用户名: 密码: 验证码:
复合材料螺栓连接渐进损伤的实验及数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料以其优异的材料性能广泛应用于航空航天、船舶制造和土木工程行业,复合材料的广泛使用,使得复合材料结构尺寸日渐增大,而复合材料接头则是决定复合材料结构性能的关键因素。有研究表明,结构失效70%发生在接头处,因此,对于复合材料接头的研究就显得至为重要了。接头形式多种多样,胶接和机械连接为主要连接方式。螺栓连接是机械连接的典型连接方式,应用也较为广泛,本文分别使用实验与数值的方法研究了复合材料螺栓连接接头的渐进损伤失效。相关研究的详细内容如下:
     1.针对复合材料螺栓连接T型接头中接触对较多的问题,选用ABAQUS处理接触有限元问题。同时,改变不同接触属性:接触面摩擦系数和螺栓预紧力,计算二者对T型接头螺栓孔周边应力的影响规律。使用不同外载条件,分析外载对T型接头应力分布的影响。
     2.使用扩展有限元预测螺栓连接单搭接接头的失效,由于接头问题是一个三维问题,因此,传统壳单元对于解决接头问题并不太适合。本文使用MATLAB开发了复合材料层合板等效模量的计算程序,为了验证扩展有限元的优点和特性,首先我们将数值结果与实验结果进行了对比,同时,研究了不同网格密度对计算结果和失效模式的影响,并数值模拟了不同铺层角度对接头失效的影响。然后,数值模拟了几何参数下的失效模式和失效载荷,几何参数为W/D和E/D。最后模拟了两个螺栓连接接头的失效过程,并与单螺栓连接接头进行了对比。
     3.实验研究了几何参数对于复合材料螺栓连接单搭接接头的影响规律,选取的几何参数比为W/D和E/D。在试验中用于测试材料参数和接头失效的部件为VARI工艺制备而成。实验测试了接头中复合材料层合板的工程模量,而后通过实验分析了螺栓扭矩对于复合材料接头失效载荷的影响。最后通过实验研究了参数对接头失效载荷及失效模式的影响规律。
     4.在数值分析中,选用三维HASHIN准则,利用ABAQUS子程序USDFLD和VUMAT开发复合材料渐进损伤子程序。USDFLD子程序中,一旦应力满足失效准则,则将材料刚度进行衰减,而VUMAT子程序中,一旦应力满足失效准则,材料刚度衰减后,同时在子程序中进行应力计算。两种渐进损伤模型与实验结果吻合良好。对比两种渐进损伤模型可以发现,VUMAT子程序收敛速度快,精度也满足工程需要,因此,在工程计算中,可以选用此种简便快速的计算方法,节省计算成本。最后,使用用户子程序UMAT与内聚力方法,预测接头压缩失效。
     综上所述,本文对不同复合材料螺栓连接接头进行了较系统的研究,希望能为工程设计提供参考和帮助。
Composites are widely used in different branches of engineering and structural systemslike those in aerospace and automobile industries, power plants, etc. The composite jointshave become a very important aspect because the structural properties of the compositestructure are determined by its joints.70%of composite structure damage occurs in joint.Failure load and failure mode of composite joints are critical. Bolted joint is commonmechanical fastened joints used for joining the composite parts. So many researchers areinterested in bolted composite joints. In this paper, failure response of composite bolted jointswas carried out by experimants and numerical methods. The following aspects have beenresearched in detail:
     Firstly, since there were a lot of contact pairs, ABAQUS was used to analyze the contactfinite element of T joint. Contact surface friction coefficient and bolt clamping load were twoaspects which could influence contact properties. Different friction coefficient and boltclamping load were used to simulate the stress distribution of bolt-hole in T joint. At last,different external loads were used to analyze the stress of T joint.
     Secondly, XFEM was used to predict the failure of bolted single-lap composite joint. Sincethe joint problem was contact finite element which was a three-dimensional problem, andtraditional composite laminate was treat as shell which can not solve the contact problem well.So MATLAB code written by author was used to calculate three-dimensional equivalentmaterial properties of laminate which can simplify the failure simulation of composite joint.To test and verify the advantages of XFEM on failure analysis of composite joint, Firstly,progressive failure simulation result of bolted single-lap composite joint with one bolt wascompared with the experiments result in literature, and the influences of mesh size on crackpropagation path and failure response were investigated. Failure responses of two kinds ofjoints with different laminate designs are studied, too. Secondly, influences of geometricparameters on failure load and bearing strength of joint were investigated. Two geometricparameters include plate width-to-hole diameter ratio (W/D) and the edge-to-hole diameterratio (E/D). At last failure of joint with two bolts was simulated, too. The simulation results oftwo types of joint were compared with each other.
     Thirdly, experiments were used to investigate the influence of geometric parameters onfailure response of bolted single-lap composite joint. Geometric parameters were the distancefrom the free edge of plate to the diameter of bolt hole (E/D) ratio and the width of thespecimen to the diameter of bolt holes (W/D) ratios. In the experiments, specimens used fortesting material stiffness, strength and failure of bolted single-lap composite joints were madeby VARI process. In order to simulate failure of joint, engineering constants of compositelaminate in joint were tested, and then influence of bolt torque on failure load of joint wereinvestigated, at last effects of geometrical parameters on failure load and failure modes onjoints were studied.
     Finally, in numerical analysis,3D Hashin failure criteria was chosen for finite elementanalysis of composite joints. Two kinds of progressive failure models developed inABAQUS/Standard and Explicit were used to simulate failure of joints. User subroutinesUSDFLD and VUMAT were used in these two models, respectively. In subroutine USDFLD,stiffness degradation occurred when failure criteria was satisfied. In subroutine VUMAT, oncefailure criteria was satisfied, stiffness degradation occurred, and the stress was calculated bysubroutine. Two finite element models showed an excellent agreement with experimentalresults. Compared with finite element model developed in ABAQUS/Standard, modeldeveloped in ABAQUS/Explicit with subroutine VUMAT was introduced in this paper.Explicit model was found to could improve the convergence speed and reduce thecomputation time. The results of the numerical analysis were presented with a focus onproviding a more detailed insight into the progressive failure process. User subroutine UMATand cohesive method were used to investigate failure of joints under compressive load.
     In conclusion, the analysis of different bolted composite joints has been carried outsystematically and it will provide useful references to practical engineering problems.
引文
[1]杜善义,王彪.复合材料细观力学.科学出版社.1998
    [2]江镇海.用复合材料筋增强混凝土结构.建材工业信息.2003(6):41-42页
    [3]沈观林.复合材料力学.清华大学出版社.1996
    [4]蒋咏秋.复合材料力学.西安交通大学出版社.1990
    [5]王兴业,唐羽章.复合材料力学性能.国防科技大学出版社.1988
    [6]王维新,王剑,赵志忠.复合材料及其发展现状.辽宁工学院学报.1996,16(3):24-28页
    [7] Jones R M. Mechanics of Composite Materials. USA Philadelphia: Taylor&Francis,Inc.,1998
    [8]黄家康.复合材料成型技术及应用.化学工业出版社.2010
    [9]益小苏,杜善意,张立同.中国材料工程大典.化学工业出版社.2006
    [10]黄发荣,周燕.先进树脂基复合材料.化学工业出版社.2008
    [11]陈绍杰.先进复合材料的近期发展趋势.材料工程.2004,(9):9-13页
    [12]刘清,张军.先进复合材料领域近期发展趋势.高科技与产业化.2005,(12):9-11页
    [13]陈祥宝.先进树脂基复合材料的发展和应用.航空材料学报.200,23:198-204页
    [14]陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状.中国材料进展.2009,28(6):2-12页
    [15]益小苏,张明,安学锋,刘立朋.先进航空树脂基复合材料研究与应用进展。工程塑料应用,2009,37(10):72-76P页
    [16](美)T.G.古托夫斯基(主编),先进复合材料制造技术,李宏运等译,化学工业出版社.2004
    [17]陈祥宝.聚合物基复合材料手册.北京:化学工业出版社.2004
    [18] Rboert M. Jonse.Mechanics of composite materials, second edition. Brunner-Routledge.New York and London.1999
    [19] A.Baldan. Adhesively-bonded joints and repairs in metallic alloys, polymers andcomposite materials: adhesives, adhesion theories and surface pretreatment. Journal ofMaterial Science.2004(39):1–49P
    [20] R.D. Adams. Adhesive bonding science, technology and applications. WoodheadPublishing Limited, Cambridge England.2005
    [21] Weijian Ma, Rajesh Gomatam, Rick D. Fong and Erol Sancaktar. A novelmathematical procedure to evaluate the effect of surface topography on the interfacialstate of stress: part I: Verification of the method for flate surfaces. Journal of AdhesionScience and Technology.2001(15):1553-1558P
    [22] Jin-Hwe Kweon, Jae-Woo Jung, Tae-Hwan, Jin-Ho Choi, Dong-Hyun Kim. Failure ofcarbon composite-to-aluminum joints with combined mechnical fastening and adhesivebonding. Composite Structures.2006(75):192-198P
    [23] Christina Helence Ficarra. Analysis of adhesive bonded fiber-reinforced compositejoints. Masters Thesis, North Carolina state university.2001
    [24] A Baldan. Review-Adhesinvely-bonded joints in metallic alloys, polymers andcomposite material: Mechanical and environmental durability performance. Journal ofMaterials Science.2004(39):4729-4797P
    [25] Timoshenko S. P. Analysis of bi-metal thermostats. J. Opt. Amer.1922(11):233-255P
    [26] E. Suhir. Interfacial stresses in bimetal thermostats. Journal of Applied Mechanics.1998:90P
    [27] Adnan H. Nayfeh. Thermaomechanically induced interfacial stress in fibrouscomposites. Fiber Science and Technology.1977(10):195-209P
    [28] G.A. Hegemier, G.A. Gurtam and A.H. Nayfeeh. A continuum theory for wave propagation in laminated and fibrous composites. International Journal of Solids and Structrues.1973:9
    [29] Adnan H. Nayfeh, Elsayed Abdel-Ati M. Nassar. Simulation of the influence ofbonding materials on the Dynamic behavior of laminated composites. Journal ofApplied Mechanics.1978:78-WA/APM-15
    [30] A.H. Nayfeh. Dynamically induced interfacial stresses in fibrous composite. Journal ofApplied Mechanics.1978:45
    [31] A.H. Nayfeh and E.A. Nassar. The influence of bonding agents on the thermomechanically induced interfacial stresses in laminated composites. Fiber Science and Technology.1982(16):157-174P
    [32] Yi-Hsin Pao, Ellen Eisele. Interfacial shear and peel stresses in multilayered thin stackssubjected to uniform thermal loading. Journal of Electronic Packageing.1991(113):164-172P
    [33] Hui-Shen Shen, J.G. Teng, J. Yang. Interfacial stresses in beams and slabs bonded withthin plate. Journal of Engineering Mechanics.2001(127):4P
    [34] C.Q.Ru. Interfacial thermal stresses in biomaterial elastic beams: Modified beam models rebisited. Journal of Electronic Packing.2002:124P
    [35] Hyonny Kim, Keith Kedward. Stress analysis of in-plane, shear-loaded, adhesively bonded composited joist and assemblies. National Techoical Information Service, Springfield, Virginia22161, April.2001
    [36] Chihdar Yang, Hai Huang, John S. Tombilin and Wenjun Sun. Elastic-plasitc model ofadhesive-bonded single-lap composite joints. Journal of Composite Materials.2004(38):4P
    [37] John N. Rossettos. Thermal peel, warpage and interfacial shear stresses in adhesive joints, Journal of Adhesion Science Technoloyg.2003(17):115-128P
    [38] Do Won Seo, Ho Chel Yoon, yang Bae Jeon, Hyo Jin Kim and Jae Kyoo Lim. Effect of overlap length and adhesive thickness on stress distribution in adhesive bonded single-lap joint. Key Engineering Materials.2004(46):395-403P
    [39] Gang Li, Pearl lee-Sullivan, Ronald W. Thring. Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints.1999(16):395-403P
    [40] Toshiyuki Sawa, Izumi Higuchi and Hidekazu Suga. Three-dimensional finite elementstress analysis of single-lap adhesive joints of dissimilar adherends subjected to impacttensile loads. Journal of Adhesion Science and Technology.2003(17):2157-2174P
    [41] Q.S. Yang, X.R. Peng, A.K.H.Kwan. Finite element analysis of interfacial stresses in FRP-RChybirid beams, Mechanics Research Communication.2004(31):331-340P
    [42] J.P.M. Goncalves, M.F.S.F. de moura, P.M.S.T. decastro. A three-dimensional finite element model for stress analysis of adhesive joints. International Journal of Adhesion and Adhesives.2002(22):357-365P
    [43]朱剑.复合材料及其发展概况.科技咨询导报.2007(6):1-3页
    [44] Waszezak J. and Cruse T. Failure mode and strength Predictions of anisotropic bolt bearing specimens. Journal of Composite Material.1971(5):421-425P
    [45] De Jong T., Stresses around Pin-loaded holes in elastically orthotropic or isotropic plates. Journal of Composite Material.1977(11):313-331P
    [46] Zhang K., Ueng C., Stresses around a Pin-loaded hole in orthotropic plates with arbitrary loading direction. Composite Structures.1985(3):119-143P
    [47] Hyer. M. W., Klang E. C. and Cooper D. E., The Effects of Pin Elasticity, Clearance, and Friction on the Stresses in a Pin-Loaded Orthotropic Plate. Journal of Composite Material.1987(3):190–206P
    [48] Winter. Tests on bolted connection in Light Gage Steel. Journal of Structural Division.1956(82):920-1-25P
    [49] Camanho, P.P. and Matthews, F.L. Stress analysis and strength prediction of mechanically fastened joints in FRP: a review. Composites Part A.1996:529-547P
    [50] Ireman, T, Ranvik, T. and Eriksson, I. On damage development in mechanically fastened composite laminates. Composite Structures.2000(49):151-171P
    [51] Dano, M.L., Gendron, G. and Picard, A. Stress and failure analysisi of mechanically fastened joints in composite laminates. Composite Structures.2000(50):287-296P
    [52] Zetterberg, T., Astrom, B.T., Backlund, J. and Burman, M. On design of joints betweencomposite profiles for bridge deck application. Composite Structures.2001(51):83-91P
    [53] Matthews, F.L. Design of bolted joints in GRP. Fiber-resin composite new applicationsand development.1983:18-24P
    [54] Matthews, F.L., Davies, G.A.O., Hitchings, D. and Soutis, C. Finite element modelingof composite materials and structures. Woodhead Publishing Limited.2000
    [55] Savicki, A.J. and Minguet, P.J. Failure mechanisms in compression loaded composite laminates containing open and filled holes. Philadelphia, The Boeing Company.1997
    [56] Park, H.J. Effects of stacking sequence and clamping force on the bearing strengths ofmechanically fasteded joints in composite laminates. Composite Structures.2001(53):213-221P
    [57] Starikov, R. and Schon, J. Experimental study on fatigue resistance of composite jointswith protruding-head bolts. Composite Structures.2002(55):1-11P
    [58] Starikov, R. and Schon, J. Local fatigue behaviour of CFRP boltede joints. CompositeScience and Technology.2002(62):243-253P
    [59] McCarthy, M.A., Lawlor, V.P., and McCarthy, C.T. Bolt-hole clearance effects andstrength criteria in single-bolt, single-lap, composite joints. Composite Science andTechnology.2002(62):1415-1431P
    [60] Wang, W.C. and Sheu, Y.M. Stress analysis of bolted joints in CFRP laminates byhalf-fringe briefringent-coating technique. Composite Structures.1996(39):91-100P
    [61] Tong, L. Bearing failure of composite bolted joints with non-uniform bolt-to-washerclearance. Composited: Part A.2000(31):609-615P
    [62] Chen, W.H., Lee, S.S. and Yeh, J.T. Threedimensional contact stress analysisi of acomposite laminate with bolted joint. Composite Structures.1995(30):287-297P
    [63] Barbero, E.J., Luciano, R. and Sacco, E. Three-dimensional plate and contact/frictionelemnts for laminated composited joints. Computer and Structures1995(4):689-703P
    [64] Lin, H.J. and Tsai, C. C. Failure analysis of bolted connection of composites withdrilled and moulded-in hole. Composite and Structures1995(30):159-168P
    [65] Ramakrishna, S., Hamada, H. and Nishiwaki, M. Bolted joints of pultruded sandwichcomposite laminates. Composite and Structures1995(32):227-235P
    [66] Oh, J.H., Kim, Y.G. and Lee, D. G. Optimum bolted joints for hybrid compositematerials. Composite and Structures1997(38):329-341P
    [67] Ireman, T. Three-dimensional stress analysis of bolted signle-lap composite joints.Composite and Structures1998(43):195-216P
    [68] Cope. D. A. and Lacy. T.E. Stress Intensity Determination in Lap Joints withMechanical Fasteners,41stAIAA/ASME/ASCEIAHS/ASC Structures, StructuralDynamics, and Material conference and Exhibit.(2000):1-10P
    [69] Lehnhoff, T.F., and Wistehuff, W.E. Nonlinear effects on the stressesand deformationsof bolted joints, Journal of Pressure Vessel Technology,1996(118):54-58P
    [70] Lehnhoff. T. F. and Bunyard. B.A., Effect of bolt threads on the Stiffness ofBoltedJoints, Journal of Pressure Vessel Technology,381:141-146P
    [71] Tserpes, K.I., Labeas, G. Strength prediction of bolted joints ingraphite/epoxycomposite laminates. Composites: Part B.2002(33):521-529P
    [72] Chutima, Surachate, Blackie, Alvin P. Effect of pitch distance, row spacing, enddistance and bolt diameter on multi-fastened composite joints. Composites Part A.1996(27A):105-110P
    [73] Kradinov, V., Madenci, E. Bolted lap joints of laminates with varyingthickness andmetallic inserts. Composite Structures.2005(68):75-85P
    [74] McCarthy, M.A., McCarthy, C.T. Finite element analysis of the effects of clearance onsingle-shear, composite bolted joints.” Journal of Plastics, Rubber and Composites.2003(32):65-70P
    [75] McCarthy, C.T., McCarthy, M.A. Experience with modeling friction in compositebolted joints” Journal of Composite Materials.2005(39):1881-1908P
    [76] Iancu, F. Ding, X. Three-dimensional investigation of thick single-lap boltedjoints.Experimental Mechanics.2005(45):351-358P
    [77] Ekh, Johan, Schon, Joakim. Secondary bending in multi fastener, composite-to-aluminum single shear lap joints. Composites: Part B.2005(36):195-208P
    [78] Pratt, John D., Pardoen, Gerard. Influence of Head Geometry on bolted JointBehavior.Journal of Aerospace Engineering.2002(15):136-153
    [79]赵美英.复合材料机械连接失效.西北工业大学.2006.博士
    [80]顾亦磊.复合材料机械连接强度分析及影响因素研究.2006.硕士
    [81]陈绍杰.浅谈复合材料整体成形技术.航空制造技术.2005(9):58-62页
    [82]张朝晖,刘嘉,彭涛,郭家平,邱学仕,庄茁.复合材料T型整体化结构的刚度简化计算方法.清华大学学报(自然科学版).2011(51):1882-1886页
    [83]刘嘉,张朝晖,彭涛,郭家平,邱学仕,庄茁.复合材料T型整体化结构的刚度等效方法研究.力学与工程应用学术研讨会论文集.上海.2010
    [84]孙启星,陈普会.复合材料T型接头的承载能力分析.庆祝中国力学学会成立50周年暨中国力学学会学术大会.2007
    [85] Helmuth Toftegaard, Aage Lystrup. Design and test of lightweight sandwich T-jointfor naval ships. Composites: Part A.2005(36):1055-1065P
    [86] H.C.H.Li, I. Herszberg, A.P. Mouritz, F. Dharmawan. Fracture modeling of compositemarine T-joint. Australian and New Zealand Industrial and Applied MathematicsJournal.2007(47):682-694P
    [87] F. Dharmawan, S.John, H. C. H. Li and I. Herszberg. Damage prediction models forcomposite T-Joints in marine applications.5th Australasian Congress on AppliedMechanics (ACAM2007), Brisbane, Australia.10-12December,2007:775-781
    [88] Víctor Martínez, Alfredo Güemes, Dani Trias, Norbert Blanco. Numerical andexperimental analysis of stresses and failure in T-bolt joints. Composite Structures.2011(93):2636-2645P
    [89]宣言.客运专线曲线线路车线耦合系统动力学性能与无碴轨道结构振动响应的仿真研究.铁道科学研究院:2005
    [90]夏倩.柴油机主要零部件的有限元分析与试验研究.武汉理工大学.2006.硕士
    [91]刘刚某火炮架体动态特性的研究南京理工大学.2008.硕士
    [92]李刚.炮塔结构动力学非线性有限元分析.南京理工大学.2006.硕士
    [93] Greg Dean. Predicting deformation and failure in adhesive and boltedjoints.Measurement for maerials system (MMS).2003
    [94] Mo s N and Belytschko, T. A finite element method for crack growth withoutremeshing, International Journal for Numerical methods in Engineering.2000(46):131-150P
    [95] Sukumar, N, Mo s, N, Moran, B and Belytschko, T. Extended finite method withhigher-order elements for curved crack. International Journal for Numerical methods inEngineering.2000(48):1549-1570P
    [96] Dolbow, JE and Nadeau, JC. On the use of effective properties for the fracture analysisof microstructured materials. Engineering Fracture Mechanics.2002(69):1607–1634P
    [97]丁晶,扩展有限元在断裂力学中的应用.河海大学.2007.硕士
    [98] Xiao QZ, Karihaloo BL.Direct evaluation of accurate coefficients of the linear elasticcracks using X-FEM. International Journal for Numerical Methods in Engineering2003(56):1151~1173P
    [99] X.Y.Liu, Q.Z.Xiao, B.L.Karihaloo.XFEM for direct evaluation of mixed mode SIFs Inhomogeneous and bi-materials. International Journal for Numerical Methods inEngineering.2004(59):1103~1118P
    [100] N.Sukumar,J.H.Prevost.Modeling quasi-static crack growth with the extend finiteelement method.International Journal of Solids and Structures.2003(40):7513-7537P
    [101] John Dolbow, Nicolas Mo s, Ted Belytschko.An extended finite element for modelingcrack growth with frictional contact.Computer methods in applied mechanics andengineering.2001(190)6825-6846P
    [102] C. Blanze, L. Champaney, J.-Y. Cognard and P. Ladevèze. A modular approach tostructure assembly computations Application to contact problems. EngineeringComputations,1996(13):15-32P
    [103] Ribeaucourt, R., Baietto-Dubourg, M.-C., Gravouil, A. A new fatigue frictionalcontact crack propagation model with the coupled X-FEM/LATIN method. ComputerMethods in Applied Mechanics and Engineering.2007(196):3230-3247
    [104] Sukumar, N., Pr′evost, J.-H. Modeling quasi-static crack growth with the extendedfinite element method. Part I: Computer implementation. In ternational Journal ofSolids and Structures.2003(26):7513–7537P
    [105] Zi, G., Belytschko, T. New crack-tip elements for XFEM and applications to cohesivecracks. International Journal for Numerical Methods in Engineering.2003(57):2221–2240P
    [106] K. Shibanuma, T. Utsunomiya. Curved-crack modeling by X-FEM and its applicationfor simulation of crack growth. Doboku Gakkai Ronbunshuu A.2007(63):108–121P
    [107] J. Chessa, H. Wang, T. Belytschko. On the construction of blending elements for localpartition of unity enriched finite elements, International Journal for Numerical Methodsin Engineering.1999:(57)1015–1038P
    [108] R. Gracie, H. Wang, T. Belytschko, Blending in the extended finite element methodby discontinuous Galerkin and assumed strain methods, International Journal forNumerical Methods in Engineering.2008(74):1645–1669P
    [109] T.P. Fries. A corrected XFEM approximation without problems in blending elements,International Journal for Numerical Methods in Engineering.2008(75):503–532P
    [110] E. Wyart, D. Coulon, M. Duflot, T. Pardoen, J.F. Remacle, F. Lani, A ubstructuredFE-shell/XFE-3D method for crack analysis in thin-walled structures, InternationalJournal for Numerical Methods in Engineering.2007(72):757–779P
    [111] K. Shibanuma, T. Utsunomiya, Proposal on approximation of path-independent M-integral by mapping and analyses of kinked or curved crack using X-FEM, DobokuGakkai Ronbunshuu A.2008(64):303–316P
    [112] Gravouil A, Mo s N, Belytschko T. Non-planar3D crack growth by the extended finite element and level sets—Part II: level set update. International Journal for NumericalMethods in Engineering.2002(11):2569–2586P
    [113]司卫华.船舶复合材料国外最新进展.塑料工业.2011(39):1-7页
    [114]挪威船级社.DNV-OS-J102:海上及陆上风力涡轮机风力涡轮风机叶片的设计与制造.挪威:船级社,2001
    [115]吴良义.航空航天先进复合材料国内外现状.第十三次全国环氧树脂应用技术学术交流会论文集.天津,中国环氧树脂应用技术学会.2009:117–132页
    [116]蔡斌.复合材料在船艇工业中的应用.功能高分子学报.2003(1):113-119页
    [117]刘士光.复合材料在舰船上的应用展望.船舶科学技术.2005(3):9-11页
    [118]杨升山,周鑫磊,张猛.舰船用轻型装甲研究与应用.材料开发与应用.2010(1):74-76页
    [119] Geroge Marsh, Amanda Jacob.Trends in marine composites. Reinforced Plastics,2007,(2):1-5P
    [120] Akawut Siriruk, Jack Weitsman, Dayakar Penumadu. Polymeric foams AkawutSiriruk, Jack Weitsman, Dayakar Penumadu. Polymeric foams and shear-lag modeling. Cmposites science and technolygy.2009(69):814-820P
    [121] Rodrigo A, silva-Munoz,Rodrigo A,Lopez-anido.Structural health monitoring ofmarine composite structural joints using embedded fiber bragggrating strainsensor.Composite Structures.2009(89):224-234P
    [122] Geroge Marsh, Carbon yachts from the bltic.Reinforced Plastics.2009(53):20-25P
    [123]赵渠森,赵攀峰.真空辅助成型工艺(VAR I)研究.纤维复合材料.2002(1):42-46页
    [124]赵渠森,赵攀峰.真空辅助成型技术(一).高科技纤维与应用.2002(3):22-27页
    [125]赵渠森,赵攀峰.真空辅助成型技术(三).高科技纤维与应用.2002(4):21-26页
    [126]李小兵,孙占红,曹正华.真空辅助成型技术及其配套基体树脂研究进展.热固性树脂.2006(5):39-43页
    [127] KangMK, LeeW I, Hahn HT. Analysis of vacuum bag resin transfer molding.Composites: Part A.2001(32):1553-1560P
    [128] LiM, Tucker III CL. Modeling and Simulation of t wo2dimensionalcons olidation forther moset matrix composites. Composites: Part A.2002(33):877-892P
    [129] Joubaud, Laurent, Trochu, Francois, Le Corvec, Jerome. Analysisof resin flow underflexible cover in Vacuum Assisted Resin Infusion (VARI). Journal of AdvancedMaterials.2005(3):3-10P
    [130] Khattab, Ahmed, Sherif El-Gizawy, A. Development of virtual flow model for processdesign in vacuum assisted resin infusi on molding operations. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference2DETC.2005(3):1093-1097P
    [131] Rice J R. Experimental and numerical failure analysis of carbon/epoxy laminatedcomposite joints under different conditions. Materials and Design.2010(31):4933-4942P
    [132] Rybicki E F,Kanninen M F.A finite element calculation of stress intensity factors bya modified crack closure integral. Engineering Facture Mechanics.1977(9):125-142P
    [133] Dugdal D S.Yielding of steels containing slits. Journal of Mechanics and Physics ofSolids.1960(8):100-104P
    [134] Barenblatt G. The mathematical theory of equilibrium cracks inbrittles fracture.Advances in Applied Mechanics.1962(7):55-129P
    [135] Hillerborg A,Modeer M,Petersson P. Analysis of crack formation and crackgrowth in concrete by means of fracture mechanics and finite elements.CementConcrete Research.1976(6):773-782P
    [136] Moura M F S F,Chousal J A G. Cohesive and continuum damage models appliedto fracture characterization of bonded joints. International Journal of MechanicalSciences.2006(48):493-503P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700