用户名: 密码: 验证码:
基于GIS的我国小麦施肥指标体系的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是我国主要的粮食作物之一,其总产量和种植面积约占我国粮食作物总产量和面积的1/5和1/4,是我国最重要的商品粮和战略性粮食储备品种。综合考虑不同气候特征、不同土壤类型和土壤养分状况等因素建立我国小麦施肥指标体系,对指导我国小麦的测土配方施肥及改善农田生态环境具有重要意义。本文基于多年多点小麦田间肥效试验数据,综合考虑气温、降水等气象因子及土壤类型、质地等土壤因子对小麦产量、土壤供肥能力和肥料当季利用率的影响,建立以养分平衡原理为依据、土壤养分测定为基础的我国小麦施肥指标体系,并利用ArcGIS提供的二次开发功能,开发出基于GIS的我国小麦施肥决策支持系统。主要结果如下:
     (1)养分平衡施肥模型基本参数的确定。目标产量在施肥模型中设为自变量,用气候生产潜力产量作为其上限。分析表明,小麦生物产量的养分吸收量与其籽粒产量之间呈极显著直线相关关系;小麦单位产量养分吸收量趋向一个稳定的范围,因此本研究把小麦单位产量养分吸收量定为常数。冬小麦每百千克小麦籽粒产量所需养分量分别为:氮(N)为3 kg、磷(P2O5)为1.2 kg、钾(K_2O)为2.8 kg;春小麦每百千克小麦籽粒产量所需养分量分别为:氮(N)为3 kg、磷(P_2O_5)为1.1 kg、钾(K2O)为2.6 kg。基于试验点数据,分别计算出土壤有效养分校正系数和肥料当季利用率,在全国27个土类上分别研究两参数的变异性,就各土类两参数的平均值来看,不同土类之间差异较大。就同一土类两参数的标准差来看,其空间变异性也均较大,且在大多数土类中都表现出极高的离散程度。小麦生育期内平均温度和平均降水量、土壤养分含量、土壤粘粒含量、土壤pH、及灌溉等因素影响着土壤有效养分校正系数和肥料当季利用率。
     (2)土壤有效养分校正系数与肥料当季利用率子模型的构建。用土壤有效养分(碱解氮、有效磷和速效钾)含量、土壤粘粒和小麦生育期内平均温度因子分别构建了土壤有效养分校正系数模型。模型的拟合程度均较高,决定系数(R2)在0.55~0.85之间。其中,土壤碱解氮、有效磷和速效钾校正系数模型的拟合精度为:有效磷>速效钾>碱解氮。在不同产量水平下,土壤养分含量与肥料当季利用率呈显著负相关的对数函数关系,分别建立了以土壤养分含量为自变量的肥料当季利用率模型。其模型的拟合程度也较高,相关系数(r)在0.45~0.75之间,均达到了极显著水平。并采用土壤pH值和灌溉因子对两子模型进行了修正。
     (3)养分平衡施肥模型的建立与验证。目标产量设为输入项,单位产量(每百千克)小麦的养分吸收量定为常数,结合土壤有效养分校正系数和肥料当季利用率两个模型,建立了以目标产量和土壤有效养分测试值为自变量,氮磷钾施肥量为因变量的养分平衡施肥综合模型。并将27个土类归并为15个土类组合,建立了全国范围的小麦推荐施肥指标体系。利用布置在各核心试验区的小麦肥料田间试验结果验证了养分平衡施肥模型推荐的施肥量。与用肥料效应函数法推荐的施肥量相比,养分平衡模型推荐的施肥量位于最高产量施肥量与最佳经济效益施肥量之间,该模型对小麦进行推荐施肥是可行的,模型具有简单、快速、准确等优点。
     (4)小麦生态环境因子基础空间数据库的构建。基于GIS平台,利用气象资料及土壤类型、质地等土壤资料,建立了影响小麦施肥模型参数的生态环境因子空间数据库。并通过插值、矢栅转换及图层叠置等处理,建立了各种图层,包括小麦生育期内平均温度和平均降水量、土壤粘粒含量和土壤pH、小麦需水量、小麦潜力产量等栅格图层,以及中国县界图与土壤类型图叠置生成的最小施肥单元矢量图层。
     (5)基于GIS的小麦施肥决策支持系统的开发。在GIS技术框架下,将GIS数据库与小麦施肥模型结合,利用ArcGIS提供的二次开发平台ArcGIS Engine和C#语言,开发出基于GIS的小麦施肥决策支持系统。施肥决策系统实现对空间数据和属性数据管理,以数据库为信息源,施肥模型为决策支持进行施肥推荐。从微观和宏观尺度上,系统分别为农户和县级农业部门提供小麦施肥决策,并为构建其它作物的栽培管理决策支持系统提供了开发框架和思路,为精确农作和数字化农作提供技术支持。
As one of the main grain crops in China, wheat is the most important commodity grain and strategic variety for grain reserve, which yield and planting area accounted for 1/5 and 1/4 of the total yield and planting area in total food crops. It is of great significance to establish N, P and K fertilizer recommendation system of wheat in China based on different climatic characteristics, soil types and soil nutrients status in guiding crop fertilization and improving farmland ecological environment. This paper studied the effect of climate factors such as temperature, precipitation and soil factors such as soil type, texture on wheat yield, soil fertility capacity and fertilizer use efficiency according to the field trials of wheat in multiple years and sites. Based on nutrient balance and soil tests, a wheat fertilizer recommendation system was established, and wheat fertilization decision-supporting system was also developed using secondary development of ArcGIS. Main conclusions were obtained as follows:
     (1) Determination of basic parameters in nutrient balance fertilization model
     Target yield was used as an independent variable in the fertilization model and the upper limit of yield was limited by climatic potential productivity. Statistical analysis showed that a significant linear correlation was reached between nutrient uptake of wheat biological yield and its corresponding grain yield. The nutrient uptake per unit yield was trended to a stable range. Therefore, we can set the nutrient uptake per unit yield as a constant in this study. For per 100 kg yield of winter wheat, 3 kg N, 1.2 kg P_2O_5 and 2.8 kg K2O nutrient were respectively needed. And for per 100 kg yield of spring wheat, 3 kg N, 1.1 kg P_2O_5 and 2.6 kg K2O were respectively needed. The calibration coefficient of soil available nutrients and the fertilizer utilization efficiency were respectively calculated based on the experiment data. It was studied the variability of the two parameters on 27 soil types in China. The average value of the two parameters for each soil type was different and the variability which indicated by the standard deviation in the same soil type was also significant. Extremely high discrete degree also showed the high variability in most soil types. The calibration coefficient of soil available nutrients and the fertilizer utilization efficiency were influenced by average temperature and precipitation during wheat growth, soil clay content, pH value, irrigation, and so on.
     (2) Establishment of two sub-models for calibration coefficient of soil available nutrient and fertilizer utilization efficiency
     It was established the sub-model for calibration coefficient of soil available nutrient by using the factors including soil available nutrient (alkaline hydrolytic nitrogen, available phosphorus and available potassium), soil clay content and average temperature during wheat growth period. The goodness-of-fit was higher which the coefficients of determination (R2) were from 0.55 to 0.85. The fitting accuracy of sub-model for calibration coefficient of soil available nutrient was available phosphorus higher than available potassium, and than alkaline hydrolytic nitrogen. It showed a significant negative correlation with logarithm function between soil nutrient contents and fertilizer utilization efficiency. The sub-model for fertilizer utilization efficiency was established by using soil nutrient content as the independent variable at different yield level. The goodness-of-fit was also higher which the related coefficients (r) were from 0.45 to 0.75 and showed a significant difference. The two sub-models were revised by using soil pH and irrigation factors, respectively.
     (3) Establishment and validation of nutrient balance fertilization model
     In the nutrient balance fertilization model, the target yield parameter was set as input item, the nutrient uptake of per unit yield was set as a constant. Combining with the two sub-models of calibration coefficient for soil available nutrient and fertilizer utilization efficiency, a comprehensive nutrient balanced fertilization model was established. Target yield and soil available nutrient testing value were set as independent variables, NPK fertilizer application rates as dependent variable. A nationwide fertilizer recommendation system of wheat was established based on 15 soil groups incorporated from 27 soil types. The recommended fertilization from nutrient balance fertilization model was validated by the wheat field trial results arranging the main trial area. The recommended fertilizer rate based on the nutrient balance fertilization model was between the rate for the maximum yield and the optimized economical benefit yield recommended by fertilizer response function model. It indicated the model was feasible for fertilizer recommendation for wheat with simple, fast and accurate characteristics.
     (4) Building basic spatial database of the ecological and environmental factors for wheat
     On the GIS platform, the basic spatial database including each ecological and environmental factor which impacted the wheat fertilization model parameters was built based on meteorological data and soil data such as soil types and soil texture etc. Different kinds of layers were constructed by interpolation, conversion between vector and grid layer, and layer superposition treatment etc. The layers included the grid layers of average temperature, average precipitation during wheat growth, soil clay content and pH value, wheat water requirement and the climatic potential productivity yield etc, and vector layer of the minimum fertilization unit by superposing county boundary map with soil type map in China.
     (5)Development of wheat fertilization decision-making system based on GIS
     Combining GIS database and wheat fertilization model, the wheat fertilization decision-making system was developed by using ArcGIS Engine and C# language under GIS environment. The layer management of the spatial data and attribute data was realized through the fertilization decision-making system. The fertilizer recommendations were performed based on the database as information source and the fertilization model as decision-making support. The system could support wheat fertilization decision-making for farmers and agriculture departments at the micro-sale and macro-scale level respectively. The development of this system could provide a framework and way to develop the decision-making system for other crops, and technical support for precision agriculture and digital griculture.
引文
1.白丽萍,陈阜.国内外作物生产潜力研究现状与评价[J].作物杂志,2002,(1):7~9.
    2.白由路,杨俐苹,王磊,等.地理信息系统及其在土壤养分管理中的应用[M].北京:中国农业科学技术出版社,2009.
    3.白由路,李保国,石元春.基于GIS的黄淮海平原土壤盐分的分布规律和管理研究[J].资源科学,1999,21(4):66~70.
    4.白由路,杨俐苹,金继运编著.测土配方施肥原理与实践[M].北京:中国农业出版社,2007.
    5.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    6.毕硕本,王桥,徐秀华.地理信息系统软件工程的原理与方法[M].北京:科学出版社,2003.
    7.蔡承智,Harrij van Velthuizen, Guenther Fischer,等.基于AEZ模型的我国农区小麦生产潜力分析[J].中国生态农业学报,2007,15(5):182~184.
    8.蔡承智,陈阜,隋鹏,等.作物产量潜力极限研究[J].中国生态农业学报,2005,13(2):145~148.
    9.蔡崇法,丁树文,史志华,等.GIS支持下乡镇域土壤肥力评价与分析[J].土壤与环境, 2000,9(2):99~102.
    10.蔡祖玉,张先胜.江淮地区小麦肥料效应试验研究[J].安徽农业科学,2006,34(13):3119,3141.
    11.曹邦洲,刘洋,王莉.水稻施肥指标体系的研究[J].现代农业科技,2008,(15):222~224.
    12.陈逢珍,林文鹏.基本农田信息系统的设计与实例研究[J].地球信息科学,2002,(2):94~99.
    13.陈怀亮,冯定原,邹春辉.用遥感资料估算深层土壤水分的方法和模型[J].应用气象学报, 1999,10(2):232~237.
    14.陈健.基于遥感和作物模型的冬小麦水肥生产力及产量差研究[博士学位论文].北京:中国农业大学,2007.
    15.陈劲松,余贤.2003年中国农村经济形势分析与2004年展望[J].中国农村经济,2004,(2):4~11.
    16.陈隆勋,邵永宁,张清芬,等.近四十年我国气候变化的初步分析[J].应用气象学报,1991,2(2):64~173.
    17.陈蓉蓉,周治国,曹卫星,等.农田精确施肥决策支持系统的设计和实现[J].中国农业科学,2004,37(4):516~521.
    18.陈曙晃,毛端明,许咏梅.基于WebGIS的新疆远程施肥决策支持数据库的设计[J].计算机和农业,2003,7:13~15.
    19.陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,2000.
    20.陈伟强,刘国顺,华一新,等.GIS与烟草施肥模型耦合的应用研究[J].测绘科学, 2009,34(2):202~203.
    21.陈伟强.基于GIS的烟草施肥决策支持系统研究[博士学位论文].郑州:解放军信息工程大学,2009.
    22.陈新平,张福锁.通过“3414”试验建立测土配方施肥技术指标体系[J].中国农机推广,2006,22(4):36~39.
    23.陈新平,周金池,王兴仁,等.小麦-玉米轮作制中氮肥效应模型的选择-经济和环境效应分析[J].土壤学报,2000,37(3):346~353.
    24.陈秀敏,李科江,贾银锁.河北小麦[M].北京:中国农业科学技术出版社,2008.
    25.陈彦,吕新.基于SuperMapGIS的棉田土壤肥力信息管理及施肥决策系统[J].新疆农业科学,2004,41(6):427~430.
    26.陈玉民,郭国双.中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995.
    27.陈正刚,朱青,王文华,等.贵州高海拔地区氮磷钾平衡施肥对小麦产量的影响[J].贵州农业科学,2006,34(4):39~41.
    28.褚庆全,李林.地理信息系统(GIS)在农业上的应用及其发展趋势[J].中国农业科技导报,2003,5(1):22~26.
    29.崔读昌,曹广才,张文,等.中国小麦气候生态区划[M].贵阳:贵州科技出版社,1991.
    30.代勇,胡松,姚民英,等.养分平衡法在黔东南州油菜测土推荐施肥中的应用研究[J].土壤通报,2008,39(3):712~714.
    31.董景霜,宋建霞,王选民.棕壤土区冬小麦施肥参数试验初探[J].河北农业科技,2008,(20):44~45.
    32.杜建平,朱岁层,袁伟,等.3414肥料试验在小麦生产上的应用技术[J].陕西农业科学,2009,(6):12~14.
    33.杜尧东,刘作新,张运福.参考作物蒸散计算方法及其评价[J].河南农业大学学报,2001,35(1):57~61.
    34.段存东.黄泥田免耕直播小麦“3414”肥效试验[J].现代农业科技,2009,(13):18~19.
    35.樊军,邵明安,王全九.黄土区参考蒸散量多种计算方法的比较研究[J].农业工程学报,2008,24(3):98~102.
    36.方裕.地理信息系统(GIS)的技术与发展(J).计算机通信,1999,(7):1~4.
    37.房俊杰,戚国强,王立舒,等.黑龙江省大豆施肥专家系统[J].农机化研究,2006,(11):103~105.
    38.冯加根.基于组件式GIS的县域水稻精确施氮决策支持系统的开发与应用-以姜堰市为例[硕士学位论文].扬州:扬州大学,2007.
    39.冯克忠,万庆,励惠国.基于组件技术的GIS广义空间分析[J].地球信息科,2003,5(1):62~66.
    40.付莹莹,同延安,李文祥,等.陕西关中灌区冬小麦土壤养分丰缺指标体系的建立[J].麦类作物学报,2009,29(5):897~900.
    41.高雪玲,张建平,吕明杰,等.长安灌区小麦氮磷钾肥肥效试验研究[J].陕西农业科学,2007,(1):22~24.
    42.高永桂.测土配方施肥技术指标体系的研究与应用[C].//第二届全国测土配方施肥技术研讨会论文集.北京:中国农业大学,2007,36~40.
    43.葛建军,何文选.柑桔测土配方施肥技术指标体系研究与应用[J].邵阳学院学报(自然科学版),2008,5(2):90~93.
    44.耿兴元,毛达如,曹一平.土壤肥力模糊定量评价(判)系统的建立[J].北京农业大学学报,1995,21(增刊):23~28.
    45.郭建茂.基于遥感与作物生长模型的冬小麦生长模拟研究[博士学位论文].南京:南京信息工程大学,2007.
    46.郭秋英.当前GIS发展的几个特点[J].测绘通报,1998,5:43~45.
    47.郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究-以河北遵化市为例[J].应用生态学报,2000,11(4):557~563.
    48.郭银巧,赵传德,孙红春,等.玉米肥料运筹动态知识模型研究[J].河北农业大学学报,2008,31(1):118~122.
    49.侯景儒,黄竞先.地质统计学的理论与方法[M].北京:地质出版社,1990.
    50.侯顺艳,王秀,薛绪掌,等.土壤精准管理变量施肥地理信息系统的应用研究[J].河北大学学报,2003,23(2):193~197.
    51.侯彦林,陈守伦.施肥模型研究综述[J].土壤通报,2004,35(4):493~501.
    52.侯彦林,刘兆荣.生态平衡施肥模型理论与应用[J].土壤通报,2000,31(1):33~35.
    53.侯彦林.生态平衡施肥:Ⅱ.施肥参数指标体系[J].磷肥与复肥,2008,23(3):65~67.
    54.侯彦林.“生态平衡施肥”的理论基础和技术体系[J].生态学报,2000,20(4):653~658.
    55.胡凤桂,黄占亮,李宏松.寿县小麦“3414”田间肥效研究[J].安徽农业科学,2008,36(13):5527~5531.
    56.胡开全.基于ArcGIS Engine的县域配方施肥系统的设计与实现[硕士学位论文].武汉:华中农业大学,2008.
    57.黄秉维.中国农业生产潜力研究—光合潜力[J].地理集刊,1985,(17):15~22.
    58.黄德明.十年来我国测土施肥的进展[J].植物营养与肥料学报,2003,9(4):495~499.
    59.黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策[J].生态环境,2004,13(4):656~660.
    60.黄绍敏,宝德俊,皇甫湘荣,等.长期定位施肥小麦的肥料利用率研究[J].麦类作物学报,2006,26(2):121~126.
    61.黄杏元,马劲松.地理信息系统数据库[M].北京:高等教育出版社,2008.
    62.黄钊,韦燕飞.GIS空间数据库技术的新发展[J].广西师范学院学报(自然科学版), 2003,20(增刊):200~202.
    63.姜城,杨俐苹,金继运,等.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,7(3):262~270.
    64.姜文彬,杨铁成,单文波.玉米诊断施肥技术的研究与应用[J].吉林农业大学学报,1986,8(4):62~68.
    65.金继运,李家康,李书田.化肥与粮食安全[J].植物营养与肥料学报,2006,12(5):601~609.
    66.金善宝.中国小麦学[M].北京:中国农业出版社,1996.
    67.金耀青.配方施肥的方法及其功能(对我国配方施肥工作的评述)[J].土壤通报,1989,20(1):46~49.
    68.金耀青,张中原.配方施肥方法及其应用[M].沈阳:辽宁科学技术出版社,1993.
    69.靳军,刘建忠.国内外GIS软件的空间分析功能比较[J].测绘工程,2004,13(3):58~61.
    70.巨晓棠,何忠俊.加拿大Alberta省的以水定产测土施肥技术体系[J].干旱地区农业研究,1998,16(1):84~89.
    71.巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192~197.
    72.康端礼,李继明.干旱区春小麦配方施肥“3414”试验[J].甘肃农业科技,2010,(4):22~24.
    73.康西言,马辉杰.河北省气候生产潜力的估算与区别[J].中国农业气象,2008,29(1):37~41.
    74.柯庆明,林文雄,黄珍发,等.小白菜平衡施肥数学模型模拟研究[J].中国生态农业学报,2005,13(1):119~121.
    75.孔云峰,仝文伟.降雨量地面观测数据空间探索与插值方法探讨[J].地理研究,2008,27(5):1097~1107.
    76.拉毛卓玛.祁连县小麦“3414”肥效试验[J].青海农林科技,2010,(2):58~59.
    77.李宏松,黄占亮,戚士章.2006~2007年度寿县小麦“3414”肥料效应田间试验报告[J].现代农业科技,2008,(13):203~205.
    78.李建军,刘慧芹,刘维芳,等.黄淮海地区夏玉米施肥技术参数与指标体系的研究[J].河北农业科学,2008,12(6):43~45.
    79.李建军,孙传军,杨爱友,等.黄淮海地区冬小麦施肥技术参数与指标体系的研究[J].河北农业科学,2008,12(4):52~54.
    80.李军,游松财,黄敬峰.中国1961-2000年月平均气温空间插值方法与空间分布[J].生态环境, 2006,15(1):109~114.
    81.李满春,任建武,陈刚,等.GIS设计与实现[M].北京:科学出版社,2003.
    82.李明远,王留欣.2007年鲁山县冬小麦“3414”试验结果初报[J].安徽农学通报,2008,14(2):67~70.
    83.李仁岗.肥料效应函数[M].北京:农业出版社,1987.
    84.李生秀.植物营养与肥料学科的现状与展望[J].植物营养与肥料学报,1999,5(3):193~205.
    85.李天宏,孙炎鑫,薛安.土壤施肥模型与GIS集成的应用研究[J].土壤学报,2003,40(6):960~962.
    86.李伟,李庆祥,江志红.用Kriging方法对中国历史气温数据插值可行性讨论[J].南京气象学院学报,2007,30(2):246~252.
    87.李祥轩,桑涛,王心孟.小麦“3414”肥料试验初报[J].安徽农学通报,2007,13(1):92.
    88.李秀芳,刘红彦.GIS数据的数据库化方法研究[J].西安工程科技学院学报,2004,18(1):60~64.
    89.李云,张宁,邢文英.冬小麦磷肥利用率主要影响因素的研究[J].植物营养与肥料学报,2002,8(4):424~427.
    90.李志宏.GIS在养分资源管理及施肥推荐中的应用研究[博士后出站报告].北京:中国农业科学院,2002.
    91.梁中龙,袁中友,林兴通,等.城郊耕层土壤养分的空间变异特征[J].土壤通报,2006,37(3):417~421.
    92.廖桂平,官春云,陈社员.基于Web的油菜生产专家系统的研究与应用[J].农业系统科学与综合研究,2005,21(1):8~15.
    93.廖顺宝,陈沈斌,谢高地.精准水稻种植信息系统的分析与设计[J].地球信息科学,2003,3(1):54~57.
    94.林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化(全国化肥试验网论文汇编)[M].北京:中国农业科技出版社,1996.
    95.林葆.中国肥料[M].上海:上海科学技术出版社,1994:455~456.
    96.林忠辉,陈同斌,周立祥.中国不同区域化肥资源利用特征与合理配置[J].资源科学,1998,20(5):26~31.
    97.林忠辉,莫兴国.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47~56.
    98.刘成祥,周鸣铮.对Truog-Ramamoorthy测土施肥方法的研究与讨论[J].土壤学报,1986, 23(3):285~289.
    99.刘克礼,高聚林,张永平,等.春小麦氮、磷、钾三要素利用率的研究[J].麦类作物学报,2003,23(3):103~106.
    100.刘立波.土壤施肥模型的研究与应用[J].安徽农业科学,2008,36(10):4187~4188.
    101.刘守步.五河县2007年小麦“3414”肥料效应田间试验报告[J].安徽农学通报, 2008,14(11):105.
    102.刘文通,刘吉元.长春地区诊断施肥量计算公式中几个参数的探讨[J].土壤通报,1984, 15(3):117~120.
    103.刘小虎,韩晓日,赵斌,等.肥料“3414”试验中施肥模型的拟合与优化方法研究[C].//第二届全国测土配方施肥技术研讨会论文集.北京:中国农业大学,2007,64~68.
    104.刘小军,曹静,汤亮,等.基于模型和GIS的水稻生产管理决策支持系统构建与应用[J].中国水稻科学,2010,24(3):297~302.
    105.刘小军,朱艳,姚霞.基于WebGIS的农业空间信息管理及辅助决策系统[J].农业工程学报,2006,22(5):125~129.
    106.刘晓晨,孙占祥.地下水硝态氮污染现状及研究进展[J].辽宁农业科学,2008,(5):41~45.
    107.刘晓梅.从近期市场粮食价格上涨看我国的粮食安全状况[J].价格理论与实践,2004,(2):28~29.
    108.刘彦随,吴传钧.中国水土资源态势与可持续食物安全[J].自然资源学报,2002,17(3):270~275.
    109.刘钰,L.S.Pereira.对FAO推荐的作物系数计算方法的验证[J].农业工程学报,2000,16(5):26~30.
    110.刘振兴,杨振华,邱孝煊,等.肥料增产贡献率及其对土壤有机质的影响[J].植物营养与肥料学报,1994,1(试刊):19~26.
    111.柳云龙.农田养分管理与推荐施肥空间决策系统研究[博士后出站报告].上海:上海师范大学,2004.
    112.鲁剑巍.测土配方与作物配方施肥技术[M].北京:金盾出版社,2006.
    113.鲁靖,许成安.构建中国的粮食安全保障体系[J].农业经济问题,2004,(8):29~79.
    114.陆文伟.基于GIS的红壤小流域土地资源信息系统的设计与实现[J].广西农学报,2002,(增刊):1~8.
    115.陆允甫,吕晓男.两种测土配方施肥方法的比较[J].浙江农业学报,1991,3(2):92~96.
    116.陆允甫,吕晓男.中国测土施肥工作的进展和展望[J].土壤学报,1995,32(3):241~250.
    117.陆允甫,周鸣铮,吴益伟.浙江省红壤地区玉米的估产测土施肥研究[J].土壤通报,1986, 17(4):163~167.
    118.吕甚悟,张勇军.对磷钾肥利用率和需用量计算探讨[J].土壤通报,2003,34(3):198~201.
    119.吕世祝,刘建君,周海燕,等.棕壤土区施肥参数对冬小麦产量与肥料利用率的影响[J].安徽农业科学,2007,35(17):5209~5210.
    120.吕晓男,陆允甫,王人潮.浙江低丘红壤肥力数值化综合评价研究[J].土壤通报,2000,31(3):107~110.
    121.吕晓男,陆允甫,王人潮.浙江低丘红壤玉米计量施肥咨询系统研制[J].农业工程学报,1999,15(4):192~197.
    122.吕晓男,陆允甫.浙中红壤油菜田供钾特性和钾肥用量研究[J].土壤通报,2000,31(5):228~231.
    123.吕晓男.施肥模型的发展及其应用[A].中国土壤学会.迈向21世纪的土壤科学(浙江省卷)[C].北京:中国环境科学出版社,1999:164~166.
    124.吕新,魏亦农,李少昆.基于GIS的土壤肥力信息管理及棉花施肥推荐决策支持系统研究[J].中国农业科学,2002,35(7):883~887.
    125.马成林,吴才聪,张书慧,等.基于数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2004,20(2):152~155.
    126.马海燕,缴锡云.作物需水量计算研究进展[J].水科学与工程技术,2007,(5):5~7.
    127.马新明,张娟娟,席磊,等.基于叶面积指数(LAI)的小麦变量施氮模型研究[J].农业工程学报,2008,24(2):22~26.
    128.马轩龙,李春娥,陈全功.基于GIS的气象要素空间插值方法研究[J].草业科学,2008,25(11):13~19.
    129.毛达如,陈伦寿,张承东.肥料多点分散试验结果的动态聚类分析,杨守春主编,黄淮海平原主要作物优化施肥和土壤培肥技术[M].北京:中国农业科学出版社,1991,27~32.
    130.毛达如.近代施肥原理与技术[M].北京:科学技术出版社,1987.
    131.毛端民,王讲利.新疆县级农田土壤肥料信息系统的建立及其应用,迈向21世纪的土壤科学-提高土壤质量,促进农业持续发展[C].(中国土壤学会第九次全国会员代表大会论文集,综合卷),1999:242.
    132.毛端明.新疆县级土壤肥料信息系统的研究应用[J].干旱区研究,1999,16(增刊):67~70.
    133.幕成功,郑义.农作物配方施肥[M].北京:中国农业科技出版社,1994.
    134.农业部种植业司.测土配方施肥管理与技术[M].培训教材,2006.
    135.潘冬梅,吕新,王海江.棉花膜下滴灌施用氮肥施肥模型及推荐决策支持系统建立研究[J].土壤,2008,40(1):141~144.
    136.潘剑君,勒婷婷,孙维侠.江西省余江县土壤信息系统建造研究[J].土壤学报,1999,36(4):522~527.
    137.潘瑜春,钟耳顺,赵春江.GIS空间数据库的更新技术[J].地球信息科学,2004,6(1):36~40.
    138.潘喻春,王纪华,赵春江,等.基于网络GIS的作物品质监测与调优栽培系统[J].农业工程学报,2004,20(6):120~123.
    139.彭飞.地理信息系统的嵌入式开发技术[J].电子技术应用,2001,(1):29~31.
    140.彭世彰,徐俊增.参考作物蒸发蒸腾量计算方法的应用比较[J].灌溉排水学报,2004,23(6):5~9.
    141.齐鲁.基于WebGIS的蔬菜安全生产氮肥推荐系统研究-以寿光市为例[硕士学位论文].泰安:山东农业大学,2008.
    142.曲环,赵秉强,陈雨海,等.灰漠土长期定位施肥对小麦品质和产量的影响[J].植物营养与肥料学报,2004,10(1):12~17.
    143.饶卫民,章家恩,肖红生,等.地理信息系统(GIS)在农业上的应用现状概述[J].云南地理环境研究,2004,16(2):13~17.
    144.任兴和.溧水县永阳镇小麦“3414”田间试验[J].现代农业科技,2009,(20):21~22,24.
    145.上海化二院肥效室:测土施肥目标产量法初步探讨,1983.
    146.沈善敏.关于肥料利用率的猜想[J].应用生态学报,2005,16(5):781~782.
    147.盛建东,蒋平安.基于GIS的区域土壤养分管理与作物推荐施肥信息系统研究[J].土壤,2002,(4):77~81.
    148.施建平.基于Web的施肥决策支持数据库的设计与建立[J].土壤,1999,6:299~303.
    149.施翔,吴建富,卢志红,等.水稻测土施肥专家系统知识库的建造[J].江西农业大学学报(自然科学版),2002,24(5):695~701.
    150.石书兵,徐文修,克尤木,等.新疆旱地春小麦肥料效应的研究[J].耕作与栽培,2002,(4):30~31.
    151.石小华,杨联安,张蕾.土壤速效钾养分含量空间插值方法比较研究[J].水土保持学报,2006,20(2):68~72.
    152.石元亮,王玲莉,聂鸿光.中国化学肥料发展及其对农业的作用[J].土壤学报,2008,45(5):852~864.
    153.史学正,于东升,潘贤章,等.我国1:100万土壤数据库及其应用[C].//中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇).北京:科学出版社,2004,142~145.
    154.苏伟,聂宜民,于振文,等.基于GIS的优质小麦变量施肥信息系统研究[J].农业工程学报,2005,21(7):94~98.
    155.孙波,严浩,施建平,等.基于组件式GIS的施肥专家决策支持系统开发和应用[J].农业工程学报,2006,22(4):75~79.
    156.孙传范,曹卫星,戴廷波.土壤-作物系统中氮肥利用率的研究进展[J].土壤,2001,33(2):64~69.
    157.孙国跃,王祝余,袁江华,等.响水县沙土地区小麦3414肥料效应试验研究初报[J].现代农业科技,2007,(24):106~107,109.
    158.孙彦铭,杜金钟,贾良良,等.河北省藁城市冬小麦3414试验肥料效应研究[J].河北农业科学,2008,12(3):84~86.
    159.孙艳侠.2008年颍州区小麦“3414”施肥的效果[J].农技服务,2009,26(4):48.
    160.孙要夺,刘刚.地图控件(MO)在农田信息系统开发中的应用[J].中国农业大学学报,2002,7(6):72~77.
    161.孙英君,王劲峰,柏延臣,等.地统计学的GIS空间分析功能扩展[J].华侨大学学报(自然科学版),2004,25(4):435~439.
    162.孙治贵,黎贞发,李杰,等.基于组件GIS技术的水稻生产管理信息系统开发研究[J].农业工程学报,2004,20(3):137~140.
    163.索东让.养分平衡及肥料利用率长期定位研究[J].磷肥与复肥,2008,23(4):65~69.
    164.汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    165.唐国昌,雷鸣,徐林晓.几种确定作物施肥量的方法[J].磷肥与复肥,2008,23(6):76~78.
    166.唐旭.小麦-玉米轮作土壤磷素长期演变规律研究[博士学位论文].北京:中国农业科学院,2009.
    167.腾青芳,秦春林,党建武.利用神经网络建立土壤施肥模型的应用研究[J].兰州铁道学院学报,2002,21(4):54~57.
    168.田秀英,石孝均.定位施肥对小麦产量和品质的影响研究[J].西南师范大学学报(自然科学版),2003,28(2):283~287.
    169.汪浩.2007年郎溪县小麦肥料效应田间试验[J].现代农业科技,2009,(9):177~178.
    170.王洪玉,周祖澄,金振玉,等.玉米土壤诊断施氮计算公式中主要参数的研究[J].吉林农业大学学报,1984,8(4):41~46.
    171.王景雷,孙景生,张寄阳.基于GIS和地统计学的作物需水量等值线图[J].农业工程学报,2004,20(5):51~54.
    172.王璐,翟义欣,王菲.地理信息系统(GIS)的发展及在农业领域的应用现状与展望[J].农业环境科学学报,2005,24(增刊):362~366.
    173.王荣栋,尹经章.作物栽培学[M].北京:高等教育出版社,2005.
    174.王绍中,郑天存,郭天财.河南小麦育种栽培研究进展[M].北京:中国农业科学技术出版社,2007.
    175.王圣瑞,陈新平,高祥照,等.“3414”肥料试验模型拟合的探讨[J].植物营养与肥料学报,2002,8(4):409~413.
    176.王素华,孙彦铭,冯自军,等.唐山市冬小麦“3414”试验肥料效应研究[J].河北农业科学,2009,13(9):1~2,13.
    177.王素艳,霍治国,李世奎,等.中国北方冬小麦的水分亏缺与气候生产潜力-近40年来的动态变化研究[J].自然灾害学报,2003,12(1):121~130.
    178.王伟妮,鲁剑巍,李银水,等.当前生产条件下不同作物施肥效果和肥料贡献率研究[J].中国农业科学,2010,43(19):3997~4007.
    179.王文峰.北方地区冬小麦水分亏缺及干旱风险评价[硕士学位论文].北京:中国农业大学,2010.
    180.王新民.生态平衡施肥模型在冬小麦/夏玉米轮作中的应用[博士学位论文].北京:中国科学院生态环境研究中心,2004.
    181.王兴仁,曹一平,张福锁.磷肥恒量监控施肥法在农业中的探讨[J].植物营养与肥料学报,1995,1(3):59~64.
    182.王兴仁,陈新平,张福锁.施肥模型在我国推荐施肥中的应用[J].植物营养与肥料学报, 1998,4(1):67~74.
    183.王兴仁,张福锁等.现代肥料试验设计[M].北京:中国农业出版社,1996,164~185.
    184.王兴仁.我国北方石灰性潮土养分变化趋势和施肥对策,土壤管理与施肥[M].中国农业科技出版社,1994,27~38.
    185.王秀,苗孝可,孟志军,等.插值方法对GIS土壤养分插值结果的影响[J].土壤通报,2005,36(6):826~830.
    186.王秀军,苗孝可,孟志军,等.插值方法对GIS土壤养分插值结果的影响[J].土壤通报, 2005,36(6):826~830.
    187.王学强,贾志宽,李轶冰.基于AEZ模型的河南小麦生产潜力研究[J].西北农林科技大学学报(自然科学版),2008,36(7):85~90.
    188.王幼奇,樊军,邵明安,等.黄土高原地区近50年参考作物蒸散量变化特征[J].农业工程学报,2008,24(9):6~10.
    189.王玉杰,张大克.利用多远二项式肥料效应函数确定最高产量施肥量的数学模型[J].吉林农业大学学报,1989,11(4):17~20.
    190.王玉霞.金湖县小麦测土配方施肥“3414”试验初报[J].现代农业科技,2009,(10):143.
    191.王宗明,张柏,张树清,等.松嫩平原农业气候生产潜力及自然资源利用率研究[J].中国农业气象,2005,26(1):1~6.
    192.危常州,侯振安,雷咏雯,等.不同地理尺度下综合施肥模型的建模与验证[J].植物营养与肥料学报,2005,11(1):13~20.
    193.危常州.基于GIS的棉田养分精细管理和推荐施肥系统的研究[博士学位论文].北京:中国农业大学,2002.
    194.邬伦,刘瑜.地理信息系统:原理、方法和应用[M].北京:科学出版社,2005.
    195.邬伦,刘喻,张晶,等.地理信息系统-原理、方法与应用[M].北京:科学技术出版社,2001.
    196.吴杭艳.基于GIS的测土配方施肥系统研究-以云南省耿马县为例[硕士学位论文].昆明:昆明理工大学,2008.
    197.吴群.我国粮食问题的基本判断[J].农业现代化研究,2004,25(3):161~164.
    198.吴信才.地理信息系统的基本技术与发展动态[J].中国地质大学学报,1998,(4):329~333.
    199.奚振邦.化肥与农业[A].林葆.化肥与无公害农业[C].北京:中国农业出版社,2003,159~174.
    200.夏波,刘洪斌,武伟.基于ArcGIS Engine的测土施肥信息管理系统的建立[J].计算机与现代化,2007,(1):108~111.
    201.谢卫国,等.测土配方施肥理论与实践[M].长沙:湖南省科学技术出版社,2006.
    202.薛国梁.GIS空间数据库设计方法讨论[J].西北民族大学学报(自然科学版),2010,31(77):49~52.
    203.闫湘,金继运,何萍,等.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450~459.
    204.闫湘.我国化肥利用现状与养分资源高效利用研究[博士学位论文].北京:中国农业科学院农业资源与农业区划研究所,2008.
    205.严浩.基于组件式GIS的施肥专家决策系统开发和应用[硕士学位论文].南京:南京农业大学,2005.
    206.严晓侠,朱帮忠.广德县小麦“3414”肥料效应试验效益分析[J].安徽农学通报,2008,14(23):137转102.
    207.杨靖一,Wadsworth G A,Greenwood D J.三种蔬菜氮肥效应曲线的比较研究[J].植物营养与肥料学报,1995,1(1):71~78.
    208.杨莉琳,胡春胜.太行山山前平原高产区精准施肥指标体系研究[J].中国生态农业学报,2002,10(2):71~75.
    209.杨梅岩.试论农业系统中肥料与环境和气候的关系[J].现代化农业,2005,2:30~33.
    210.杨伟奇,徐玉佩,张中源,等.沈阳市农田土壤养分肥力状况及供肥量研究[J].沈阳农业大学学报,1999,30(5):502~505.
    211.杨雪峰.空间数据库的构建[J].新疆师范大学学报(自然科学版),2002,21(3):61~68.
    212.杨卓亚,曹一平,毛达如.计量施肥的基本方法和发展动向[J].中国农业文摘-土壤肥料,1993,9(2):1~7.
    213.杨卓亚,毛达如,黄金龙,等.基于年景变化的施肥决策[J].北京农业大学学报,1995,21(增刊):19~22.
    214.杨卓亚.建立“土壤-肥料-作物-气候”综合施肥模型的理论和实践[博士学位论文].北京:北京农业大学,1994.
    215.殷广德,徐茂.江苏省水稻小麦施肥指标体系研究初报[C].//第二届全国测土配方施肥技术研讨会论文集.北京:中国农业大学,2007,82~86.
    216.银英海,银友善,韩凤群,等.关于测土配方施肥中土壤供肥性能的研究[J].黑龙江农业科学,2006,(4):44~49.
    217.尹飞,冯媛媛.皖北地区小麦“3414”肥料效应田间试验[J].现代农业科技,2009,(5):152~153.
    218.游建秋,周福红,李品健.明光市小麦测土配方施肥研究[J].安徽农学通报,2007,13(9):120~122.
    219.余松烈.中国小麦栽培[M].上海:上海科学技术出版社,2006.
    220.宇万太,赵鑫,张璐,等.长期施肥对作物产量的贡献[J].生态学杂志,2007,26(12):2040~2044.
    221.曾长立,刘丽,王兴仁,等.利用土壤剖面无机氮进行冬小麦氮肥基肥推荐的研究[J].湖北农业科学,2003,(3):49~50.
    222.曾广平,鲍光淑.GIS概念模型系统的理论探讨[J].中国有色金属学报,1998,12.
    223.曾怀恩,黄声享.基于Kriging方法的空间数据插值研究[J].测绘工程,2007,16(5):5~8.
    224.曾宪坤.中国化肥工业的现状与展望[J].土壤学报,1995,32:117~125.
    225.翟均平,郑元红.油菜施肥数学模型[J].安徽农业科学,2006,34(18):4516~4517.
    226.张成才,秦昆,卢艳,等.GIS空间分析理论与方法[M].武汉:武汉大学出版社,2004.
    227.张凤荣,张晋科,张迪,等.1996-2004年中国耕地的粮食生产能力变化研究[J].中国土地科学,2006,20(2):8~14.
    228.张凤荣.中国地理学[M].北京:中国农业出版社,2002.
    229.张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008,45(5):915~924.
    230.张福锁.测土配方施肥技术要览[M].北京:中国农业大学出版社,2006.
    231.张福锁.养分资源综合管理[M].北京:中国农业大学出版社,2003.
    232.张浩,李福超,马新明,等.基于GIS的县域小麦测土配方施肥系统设计与实现[J].河南农业大学学报,2008,42(5):566~569.
    233.张晋科,张凤荣,张迪,等.2004年中国耕地的粮食生产能力研究[J].资源科学,2006,28(3):44~51.
    234.张宽,赵景云,王香芝.黑土供磷能力与磷肥经济合理用量问题的初步研究[J].土壤通报,1984,15(3):120~122.
    235.张书慧,马成林,于春玲.应用于精准农业变量施肥地理信息系统的开发研究[J].农业工程学报,2002,(2):153~155.
    236.张维理,梁鸣早,卢昌艾.中国土壤肥料信息系统的研究及其应用[C].(中国土壤学会第九次全国会员代表大会论文集,综合卷),1999:83~87.
    237.张新长,马林兵,张青年.地理信息系统数据库[M].北京:科学出版社,2005.
    238.章明清,徐志平,姚宝全,等.福建主要粮油作物测土配方施肥指标体系研究Ⅱ.土壤碱解氮、Olsen-P和速效钾丰缺指标[J].福建农业学报,2009,24(1):68~74.
    239.赵秉强,林治安,刘增兵.中国肥料产业未来发展道路-提高肥料利用率较少肥料用量[J].磷肥与复肥,2008,23(6):1~4.
    240.赵娟.ArcGIS插值方法对比及其在云南省土壤污染状况调查中的应用[J].环境科学导刊,2010,29(增刊1):85~87.
    241.赵俊晔,于振文.我国小麦生产现状与发展小麦生产能力的思考[J].农业现代化研究,2005,26(5):344~348.
    242.赵艺,施泽明,师刚强.土壤pH值与土壤养分有效态关系探讨-以内江市白马镇为例[J].四川环境,2009,28(6):81~83.
    243.赵泽英,彭志良.贵州玉米生产智能管理系统中推荐施肥模型与参数系统初步研究[J].贵州农业科学,2004,32(3):24~27.
    244.赵振刚.庄浪县冬小麦测土配方施肥指标研究[J].甘肃农业科技,2009,7:30~33.
    245.郑良永.农业施肥与生态环境[J].热带农业科学,2004,24(5):79~84.
    246.郑艳美,孙悦铃,杜金城.唐山市丰南区冬小麦“3414”肥效试验[J].湖北农业科学,2010,49(2):307~309.
    247.郑义,孙笑梅,易玉林.河南冬小麦施肥指标体系的建立与分区施肥推荐研究初报[C].//第二届全国测土配方施肥技术研讨会论文集.北京:中国农业大学,2007,23~29.
    248.中国农业科学院土壤肥料研究所.中国化肥区划[M].北京:中国农业科技出版社,1986,15~28.
    249.中国主要农作物需水量等值线图协作组著.中国主要农作物需水量等值线图研究[M].北京:中国农业科技出版社,1993.
    250.周保平.黑龙江省水稻生态平衡施肥决策支持系统总体设计及部分模块功能实现[硕士学位论文].哈尔滨:东北农业大学,2003.
    251.周成虎.地理信息系统的透视-理论与方法[J].地理学报,1995,(50)增刊:1~12.
    252.周广业,丁宁平,黄世伟.用肥料田间试验与测土指标作为指导合理施肥的探讨[J].土壤通报,1985,16(l):38~41.
    253.周鸣铮,王竺美.浙江省水稻土“因产定氮”基本公式及其有关参数的探讨[J].土壤学报, 1987,24(2):127~133.
    254.周鸣铮.测土施肥的科学基础[J].土壤通报,1984,(4):156~160.
    255.周宗玲.寿县黄淤土田小麦“3414”肥料效应试验研究[J].安徽农学通报,2009,15(21):104~105,188.
    256.朱艳,曹卫星,戴廷波,等.小麦目标产量设计及适宜品种选择的动态知识模型[J].应用生态学报,2004,15(2):231~236.
    257.朱艳,曹卫星,戴廷波,等.小麦栽培氮肥运筹的动态知识模型[J].中国农业科学,2003,36(9):1006~1013.
    258.朱兆良.关于稻田土壤供氮量的预测和平均适宜施氮量的应用[J].土壤,1998,(2):57~61.
    259.朱兆良.我国土壤供氮和化肥氮去向研究的进展[J].土壤,1992,(6):2~9.
    260.左大康.地球表层辐射研究[M].北京:科学出版社,1991,96~223.
    261.左建传,陆同兰,刘盛炀,等.兴化市小麦“3414”肥料效应试验研究[J].现代农业科技,2007,(7):71~72,74.
    262. A.A.Taiwo, M.T,Adetunji, J.O.Azeez. Potassium supplying capacity of some tropical alfisols in southwest Nigeria as measured by intensity, quantity and capacity factors[J].Nutr Cycl Agroecosyst,2010,86:341~355.
    263. Allen R G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study [J].J Hydro,2000,229:27~41.
    264. Anderson R.L. and I.A.Nelson.Family of models involving intersecting straight lines and commitment experimental design useful in evaluating response of fertilizer nutrient[J].Biometrics, 1975,31:303~318.
    265. Angus J F, Bowden J W and Keating B A. Modeling nutrient responses in the field. In:Barrow NJ(ed.)Plant nutrition from genetic engineering to field practice[M]. Kluwer Publisher, 1993,59~68.
    266. Bailey J S, Dils R A, Foy R H,et al.The Diagnosis and Recommendation Integrated System(SRIS)for Diagnosing the Nutrient Status of Grassland Swards:ⅢPractical Applications[J].Plant and Soil,2000,222:255~262.
    267. Balesh Tulema, Felipe Zapata, Jena Aune, Bishal Sitaula. N fertilization, soil type and cultivarseffects on N use efficiency in tef[Eragrostis tef(Zucc.) Trotte[J]. Nutrient Cycling in Agroecosystems,2005,71: 203~211.
    268. Bay TF, Schoney RA. Data analysis with computer graphics: production funcation[J]. Amer.J.Agr.Econ.,1982, 3: 288~297.
    269. Benthgen W.E., Alley M.M. Optimizing soil and fertilizer nitrogen use by intensively managed winter wheat I. Crop nitrogen uptake[J].Agron. J., 1989,81:116~120.
    270. Bing-qiang Zhao, Xiu-ying Li, Xiao-ping Li. et al. Long-term fertilizer experiment network in China: Crop yields and soil nutrient trends[J]. Agronomy Journal, Volume 102, Issue I, 2010.
    271. Blackermer A.M., Webb J. Correlations between soil nitrate concentrations in late spring and corn yields in Iowa[J]. J. Prod Agric., 1989, 2: 103~109.
    272. Bremner J M. Inorganic forms of nitrogen. In: Black C A, eds. Method of Soil Analysis, Part2[M]. Madison, USA: American Society of Agronomy, 1965.
    273. Brown, Brain Halweil. China’s water shortage could shake world food security[J]. World Watch,1998,11(4):10~18.
    274. Brown,L.R. Who will feed China? Wake-up Call for a Small Planet[M].New York:World Watch Institute,1995.
    275. Burrough, P.A., and R.A. McDonnell.1998. Principles of Geographical information Systems[M].Oxford: Oxford University Press.
    276. C.Adhikari, K.F.Bronson, G.M.Panuallah,et al. On-farm soil N supply and N nutrition in the rice-wheat system of Nepal and Bangladesh[J].Field Crops Research, 1999,64:273~286.
    277. Cassman K G, De Datta S K, Amarante S T, et al. Long-term comparison of the agronomic efficiency and residual benefits of organic and inorganic nitrogen sources for tropical lowland rice[J]. Explore Agric.1996,32:427~444.
    278. Cassman, K.G., A. Dobermann, and D.T. Walters. Agroecosystems, nitrogen-use efficiency, and nitrogen management[J]. Ambio. 2002,31: 132~140.
    279. Cerrato M E,Blacker A M.Comparison of models for describing corn yield response to nitrogen fertilizer[J].Agronomy J.,1990,82(1):138~143.
    280. Chaudhary F.S. and S.Rajendra. Evaluation of fertilizer response by reverse quadratic model[J]. India J.Agri.Sci.,1986,56(12):873~877.
    281. Chen D L, White R E, et al. Measurement of gaseous N losses from grazed pastures In Soil Science-Raising the profile[C].Australian and New Zealand National Soil Conference,1996,2:41~42.
    282. Cowell J D, Morton R. Development and evaluation of general or transfer models of relationships between wheat yields and fertilizer rates in southern Australia[J].Aust.J.Soil Res.,1984,22:191~205.
    283. Cui Z L,Chen X P,Li J L,Xu J F,Shi L W,Zhang F S. Effects of N fertilization on grain yield of winter wheat and apparent N losses[J]. Pedosphere,2006,16(6):806~812.
    284. D.Analogides and V.V.Rendig. Functional relationships between yield response and soilphosphorus supply[J].Plant and Soil,1972,37:545~559.
    285. D.C.Olk, K.G.Cassman, G.Simbahan,et al. Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity,factor productivity,and agronomic efficiency[J].Nutrient Cycling in Agroecosystems,1999,53:35~41.
    286. D.K.L.Mackerron, M.W.Young and H.V.DAVIES. A method to optimize N-application in relation to soil supply of N,and yield of potato[J].Plant and Soil,1993,154:139~144.
    287. David Makowski, Daniel Wallach, and Jean-Marc Meynard. Models of yield, grain protein, and residual mineral nitrogen responses to applied nitrogen for winter wheat[J]. Agron.J.,1999,(91):377~385.
    288. Dechers P. E GIS, ageo-hydrological information system[J].InKovar,K.and Natchnebel,H.P.(eds.)Application of Geographic Information System in Hydrology and Water Resources Management. IHAS Pulbl.,1996.
    289. E.Tosheva and P.Alexandrova. Influence of some meteorological factors on fertilizer use efficiency in winter wheat growing[J].Int.Agrophysics,2004,18:285~288.
    290. Eagle A J,Bird J A,Horwath W R,et al. Rice yield and nitrogen utilization efficiency under alternative straw management practices[J]. Agronomy Journal,2000,92:1096~1103.
    291. Engel T, Hoogenboom G,Jones J W,et al. AEGIS/WIN:A computer program for the application of crop simulation models across geographical areas[J].Agron J,1997,89:919~928.
    292. Fageria N K, Baligar V C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency[J]. Journal of Plant Nutrition, 2003,26:1315~13333.
    293. Fedra K. GIS and environmental modeling. In Goodchild.M F,Parks B O, Steyaert L T.(eds.)Environmental Modeling with GIS[M].Oxford Univ.Press,New York,1993,35~50.
    294. Gardener B.R., Roth R. L. Midrib nitrate concentration as a means for determining nitrogen needs of broccoili[J]. J. Plant Nutr., 1989,12(1):111~125.
    295. Geomez K.A. and A.A.Gomez. Statistical procedures for agricultural research. 2nd edit, New York[J].John&Sons,Inc.,1984,243~275.
    296. George Stanford. Rationale for optimum nitrogen fertilization in corn production[J]. Journal of Environmental Quality,1973,Vol,2,No2,159~165.
    297. Giarratano Joseph, Riley Gray. Expert Systems Principles and Programming(Third Edition)[M].China Machine Press, CITIC Publishing House,2002.
    298. Goodale,C.L.,Aber,J.D.,Ollinger,S.V. Mapping monthly precipitation, temperature,and solar radiation for Ireland with polynomial regression and a digital elevation model[J].Clim.Res.,1998,(10):35~49.
    299. Goodchild M F, Haining R P, Wise S M. Integrating GIS and spatial data analysis; Problems and possibilities[J]. Int.J. Geogr. Inf.Syst.,1992,6:407~423.
    300. Haddock G, Jankowski P. Integrating non-point source pollution modeling with a geographic information system[J].Comp. Environ. Urban Syst.1993,17:437~451.
    301. Heady E O and Diuon J E. Agricultural production functions[M].The Lowa State UniversityPress,1996,1~100.
    302. Holdaway,M.R.. Spatial modeling and interpolation of monthly temperature using kriging[J].Clim.Res,1996,(6):215~225.
    303. Hutchinson, M.F. Interpolating Mean Rainfall Using Thin Plate Smoothing Spline[J]. International Journal of Geographical Information Systems 1995,9:385~403.
    304. Jansson S L, Persson J, Mineralization and immobilization of soil nitrogen. In: Stevenson F J ed. Nitrogen in Agricultural Soils[M]. Madison, USA: American Society of Agronomy, 1982.
    305. Jenkinson D S, Fox R H, Rayner J H. Interaction between fertilizer nitrogen and soil nitrogen-The so called priming effect[J]. J Soil Sci.,1985,36: 425~444.
    306. Jin Fa-hui,Li Shi-qing, Lu Hong-ling and Li Sheng-xiu. Estimation of the biological methods of assessing soil N-supplying capacity in Calcareour Soil[J].Agricultural Sciences in China,2007,6(10):1224~1234.
    307. Jin, J, Gao,G L,Wang, Z L. Potassium supplying power and crop yield response to potassium application in selected soil in northern China[M].. In: Proceedings of the International Symposium on Balanced Fertilization. Soil and Fertilizer Institute of the Chinese Academy of Agricultural Sciences, 1990, pp.111~122.
    308. Kenneth G. Cassman, Achim Dobermann, Daniel T. Walters. Agroecosystem, Nitrogen-use Efficiency, and Nitrogen Management[J]. Royal Swedish Academy of Sciences, Ambio Vol. 31 No.2, March 2002.
    309. Laster R Brown.Who will feed China[J], World Watch,1994,September/October:10~19.
    310. Mazler G.L.. Corn yield response variability and potential profitability of site-specific nitrogen management.[J].Better Crops with Plant food,1996,3:6~8.
    311. Mckenzie R H, Kryzanow Skil. Fertilizer requirements of irrigated crops in Alberta Irrigation research and development in the 1990’s Symp[M]. July 17-20, 1990, University of Lethbridge, Lethbridge, Alberta.
    312. Mckenzie R H. Fertilizing irrigated grain and oilseed crops[M]. Agri-fax,1993, Agdex 100/541.
    313. Monmonier, M.S. Computer-Assisted Cartography: Principles and Prospects[M]. Englewood Cliffs, NJ: Prentice Hall. 1982.
    314. Novoa R, Loomis R S. Nitrogen and plant production[J]. Plant Soil,1981,58:177~204.
    315. Powlson D S, Pruden G, Johnston A E, et al. The nitrogen cycle in the Broadbalk wheat experiment: Recovery and losses of 15N-labelled fertilizer applied in spring and inputs of nitrogen from atmosphere[J]. J Agric Sci.,1986,107: 951~609.
    316. Prasad R.and Prasad B. Fertilizer Requirements for Specific Yield Targets of Soybean Based on Soil Testing in Alfisols[J].Journal of the Indian Society of Soil Science,1996,44(2):332~333.
    317. Ramamoorthy, B. et al.Fertilizer application for specific yield targets of Sonara-64[J].Indian Farming,1967,16(4):46~49.
    318. Rao ACS, Smith JL, Parr JF. Papendick RIConsiderations in estimating nitrogen recovery efficiency by the difference and isotopic dilution methods[J]. Fert Res, 1992, 33:209-217.
    319. Reddy D D,Rao A S,Reddy K S,Takkar P N. Yield sustainability and phosphorus utilization in soybean-wheat system on Vertisols in response to integrated use of manure and fertilizer phosphorus[J]. Field Crops Reseaech,1999,62:181~190.
    320. Reetz H.Z., Maintenance+Buildup Nutrient Management for Site-specific System[J].Better Crops with Plant food,1996,80(3):9~11.
    321. Reetz H.Z., Site-specific Nutrient Management System for the 1990s[J].Better Crops with Plant food,1994,78(4):14~19.
    322. Shaffer M J, Wylie B K, Hall M D. Identification and mitigation of nitrate leaching hot spots using NrLgAp-GIS technology[J].J.Contam.Hyalml,1995(2):253~263.
    323. Shen S M, Hart B S, Powlson D S, et al. The nitrogen cycle in the Broadbalk wheat experiment:
    15N-labelled fertilizer residues in the soil and in the soil microbial biomass[J]. Soil Boil Biochem,1989,21(4): 529~533.
    324. Shen S M, Pruden G, Jenkinson D S. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen[J]. Soil Biol Biochem,1984,16(5): 437~444.
    325. Sonar K R,Tamboli B D,Patil Y M,et al. Targeting Yield of Pearl Millet on Vertisols Based on Soil Testing[J].Journal of the Indian Society of Soil Science,1994,42(4):658~660.
    326. Srinivasan R, ALrnold J G. Integrating a basin-scale water quality model with GIS[J]Water Resour. Bull.,1994,30:453~462.
    327. Stanford G. and Hunter A.S.. Nitrogen requirements of winter wheat[J].Agronomy Journal.1973,65:442~447.
    328. Tamboli B D,Patil Y M,Bhakare P P,et al. Yield Targeting Approach for Fertilize Recommendations to Wheat on Vertisol of Maharashtra[J].Journal of the Indian Society of Soil Science,1996,44(1):81~84.
    329. Terry L.Kastens, John P. Schmidt, and Kevin C. Dhuyvetter. Yield models implied by traditional fertilizer recommendations and a framework for including nontraditional information[J]. Soil Sci. Soc.Am.J.,2003,(67):351~364.
    330. Tim U S, Jolly R. Evaluating agricultural non-point source pollution intrgrated geographic information system and hydrologic/water quality modeling[J].J. Environ. Aual.,1994,23:25~35.
    331. Truog E. Fifty years of Soil Testing[J]. 7th Intern. Congr. Soil Science, 1960,Ⅳ(7): 46.
    332. W.J.Roem and F.Berendse. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities[J].Biological Conservation,2000,92:151~161.
    333. Wadmam W P. Nitate leaching losses from organic manure-the Dutch experience[J]. Aspects of Applied Biology,1992,(3):117~143.
    334. Xie,J.C., Xing,W.Y.,Zhou,J.M..Current use of nutrients for sustainable food production in China[J]. In: Johnson,A.E.,Syers,J.K.(Eds.),Nutrient Management for Sustainable Crop Production in Asia. CAB International,Wallingford, 1998, 267~277.
    335. Yan Xiang, Jin Ji-yun, He Ping, et al. Recent advances on the technologies to increase fertilizer use efficiency[J]. Agricultural Sciences in China, 2008, 7(4): 469~479.
    336. Yibing Ma, Jumei Li, Xiuying Li,et al. Phosphorus accumulation and depletion in soils in wheat-maize cropping systems:Modeling and validation[J].Field Crops Research,2009,110:207~212.
    337. Zou J, Lu J W, Chen F, Li Y S. Increasing yield and profit of rapeseed under combined fertilization of nitrogen, phosphorus, potassium, and boron in Yangtze river basin[J]. Acta Agronomica Sinica,2009,35(1):87~92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700