swimming. Hubbard's Fish Anatomy. http://www.nova.edu /~rlh /text/fins /fins. html.(Graduate Candidate, Nova SE University).
    [399] http://iask.sina.com.cn/b/9531702.html
    
    [400] D. H. Paul and B. L. Roberts. Spinal Neuronal activity During the Pectoral Fin Reflex of the Dogfish: Pathways for Reflex Generation and Cerebellar Control [J]. The Journal of Experimental Biology. 148(1), pp: 403-414, 1990.
    
    [401] A. Gibb, B. Jayne and G. V. Lauder. Kinematics of Pectoral Fin Locomotion in the Bluegill Sunfish Lepomis Macrochirus [J]. The Journal of Experimental Biology. 189(1), pp: 133-161,1994.
    
    [402]E. Drucker and J. Jensen. Pectoral Fin Locomotion in the Striped Surfperch 1. Kinematic Effects of Swimming Speed and Body Size [J]. The Journal of Experimental Biology. 199(10): 2235-2242, 1996.
    [403] C. D. Wilga and G. V. Lauder. Locomotion in Sturgeon: Function of the Pectoral Fins [J]. The Journal of Experimental Biology. 202(18): 2413-2432, 1999.
    
    [404] C. D. Wilga and G. V. Lauder. Three-dimensional Kinematics and Wake Structure of the Pectoral Fins during Locomotion in Leopard Sharks Triakis Semifasciata [J]. The Journal of Experimental Biology. 203(15): 2261-2278, 2000.
    
    [405] J. A. Walker. Dynamics of Pectoral Fin Rowing in a Fish with an Extreme Rowing Stroke: The Threespine Stickleback (Gasterosteus Aculeatus) [J]. The Journal of Experimental Biology. 207( 11): 1925-1939, 2004.
    [406] W. W. Mark, H. T. Dean, A. W. Jeffrey, et al. Structure, Function, and Neural Control of Ppectoral Fins in Fishes [J]. IEEE Journal of oceanic engineering, vol. 29(3): 674-683,2004.
    [407] T. E. Higham, B. Malas, B. C. Jayne, et al. Constraints on Starting and Stopping: Behavior Compensates for Reduced Pectoral fin Area during Braking of the Bluegill Sunfish Lepomis Macrochirus [J]. The Journal of Experimental Biology. 208(24): 4735-4746, 2005.
    [408] E. M. Meagher, W. A. McLellan, A. J. Westgate, et al. The Relationship between Heat Flow and Vasculature in the Dorsal fin of Wild Bottlenose Dolphins Tursiops Truncates [J]. The Journal of Experimental Biology. 205(22): 3475-3486, 2002.
    [409] R. Bainbraidge. Caudal Fin and Body Movement in the Propulsion of Some Fish [J]. The Journal of Experimental Biology. 40(1): 23-56, 1963.
    
    [410] P. W. Webb. Is the High Cost of Body/Caudal Fin Undulatory Swimming due to increased Friction Drag or Inertial Recoil [J]. The Journal of Experimental Biology. 162(1): 157-166, 1992.
    [411]Mark W. Westneat and Jeffrey A. Walker, Motor Patterns of Labriform Locomotion :Kinematic and Electromyographic Analysis of Pectoral fin Swimming in the Labrid Fish Gomphosus Varius [J]. The Journal of Experimental Biology. 200: 1881-1893, 1997.
    [412] Vogel, S. Life in Moving Fluids. Princeton: Princeton University Press. 1994.
    [413] Taylor G. K., Nudds, R. L. Thomas, A. L. R. Flying and Swimming Animals Cruise at a Stouhal Number Tuned for High Power Efficiency [J]. Nature. 2003. 425: 707-711.
    [414] U. K. Muller, B. L. E. V. den Heuvel, E. J. Stamhuis, and J. J. Videler. Fish Foot Prints: Morphology and Energetics of the Wake Behind Continuously Swimming Mullet (Chelon Labrosus Risso) [J]. J. Exp. Biol, 200: 2893-2906, 1997.
    [415] R. W. Blake. The Mechanics of Labriform Locomotion 11. An Analysis of the Recovery Stroke and the Overall fin-beat Cycle Propulsive Efficiency in the Angelfish [J]. J. Exp. Biol., 85: 337-342, 1980.
    
    [416] Michael, S. W. Reef Sharks and Rays of the World. Monterey: Sea Challengers, 1993.
    [417]Altringham, J. D., Ellerby, D. J. Fish Swimming: Patterns in Muscle Function [J]. Experimental Biology. 1999. 202:3397-3403.
    [418]Calvert, R. A. Comparative Anatomy and Functional Morphology of the Pectoral fin of Stingrays [D]. Masters thesis, Duke University, Durham, NC, USA. 1983.
    [419] P. W. Webb. The Swimming Energetics of Trout: 1. Thrust and Power Output at Cruising Speeds [J]. Journal of Experimental Biology. 1971, 55: 489-520.
    [420] A. Wokoma, I. A. Johnston. Lactate Production at high Sustainable Cruising Speeds in Rainbow Trout (Salmo Gairdneri Richardson) [J]. Journal of Experimental Biology. 1981, 90: 361-364.
    [421] M. E. Hale. S- and C-start Escape Responses of the Muskellunge (Esox masquinongy) Require Alternative Neuromotor Mechanisms [J]. Journal of Experimental Biology. 205: 2005-2016,2002.
    [422] C. L. Harwood, I. S. Young, J. D. Altringham. How the Efficiency of Rainbow Trout (Oncorhynchus mykiss) Ventricular Muscle Changes with Cycle Frequency [J]. Journal of Experimental Biology. 205: 697-706, 2002.
    [423] P. W. Webb. The Swimming Energetics of Trout: II Oxygen Consumption and Swimming Efficiency [J]. Journal of Experimental Biology. 55: 521-540, 1971.
    [424] Long J. H. J. Muscles, Elastic Energy, and the Dynamics of Body Stiffness in Swimming Eels [J]. American Zoologist. 38: 771-792, 1998. 13(07):1526-1530,2007.
    [426]Matthew J.M,Charles A.P and John H.L.Mechanical Control of Swimming Speed:Stiffness and Axial Wave Form in Undulating Fish Models[J].The Journal of Experimental Biology.198:2293-2305,1995.
    [427]http://www.nmri.go.jp/eng/khirata/fish/general/updown/index_e.html
    [428]http://www.roboticfan.com/college/tutorial/200607/174.shtml
    [429]Barrett D.S,Triantafyllou M.S,Yue D.K.P,Grosenbauch M.A,Wolfgang M.J.Drag Reduction in Fish-like Locomotion[J].J Fluid Mech.1999,392:183-212.
    [430]Long J.H,Nipper K.S.The Importance of Body Stiffness in Undulatory Propulsion[J].Am Zool.1996,36:678-694.
    [431]徐海军.柔性长背鳍波动仿生装置的结构设计与仿真技术研究[D].国防科技大学硕士学位论文,2005.
    [432]A.V.奥本海默.信号与系统[M].西安:西安交通大学出版社,1990.
    [433]Mittal R.Computational Modeling in Biohydrodynamics:Trends,Challenges,and Recent Advances[J].IEEE Journal of Oceanic Engineering.29(3):595-604,2004.
    [434]Ekeberg O.A Combined Neuronal and Mechanical Model of Fish Swimming[J].Biological Cybernetics.69:363-374,1993.
    [435]Tu X,Terzopoulos D.Artificial Fishes:Physics,Locomotion,Perception,Behavior[C].ACM SIGGRAPH '94.Orlando,Florida,1994.
    [436]唐德新,王家楣编著.工程流体力学[M].武汉:湖北科学技术出版社.2001.10.
    [437]http://www.grc.nasa.gov/WWW/K-12/airplane/shaped.html
    [438]江思敏.TMS320LF240x DSP硬件开发教程.机械工业出版社.2003.6.
    [439]上海桑博公司,http://www.sendbow.com/RF_module/RF_module.html.
    [440]Hirata K,Takimoto T,Tamura K.Study on Turning Performance of a Fish Robot.First International Symposium On Aqua Bio-Mechanisms,2000,287-292.
    [441]http://www.qingyun.com.
    [442]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [443]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [444]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [445]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [446]H.K.Versteeg,W.Malalasekera.An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M].Wiley,New York,1995.
    [447]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京理工大学出版社,2004.
    [448]Daniel T.L.,Unsteady Aspects of Aquatic Locomotion[J].Amer.Zool.24:121-134,1984.
    [449]Webb,P.M..Simple Physical Principles and Vertebrate Aquatic Locomotion[J].Amer.Zool.28:709-725,1988.
    [450]夏全新.鱼类波状摆动推进的数值模拟[D].上海交通大学硕士学位论文,2004.
    [451]赵攀峰.以MAV为背景的拍翼运动流场特性研究[D].中国科学技术大学博士学位论文,2005.
    [452]P.Zhao,C.Liu,J.Yang.A Flapping Model Wing Experiment for Insect Flight Investigation [C].2nd ISABMEC,Honolulu,Hawaii,September 14-17.
    [453]P.Zhao,C.Liu,L.Zhu,X.Chen,J.Yang.Visualization of Vortex Field of 2D Flapping Wing Motion[J].Journal of University of Science and Technology of China.35(4):441-447,2005.
    [454]李龙.鱼类巡游时尾鳍推进特性实验研究[D].中国科学技术大学硕士学位论文,2007.
    [455]杨建明,吴建华.动网格技术数值模拟挑流冲刷过程[J].水动力学研究与进展.16(2):156-161,2001.
    [456]杨建明,吴建华.淹没水跃的数值模拟[J].水动力学研究与进展.16(4):405-411,2001.
    [457]Patrick J.F.Unsteady Navier-Stokes Simulation of Rainbow Trout Swimming Hydrodynamics[D].USA:Washington State University,Department of Civil and Environmental Engineering.2004.
    [458]Batchelor,G.K.An Introduction to Fluid Mechanics[M].Cambridge:Cambridge University Press.1967.
    [459]Blickhan R,Krick C,Zehren,Nachtigall.Generation of a Vortex Chain in the Wake of Subundulatory Swimmer[J].Naturwissenschaften.79,220-221.1992.
    [460]A.Kubota.Study on Propulsion by Partially Elastic Oscillating Foil[J].J.Soc.Naval Architects of Jupan,pp:95-105,1985.
    [461]P.Liu.Three-dimensional Oscillating Foil Propulsion[D].Masters thesis,Memorial University of Newfoundland,Canada,1991.
    [462]Harper,K.A.Berkemeier,M.D.Grace,S.Modeling the Dynamics of Spring-driven Oscillating-foil Propulsion[J].IEEE Journal of Oceanic Engineering.23(3):285-296,1998.
    [463]I.Yamamoto,Y.Terada,T.Nagamatu and Y.lmaizumi.Propulsion System with Flexible Rigid Oscillating Fin[J].IEEE Journal of Oceanic Engineering.20(1):23-30,1995.
    [464]杨义红.波状摆动若干非定常流动控制机理的实验研究[D].中国科学技术大学硕士学位论文,2005.
    [465]Taneda,S.and Tomonari,Y.An Experiment on the Flow Around a Waving Plate[J].Journal of the Physics Society of Japan.36(6):1683-1689,1974.
    [466]李智勇,沈振康,杨卫平,堪海新.动态图像分析[M].北京:国防工业出版社,1999.
    [467]Westerweel J.Fundamentals of Digital Particle Image Velocimetry[J].Mesurement Sci.Technol.8(12):1379-1392,1997.
    [468]Ronald J.Adrian,Particle-Imaging Techniques for Experimental Fluid Mechanics[J].Annu.Rev.Fluid Mech.23:261-304,1991.
    [469]刘文卿.实验设计[M].北京:清华大学出版社,2005.
    [470]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005.
    [471]任露泉编著.试验优化设计与分析[M].北京:高等教育出版社,2003.
    [472]徐勤丰.同时估计均值与方差的试验设计[D].华东师范大学博士学位论文,1999.
    [473]杜善义,冷劲松,王殿富.智能材料系统与结构[M].北京:科学出版社,2001.5.
    [474]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
    [475]F.M.,New Material for the Conversion of Electric Energy to Mechanical Motion[C].Proceeding of the 10th International Workshop on Rare-Earth Magnets and their Applications,Japan,1989.
    [476]胡明哲,李强.磁致伸缩材料的特性及应用研究(Ⅱ)[J].稀有金属材料与工程.30:1-4,2001.
    [477]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,1998.
    [478]Tanaka.T.,Gels[J].Scientific American.244:124-138,1981.
    [479]M.Shahinpoor and K.J.Kim.Ionic polymer-metal composites:Ⅰ.Fundamentals[J].Smart Mater.Struct.,10:819-833,2001.
    [480]Shea,J.J.Electro-theological Fluids and Magneto-rheological Suspensions[J].IEEE Electrical Insulation Magazine.17(5):58-61,2001.
    [481]M.R.Jolly,J.W.Bender,and J.D.Carlson.,Properties and Applications of Commercial Magnetorheological Fluids[J].Journal of Intelligent Material Systems and Structures,10(1):5-13,1999.
    [482]R.Tao.,Super-strong Magnetorheological Fluids[J].Journal of Physics-Condensed Material.13(50):979-999,2001.
    [483]H.J.Lee and J.J.Lee.Evaluation of the Characteristics of a Shape Memory Alloy Spring Actuator[J].Smart Marter.Struct.,9:817-823,2000.
    [484]L.J.Garner,L.N.Wilson and D.C.Lagoudas.Development of a Shape Memory Alloy Actuated Biomimetic Vehicle[J].Smart Matter.Struct.,9:673-683,2000.
    [485]Z.Bo and D.C.Lagoudas.Thermomechanical Modeling of Polycrystalline SMAs under Cyclic Loading,Part Ⅲ:Evolution of Plastic Strains and Two-way Shape Memory Effect[J].International Journal of Engineering Science.37:1175-1203,1999.
    [486]刘俊.含SMA复合材料层合板的弯曲和热后屈曲分析[D].上海交通大学硕士学位论文.2006.
    [487]于会涛.基于SMA驱动的刚/柔耦合的轮式微型机器人.上海交通大学博士学位论文[D].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700