用户名: 密码: 验证码:
基于红外图像的内河运动船舶目标检测和跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着内河航运的增长,导致航运事故发生的风险也同样的增加。在雨、雪、雾、夜间等能见度不良气候条件下航行是造成船舶互撞和船撞桥事故的主要因素。船-船、船-桥避碰成功的关键是获取其他运动船舶和危险目标的准确信息。前视红外成像设备具有抗干扰能力强,气候环境适应性强,昼夜连续探测等优点。通过在各种内河行驶船舶上以及桥梁、闸口、限制区等重点区域安装价格便宜、技术成熟的非致冷红外焦平面阵列前视红外成像设备,实时采集红外视频图像,综合利用图像处理、目标检测、目标跟踪等技术,对采集的红外视频图像进行鲁棒的实时的分析处理、实现在内河复杂背景不良气候条件下,对其他内河运动船舶目标进行检测和跟踪,并利用得到的船舶目标检测和跟踪结果辅助船舶航行,提高监管人员和操船人员对航行环境的感知能力,辅助操船人员进行避撞决策,减少操船的失误,提高船、桥避碰成功率,保障人员的生命和财产的安全,减少或避免严重污染水域和自然环境事故的发生,确保航行运输安全。
     在基于视频的监控系统中有三个关键步骤:检测感兴趣的运动目标、跟踪这些目标、通过分析目标轨迹来识别相应目标的行为。红外目标检测和跟踪技术,作为智能化信息处理的关键环节之一,一直是困扰和制约红外成像探测实用性能的瓶颈问题和技术难点而亟待解决;同时,要把红外技术应用于内河水上交通安全,首先必须解决的关键技术就是基于红外图像的内河运动船舶目标检测和跟踪;因此,基于红外图像的内河运动船舶目标检测和跟踪技术研究,不仅具有重要的实用价值,还有重要的学术研究价值。本论文围绕基于红外图像的内河运动船舶目标检测和跟踪技术展开研究。
     首先,介绍前视红外成像系统的原理、组成及其优缺点、定性分析红外图像中内河船舶目标和背景的红外特征、红外图像的噪声特性、提出对目标检测和跟踪算法的性能要求;
     第二,在学习和借鉴已有天水线提取算法的基础上,提出了一种能够在复杂内河背景下进行天水线提取及其评价的方法;实验表明,该方法适应性好,定位精度高,实时性和可靠性高;给出了感兴趣区域ROI的提取方法;
     第三,总结已有的基于分形技术的人造目标检测算法,在此基础上提出了一种新的多尺度分形特征参数(MFFK);实验证明,当该参数应用于内河红外图像时,可以对内河船舶目标和内河自然背景进行很好的区分;进一步,提出了基于MFFK的内河船舶目标的检测算法;实验证明:该算法适用于内河复杂背景,适应性强,检测精度高,能够满足实时性和可靠性的要求;
     第四,首先对Mean Shift算法进行回顾,然后提出基于Mean-Shift的内河运动船舶目标跟踪算法。该算法最大的特点是在多尺度分形特征参数MFFK图像中描述内河运动船舶目标;实验证明:对红外图像中处于各种内河复杂背景中的单个运动船舶目标,该算法可实时、可靠、鲁棒的跟踪,但是当出现多个运动船舶目标相互遮挡时,该算法的跟踪可靠性降低;
     第五,首先回顾了粒子滤波相关理论及其在视频目标跟踪中的应用;然后提出基于单一灰度特征的粒子滤波内河船舶目标跟踪算法。在粒子滤波理论框架下,MFFK灰度图像中的内河船舶目标的状态后验概率分布用加权随机样本集表示,通过这些随机样本的Bayesian迭代进化实现对红外图像序列中的内河船舶目标跟踪;实验证明:单一灰度特征不足以描述内河运动船舶目标,该算法可用于简单内河背景,但不适用于内河复杂背景;
     第六,由于红外图像中的内河运动船舶目标的轮廓、形状和纹理特征一般不明显、没有颜色信息,同时单一灰度特征又不足以描述目标,因此,提出把船舶的灰度特征和运动特征融合来对内河运动船舶目标进行描述。通过在MFFK灰度图像中提取内河运动船舶目标的灰度特征,在两两MFFK灰度图像帧之间利用时间差分方法提取内河运动船舶目标的运动特征,利用模糊逻辑定义灰度特征与运动特征融合后的多特征融合相似系数;最终提出了基于灰度特征与运动特征融合的粒子滤波跟踪算法。该算法集成了分形几何、Mean Shift、差分运动检测、粒子滤波、模糊论等理论。实验证明:该算法不仅能够在内河复杂背景中对内河运动船舶进行稳健的有效的跟踪,而且能够应付场景的各种变化以及多运动船舶目标交错遮挡等情形,算法具有鲁棒性;算法在应用过程中仅需要很少的状态采样数,满足实时性的要求;
     最后,对全文的研究工作进行总结,指出今后工作中进一步研究的方向。
The recent growth in inland waterway shipping traffic has resulted in a concomitant increase in the risk of shipping accidents, thus making collision avoidance a critical issue in inland waterway shipping traffic safety. The main reason resulted in ships collision is sailing under the restricted visibility conditions such as fog, mist, night and etc. The key of collision avoidance for the reference ship or the bridge, in which FLIR equipments is equipped, is to obtain accuracy navigation information about target ships which locate in front of the reference ship. The forward-looking infrared (FLIR) images have a lot of advantage, such as the capacity of resisting disturbance and the adaptability of weather is strong, the ability of passive detection is continuous day and night. The uncooled infrared focal plane arrays (FGA) FLIR camera, which have lower price and technical matured, is installed on the importance location such as in front of ship, bridge pier, strobe, the restricted area in the river. When infrared images are captured by real time, various technologies that include image processing, object detection, object tracking and etc are integrated and used to robust process and analyze these images in real time way. So, it can be achieved to detection and tracking other moving ships in inland waterway under poorly visible conditions. The detection and tracking other moving ships information are applied to assist sailing for ship. These information are used to improve the capability of apperception for ship’s driver and inspector, to assist ship’s driver decision for avoidance collision, to reduce driving mistake, to enhance the success ratio to avoid ship-ship or ship-bridge collision. Then, People casualty is safeguarded. The damage of ship, bridge and goods are avoided. Economical, social and environmental loss are reduced or avoided furthermore. Finally, the safety sailing is ensured.
     There are three critical steps in surveillance system analysis based on video frequency, i.e. interesting of moving object detection, object tracking and object’s behavior recognition based on object’s trial analyzed. Object detection and tracking from infrared image, which restrict and bother the practical detection performance, is one of the key stages in intelligent information processing field. It is a bottleneck problem and a technical difficulty unsolved. Meanwhile, when the infrared technology is used to transportation security in inland waterway, the critical technology should be solved is moving ship detection and tracking from infrared image firstly. To sum up, moving ships detection and tracking from infrared image in inland waterway have not only importance practical worthiness but also importance science research value.
     Firstly, the principle, components and advantage of FLIR system are introduced. The infrared characteristic of Ship and background in inland waterway are qualitative analyzed. The characteristic of noise in infrared image is analyzed. The performance of object detection and tracking algorithm is presented.
     Secondly, a method is proposed to extract and assessment the sky-water line under complicated inland waterway background based on understanding the existing methods. The result of experiment shows that the proposed method has wide adaptability and high precision, and it has fulfilled the demand of real-time and reliability.
     Thirdly, a review of man-made object detection algorithms is presented based on various fractal features, which are derived from the blanket covering method. Based on the review, a new multi-scale fractal feature parameter, i.e. multi-scale fractal feature related with K (MFFK), is presented. The results of experiments show that in MFFK image calculated from original infrared image performs the best discriminating capability between natural background and man-made object in fractal feature images.
     Furthermore, ship detection algorithm in inland waterway based on MFFK is presented. Experimental results have shown that the approach is feasible and effective under complicated inland waterway background. It has achieved real-time and reliable ship detection.
     Fourthly, mean shift algorithm is introduced. Then a moving ship tracking algorithm in inland waterway is proposed based on mean shift algorithm. The significant characteristic of the algorithm is that MFFK image is used to describe moving ship in inland waterway. Experimental results have shown that the proposed algorithm is effective and robust for tracking single moving ship in inland waterway from infrared image. Moreover, it is satisfied the request of real time tracking. However, the reliability of the proposed algorithm is going to depress due to ship-to-ship occlusions.
     Fifthly, the method and theory related to particle filter are surveyed. The applications of particle filter in object tracking field based on video sequence are reviewed. Then, a moving ship tracking algorithm is proposed based on single gray characteristic. Under the theory framework of particle filter, the posterior distribution of the moving ship in MFFK image is approximated by a set of weighted samples, while the moving ship tracking is implemented by the Bayesian propagation of the sample set. Experimental results have shown that the moving ship in inland waterway is not enough approximated by single gray feature. The proposed algorithm can be used in simple inland waterway background, and it isn’t applied in clutter inland waterway background.
     Sixth, the characteristics of moving ship silhouette, shape and texture in infrared image are generally unobvious in inland waterway. Furthermore, the moving ship in inland waterway is not enough described by single gray feature. So, fusion between gray feature and moving cue is presented for approximating moving ship in inland waterway. The gray feature of moving ship is extracted from MFFK image; the moving cue of moving ship is obtained by differencing between two MFFK image frames. The comparability coefficient of multi-characteristic fusion can be obtained by fusing between gray feature and moving cue based on fuzzy logic. Finally, a moving ship tracking algorithm is proposed based on characteristic fusion between gray feature and moving cue under the theory framework of particle filter. The algorithm is integrated with fractal geometry, mean shift, temporal differences method, particle filter, fuzzy, etc. Experimental results have shown that the proposed algorithm is not only used to tracking moving ship in complicated inland waterway background steadily, but also adapted to changing moving ship and the scene, non-rigid ship structures, ship-to-ship and ship-to-scene occlusion. The proposed algorithm is effective and robust. Moreover, it is satisfied the request of real time tracking due to require a low number of particles from the prior in real applications.
     Finally, the summary of the thesis is given. Furthermore, the further work and research prospects are introduced.
引文
[1]第二次全国内河航道普查主要数据公报[Z].中华人民共和国交通部, 2004,2.
    [2]公路水路交通“十一五”发展规划纲要[Z].交通部综合规划司, 2004,12.
    [3] 2001年公路水路交通行业发展统计公报[Z].交通部综合规划司, 2002,4.
    [4] 2002年公路水路交通行业发展统计公报[Z].交通部综合规划司, 2003,4.
    [5] 2003年公路水路交通行业发展统计公报[Z].交通部综合规划司, 2004,4.
    [6] 2004年公路水路交通行业发展统计公报[Z].交通部综合规划司, 2005,5.
    [7] Sun, Y.-Q., J.-W. Tian, and J. Liu. Dim Small Targets Detection Based on Dualband Infrared Image Fusion [C]. in Industrial Technology, 2006. ICIT 2006. IEEE International Conference on. 2006. 3003-3007.
    [8] 2006年公路水路交通行业发展统计公报[Z].交通部综合规划司, 2007,4.
    [9] 2007年公路水路交通行业发展统计公报[Z].交通部综合规划司, 2008,4.
    [10]刘建军,杨浩,魏玉光.长江航行安全问题的研究[J].中国安全科学学报, 2003, 13(4): 29~31.
    [11]公路水路交通“十一五”科技发展规划[Z].中华人民共和国交通部, 2006. 2006年2月.
    [12]戴彤宇,聂武,刘伟力.长江干线船撞桥事故分析[J].中国航海, 2002, 53(4): 44~47.
    [13] Slob, W. Determination of risks on inland waterways [J]. Journal of Hazardous Materials, 1998, 61(1-3): 363-370.
    [14]王超.交通灾害中的载运工具致灾机理及其预警管理系统研究[D].武汉理工大学.博士论文. 2002.
    [15] Talley, W.K., D. Jin, and H. Kite-Powell. Determinants of the severity of cruise vessel accidents [J]. Transportation Research Part D: Transport and Environment, 2008, 13(2): 86-94.
    [16]吴羲晖.内河船舶避碰决策系统研究[D].武汉理工大学.硕士论文. 2003.
    [17]程细得.内河船舶操纵及避碰决策优化研究[D].武汉理工大学.博士论文. 2007.
    [18] Sato, Y. and H. Ishii. Study of a collision-avoidance system for ships [J]. Control Engineering Practice, 1998, 6(9): 1141-1149.
    [19]常本康,蔡毅.红外成像阵列与系统[M].北京:科学出版社, 2006.
    [20]陈伯良.红外焦平面成像器件发展现状[J].红外与激光工程, 2005, 34(1): 1~7.
    [21]赵江.红外探测技术的现状与发展趋势[J].舰船电子工程, 2007, 27(1): 32~36.
    [22]邢素霞,等.非制冷红外热成像技术的发展与现状[J].红外与激光工程, 2004, 33(5): 441~444.
    [23]陈实,等.热释电非制冷红外焦平面现状及发展趋势[J].红外与激光工程, 2006, 35(4): 419~423.
    [24]国家中长期科学和技术发展规划纲要(2006━2020年) [Z].中华人民共和国国务院, 2006,2.
    [25]中华人民共和国安全生产法[Z].全国人民代表大会常务委员会, 2002,6.
    [26]中华人民共和国内河交通安全管理条例[Z].中华人民共和国国务院, 2002,6.
    [27]中华人民共和国内河避碰规则[Z].中华人民共和国交通部, 1991,4.
    [28]一九七二年国际海上避碰规则(附英文) [Z]. International Maritime Organization, 1972,1.
    [29]中华人民共和国海上交通安全法[Z].全国人民代表大会常务委员会, 1983,9.
    [30]中华人民共和国航道管理条例[Z].中华人民共和国国务院, 1987,8.
    [31]中华人民共和国内河交通事故调查处理规定[Z].中华人民共和国交通部, 2007,1.
    [32]船舶遇险紧急通信处置细则[Z].中华人民共和国交通部, 1987,8.
    [33]长江中游分道规则(试行) [Z].中华人民共和国长江海事局, 2006,12.
    [34]长江下游分道通航规则[Z].中华人民共和国交通部, 1995,6.
    [35]朱艳梅.船舶自动识别系统在VTS的应用研究[D].大连海事大学.硕士论文. 2004.
    [36] Donghui, C. Simplified ship collision model [D]. the faculty of Virginia Polytechnic Institute and State University. Master Dissertation. 2000.
    [37] Lili, W., et al. An impact dynamics analysis on a new crashworthy device against ship-bridge collision [J]. International Journal of Impact Engineering, 2008, 35(8): 895-904.
    [38] Xide, C. and L. Zuyuan. Trajectory Optimization for Ship Navigation Safety Using Genetic Annealing Algorithm [C]. in Natural Computation, 2007. ICNC 2007. Third International Conference on. 2007. 385-392.
    [39]刘德新,吴兆麟,贾传荧.船舶智能避碰决策与控制系统研究综述[J].大连海事大学学报, 2003, 29(3): 52-56.
    [40] Lützen, M. ship collision damage [D]. technical university of denmark. 2001.
    [41]戴彤宇.船撞桥及其风险分析[D].哈尔滨工程大学.博士论文. 2002.
    [42] Yavin, Y., et al. Computation of feasible command strategies for the navigation of a ship in a narrow zigzag channel [J]. Computers & Mathematics with Applications, 1995, 30(10): 79-101.
    [43]刘正江,牛恒山. 2002年我国船舶操纵领域的研究进展[C]. in中国航海学会海洋船舶驾驶专业委员会2003海上航行安全专题研讨会. 2003.
    [44] Jun, L., et al. An FLIR Video Surveillance System to Avoid Bridge-Ship Collision [C]. in The 2008 International Conference of Signal and Image Engineering. 2008. London, U.K.
    [45]朱群英.基于视频图像处理的桥墩防撞研究[D].武汉理工大学.硕士论文. 2006.
    [46]琚建飞,杨春金.基于视频图像处理的桥墩防撞技术研究[J].计算机时代, 2006, (10): 38-39.
    [47]罗勤,曾致远,李波.桥墩安全监测系统中背景重建技术的研究[J].计算机技术与发展, 2006, 16(6): 23-25.
    [48]张世俊.序列红外图像目标检测与识别算法研究[D].上海交通大学.博士论文. 2005.
    [49]汪国有,陈振学,李乔亮.复杂背景下红外弱小目标检测的算法研究综述[J].红外技术, 2006, 28(5): 287-292.
    [50]张长城,杨德贵,王宏强.红外图像中弱小目标检测前跟踪算法研究综述[J].激光与红外, 2007, 37(2): 104-107.
    [51]许彬,等.红外序列图像小目标检测与跟踪技术综述[J].红外与激光工程, 2004, 33(5): 482-487.
    [52]章毓晋.图像分割[M].北京:科学出版社, 2001.
    [53] Dong, Y.-z., et al. Application of soft mathematical morphology in image segmentation of IR ship image [C]. in Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International Conference on. 2004. 729-732 vol.1.
    [54]何乃甩,等.于形态学重构的内河红外船舶目标检测[J].红外技术, 2007, 29(7): 419-424.
    [55] Jian-Nan, C., et al. A detection method of infrared image small target based on order morphology transformation and image entropy difference [C]. in Machine Learning andCybernetics, 2005. Proceedings of 2005 International Conference on. 2005. 5111-5116 Vol. 8.
    [56]迟健男,等.反对称双正交小波在红外图像小目标检测中的应用[J].宇航学报, 2007, 28(5): 1253-1272.
    [57] Strickland, R.N. and H. He Il. Wavelet transform methods for object detection and recovery [J]. Image Processing, IEEE Transactions on, 1997, 6(5): 724-735.
    [58] Yu-Qiu, S., T. Jin-Wen, and L. Jian. Background suppression based-on wavelet transformation to detect infrared target [C]. in Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on. 2005. 4611-4615 Vol. 8.
    [59] Jain, A.K., N.K. Ratha, and S. Lakshmanan. Object detection using gabor filters [J]. Pattern Recognition, 1997, 30(2): 295-309.
    [60] Weber, D.M. and D.P. Casasent. Quadratic Gabor filters for object detection [J]. Image Processing, IEEE Transactions on, 2001, 10(2): 218-230.
    [61] Zaveri, M.A., S.N. Merchant, and U.B. Desai. Wavelet-Based Detection and Its Application to Tracking in an IR Sequence [J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2007, 37(6): 1269-1286.
    [62] Zhang, H., et al. The Study of Detecting for IR Weak and Small Targets Based on Fractal Features [A]. in Advances in Multimedia Modeling. Editor^Editors., 2007.
    [63] Sun, W., et al. Fractal analysis of remotely sensed images: A review of methods and applications [J]. International Journal of Remote Sensing, 2006, 27(22): 4963 - 4990.
    [64] Tang, Y., Y. Tao, and E.C.M. Lam. New method for feature extraction based on fractal behavior [J]. Pattern Recognition, 2002, 35(5): 1071-1081.
    [65] Solka, J.L., et al. Identification of man-made regions in unmanned aerial vehicle imagery and videos [J]. Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 852-857.
    [66] Peli, T. Multiscale fractal theory and object characterization [J]. J. Opt. Soc. Am. A, 1990, 7(6): 1101-1112.
    [67] Pentland, A. Fractal-based description of natural scenes [J]. Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 661-674.
    [68] Peleg, S., et al. Multiple resolution texture analysis and classification [J]. Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 518-523.
    [69] Gao, K., M. Dong, and W. Cheng. A Small Target Detection Algorithm Based on Immune Computation and Infrared Background Suppression [C]. in Natural Computation, 2007. ICNC 2007. Third International Conference on. 2007. 630-634.
    [70] Nelson, B.N. Automatic vehicle detection in infrared imagery using a fuzzy inference-based classification system [J]. Fuzzy Systems, IEEE Transactions on, 2001, 9(1): 53-61.
    [71] Santiago-Mozos, R., et al. Supervised-PCA and SVM classifiers for object detection in infrared images [C]. in Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance, 2003. 2003. 122-127.
    [72] Howard, D., S.C. Roberts, and C. Ryan. Pragmatic Genetic Programming strategy for the problem of vehicle detection in airborne reconnaissance [J]. Pattern Recognition Letters, 2006, 27(11): 1275-1288.
    [73]杨福刚,孙同景,庞清乐.基于粗糙集的红外弱小目标检测方法[J].红外与激光工程, 2007, 36(5): 747-750.
    [74] Roth, M.W. Neural networks for extraction of weak targets in high clutter environments [J]. Systems, Man and Cybernetics, IEEE Transactions on, 1989, 19(5): 1210-1217.
    [75] Liou, R.J. and M.R. Azimi-Sadjadi. Dim target detection using high order correlation method [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1993, 29(3): 841-856.
    [76] Gonzalez, R.C. and R.E. Woods. Digital image processing [M]. 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2002.
    [77] Bhanu, B. and R.D. Holben. Model-based segmentation of FLIR images [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1990, 26(1): 2-11.
    [78] Ohlander, R., K. Price, and D.R. Reddy. Picture segmentation using a recursive region splitting method [J]. Comput. Vision, Graph., Image Processing, 1978, 8: 313-333.
    [79] Porat, B. and B. Friedlander. A frequency domain algorithm for multiframe detection and estimation of dim targets [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1990, 12(4): 398-401.
    [80] Reed, I.S., R.M. Gagliardi, and L.B. Stotts. Optical moving target detection with 3-D matched filtering [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1988, 24(4): 327-336.
    [81] Yan, X., et al. An extended track-before-detect algorithm for infrared target detection [J].Aerospace and Electronic Systems, IEEE Transactions on, 1997, 33(3): 1087-1092.
    [82] Pohlig, S.C. Spatial-temporal detection of electro-optic moving targets [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1995, 31(2): 608-616.
    [83]刘志刚,卢焕新,陈辉煌.一种低信噪比下点目标检测新算法[J].系统工程与电子技术, 2004, 26(11): 1588-1592.
    [84]黄勇,曲长文,苏峰.基于HOUGH变换的检测前跟踪算法的性能分析[J].现代雷达, 2004, 26(12): 37-41.
    [85]张飞,李承芳,史丽娜.基于数学形态学的弱点状运动目标的检测[J].光学技术, 2004, 30(5): 600-602.
    [86]艾斯卡尔.红外搜寻与跟踪系统关键技术研究[D].电子科技大学.博士学位论文. 2002.
    [87] Blostein, S.D. and T.S. Huang. Detecting small, moving objects in image sequences using sequential hypothesis testing [J]. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 1991, 39(7): 1611-1629.
    [88] Blackman, S.S. Multiple hypothesis tracking for multiple target tracking [J]. Aerospace and Electronic Systems Magazine, IEEE, 2004, 19(1): 5-18.
    [89] Blostein, S.D. and H.S. Richardson. A sequential detection approach to target tracking [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1994, 30(1): 197-212.
    [90] Ilonen, J., et al. Image Feature Localization by Multiple Hypothesis Testing of Gabor Features [J]. Image Processing, IEEE Transactions on, 2008, 17(3): 311-325.
    [91] Barniv, Y. Dynamic Programming Solution for Detecting Dim Moving Targets [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1985, AES-21(1): 144-156.
    [92] Barniv, Y. and O. Kella. Dynamic Programming Solution for Detecting Dim Moving Targets Part II: Analysis [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1987, AES-23(6): 776-788.
    [93] Yong, Q., J. LiCheng, and B. Zheng. Study on mechanism of dynamic programming algorithm for dim target [C]. in Signal Processing, 2002 6th International Conference on. 2002. 1403-1406 vol.2.
    [94] Johnston, L.A. and V. Krishnamurthy. Performance analysis of a dynamic programming trackbefore detect algorithm [J]. Aerospace and Electronic Systems, IEEE Transactions on, 2002, 38(1): 228-242.
    [95] Tonissen, S.M. and R.J. Evans. Peformance of dynamic programming techniques for Track-Before-Detect [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1996, 32(4): 1440-1451.
    [96]张海英,张田文.基于多阶段轨迹融合的交叉多目标检测与跟踪算法[J].电子学报, 2005, 33(6): 1109-1112.
    [97] Ren-Jean, L. and M.R. Azimi-Sadjadi. Multiple target detection using modified high order correlations [J]. Aerospace and Electronic Systems, IEEE Transactions on, 1998, 34(2): 553-568.
    [98] Tzannes, A.P. and D.H. Brooks. Detecting small moving objects using temporal hypothesis testing [J]. Aerospace and Electronic Systems, IEEE Transactions on, 2002, 38(2): 570-586.
    [99]徐剑峰,吴一全,周建江.基于时域背景预测检测红外图像序列中的小目标[J].中国图象图形学报, 2007, 12(9): 1598-1603.
    [100]汲清波,张兴周,项学智.基于时空域融合的红外弱小目标检测新方法[J].弹箭与制导学报, 2008, 28(1): 234-240.
    [101] Gordon, N.J., D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. Radar and Signal Processing, IEE Proceedings F, 1993, 140(2): 107-113.
    [102] Doucet, A., N. De Freitas, and N. Gordon. Sequential Monte Carlo methods in practice [M]. New York ; London: Springer, 2001.
    [103] Salmond, D.J. and H. Birch. A particle filter for track-before-detect [C]. in Proceedings of American Control Conference. 2001. Arlington, VA. 3755-3760.
    [104] Ganhua, L., C. Xuanping, and L. Yunhui. Efficient Target Detection from Infrared Image Sequences Using the Sequential Monte Carlo Method [C]. in Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on. 2006. 549-554.
    [105] Liu, Z.J., H.S. Sang, and G.L. Zhang. Efficient particle filter-based processing algorithm for clutter suppression and IR point targets enhancement [J]. Electronics Letters, 2006, 42(7): 395-396.
    [106] Cassasent, D. Sub-pixel Target Detection and Tracking [C]. in Proc. SPIE. 1986. 206-220.
    [107] El Maadi, A. and X. Maldague. Outdoor infrared video surveillance: A novel dynamic technique for the subtraction of a changing background of IR images [J]. Infrared Physics & Technology, 2007, 49(3): 261-265.
    [108] Horn, B. and Massachusetts Institute of Technology. Artificial Intelligence Laboratory. Determining optical flow [M]. [Cambridge, Mass.]: Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1980.
    [109] del Bimbo, A., P. Nesi, and J.L.C. Sanz. Optical flow computation using extended constraints [J]. Image Processing, IEEE Transactions on, 1996, 5(5): 720-739.
    [110] Verri, A. and T. Poggio. Motion field and optical flow: qualitative properties [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989, 11(5): 490-498.
    [111] Rong Li, X. and V.P. Jilkov. Survey of maneuvering target tracking: II. Ballistic target models [C]. in Signal and Data Processing of Small Targets 2001. 2001. San Diego, CA, USA: SPIE. 559-581.
    [112] Rong Li, X. and V.P. Jilkov. Survey of maneuvering target tracking: III. Measurement models [C]. in Signal and Data Processing of Small Targets 2001. 2001. San Diego, CA, USA: SPIE. 423-446.
    [113] Rong Li, X. and V.P. Jilkov. Survey of maneuvering target tracking: decision-based methods [C]. in Signal and Data Processing of Small Targets 2002. 2002. Orlando, FL, USA: SPIE. 511-534.
    [114] Rong Li, X. and V.P. Jilkov. Survey of maneuvering target tracking. Part I. Dynamic models [J]. Aerospace and Electronic Systems, IEEE Transactions on, 2003, 39(4): 1333-1364.
    [115] Rong Li, X. and V.P. Jilkov. Survey of maneuvering target tracking. Part V. Multiple-model methods [J]. Aerospace and Electronic Systems, IEEE Transactions on, 2005, 41(4): 1255-1321.
    [116] Alper, Y., J. Omar, and S. Mubarak. Object tracking: A survey [J]. ACM Comput. Surv., 2006, 38(4): 13.
    [117] Salari, V. and I.K. Sethi. Feature point correspondence in the presence of occlusion [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1990, 12(1): 87-91.
    [118] Veenman, C.J., M.J.T. Reinders, and E. Backer. Resolving motion correspondence for densely moving points [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2001, 23(1): 54-72.
    [119] Broida, T.J. and R. Chellappa. Estimation of object motion parameters from noisy images [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8(1): 90-99.
    [120] Jiyan, P., H. Bo, and Z. Jian Qiu. Robust and Accurate Object Tracking Under Various Types of Occlusions [J]. Circuits and Systems for Video Technology, IEEE Transactions on, 2008, 18(2): 223-236.
    [121] Bar-Shalom, Y. and T.E. Fortmann. Tracking and data association [M]. Boston ; London: Academic Press, 1988.
    [122] Streit, R.L. and T.E. Luginbuhl. Maximum likelihood method for probabilistic multihypothesis tracking [C]. in Signal and Data Processing of Small Targets 1994. 1994. Orlando, FL, USA: SPIE. 394-405.
    [123] Comaniciu, D., V. Ramesh, and P. Meer. Kernel-based object tracking [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003, 25(5): 564-577.
    [124] Junqiu, W. and Y. Yasushi. Integrating Color and Shape-Texture Features for Adaptive Real-Time Object Tracking [J]. Image Processing, IEEE Transactions on, 2008, 17(2): 235-240.
    [125] Jianbo, S. and C. Tomasi. Good features to track [C]. in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR '94., 1994 IEEE Computer Society Conference on. 1994. 593-600.
    [126] Hai, T., H.S. Sawhney, and R. Kumar. Object tracking with Bayesian estimation of dynamic layer representations [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002, 24(1): 75-89.
    [127]程建,等.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报, 2006, 25(2): 113-117.
    [128] Michael, J.B. and D.J. Allan. EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation [J]. Int. J. Comput. Vision, 1998, 26(1): 63-84.
    [129] Avidan, S. Support Vector Tracking [C]. in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. 2001.I-184-I-191 vol.1.
    [130] Michael, I. and B. Andrew. CONDENSATION—Conditional Density Propagation forVisual Tracking [J]. Int. J. Comput. Vision, 1998, 29(1): 5-28.
    [131] Bertalmio, M., G. Sapiro, and G. Randall. Morphing active contours [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22(7): 733-737.
    [132] Ronfard, R. Region-based strategies for active contour models [J]. Int. J. Comput. Vision, 1994, 13(2): 229-251.
    [133] Rathi, Y., N. Vaswani, and A. Tannenbaum. A Generic Framework for Tracking Using Particle Filter With Dynamic Shape Prior [J]. Image Processing, IEEE Transactions on, 2007, 16(5): 1370-1382.
    [134] Mukherjee, D.P. and S.T. Acton. Affine and projective active contour models [J]. Pattern Recognition, 2007, 40(3): 920-930.
    [135] Huttenlocher, D.P., J.J. Noh, and W.J. Rucklidge. Tracking non-rigid objects in complex scenes [C]. in Computer Vision, 1993. Proceedings., Fourth International Conference on. 1993. 93-101.
    [136] Sato, K. and J.K. Aggarwal. Temporal spatio-velocity transform and its application to tracking and interaction [J]. Computer Vision and Image Understanding, 2004, 96(2): 100-128.
    [137] Jinman, K., I. Cohen, and G. Medioni. Object reacquisition using invariant appearance model [C]. in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. 2004. 759-762 Vol.4.
    [138] Serby, D., E.K. Meier, and L. Van Gool. Probabilistic object tracking using multiple features [C]. in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. 2004. 184-187 Vol.2.
    [139] Ballard, D.H. and C.M. Brown. Computer vision [M]. Englewood Cliffs, N.J.: Prentice-Hall, 1982.
    [140] Ali, A. and J.K. Aggarwal. Segmentation and recognition of continuous human activity [C]. in Detection and Recognition of Events in Video, 2001. Proceedings. IEEE Workshop on. 2001. 28-35.
    [141] Yilmaz, A., L. Xin, and M. Shah. Contour-based object tracking with occlusion handling invideo acquired using mobile cameras [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26(11): 1531-1536.
    [142] Song Chun, Z. and A. Yuille. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1996, 18(9): 884-900.
    [143] Nikos, P. and D. Rachid. Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation [J]. Int. J. Comput. Vision, 2002, 46(3): 223-247.
    [144] Elgammal, A., et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J]. Proceedings of the IEEE, 2002, 90(7): 1151-1163.
    [145] Fieguth, P. and D. Terzopoulos. Color-based tracking of heads and other mobile objects at video frame rates [C]. in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on. 1997. 21-27.
    [146] Edwards, G.J., C.J. Taylor, and T.F. Cootes. Interpreting face images using active appearance models [C]. in Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on. 1998. 300-305.
    [147] Moghaddam, B. and A. Pentland. Probabilistic visual learning for object representation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997, 19(7): 696-710.
    [148] Michael, J.B. and D.J. Allan. EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation, in Proceedings of the 4th European Conference on Computer Vision-Volume I - Volume I. 1996, Springer-Verlag.
    [149] Park, S. and J.K. Aggarwal. A hierarchical Bayesian network for event recognition of human actions and interactions [J]. Multimedia Systems, 2004, 10(2): 164-179.
    [150] Canny, J.F. A computational approach to edge detection [A]. in Readings in computer vision: issues, problems, principles, and paradigms. Editor^Editors.: Morgan Kaufmann Publishers Inc., 1987.
    [151] Bowyer, K., C. Kranenburg, and S. Dougherty. Edge Detector Evaluation Using Empirical ROC Curves [J]. Computer Vision and Image Understanding, 2001, 84(1): 77-103.
    [152] Horn, B.K.P. and B.G. Schunck. Determining optical flow [J]. Artificial Intelligence, 1981,17(1-3): 185-203.
    [153] Black, M.J. and P. Anandan. The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields [J]. Computer Vision and Image Understanding, 1996, 63(1): 75-104.
    [154] Richard, S. and C. James. Spline-Based Image Registration [J]. Int. J. Comput. Vision, 1997, 22(3): 199-218.
    [155] Barron, J.L., D.J. Fleet, and S.S. Beauchemin. Performance of optical flow techniques [J]. Int. J. Comput. Vision, 1994, 12(1): 43-77.
    [156] Haralick, R.M., K. Shanmugam, and I.H. Dinstein. Textural Features for Image Classification [J]. Systems, Man and Cybernetics, IEEE Transactions on, 1973, 3(6): 610-621.
    [157] Laws, K.I. Textured Image Segmentation [D]. UNIVERSITY OF SOUTHERN CALIFORNIA. Ph. D thesis. 1980.
    [158] Mallat, S.G. A theory for multiresolution signal decomposition: the wavelet representation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989, 11(7): 674-693.
    [159] Greenspan, H., et al. Overcomplete steerable pyramid filters and rotation invariance [C]. in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR '94., 1994 IEEE Computer Society Conference on. 1994. 222-228.
    [160] Sethi, I.K. and R. Jain. Finding trajectories of feature points in a monocular image sequence [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1987, 9(1): 56-73.
    [161] Shafique, K. and M. Shah. A non-iterative greedy algorithm for multi-frame point correspondence [C]. in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. 2003. 110-115 vol.1.
    [162] Vaswani, N., A. Roy Chowdhury, and R. Chellappa. Activity recognition using the dynamics of the configuration of interacting objects [C]. in Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on. 2003. II-633-40 vol.2.
    [163] Shaohua, Z., R. Chellappa, and B. Moghaddam. Adaptive visual tracking and recognition using particle filters [C]. in Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on. 2003. II-349-52 vol.2.
    [164] Rosales, R. and S. Sclaroff. 3D trajectory recovery for tracking multiple objects and trajectoryguided recognition of actions [C]. in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. 1999. 123 Vol. 2.
    [165] Lippiello, V., B. Siciliano, and L. Villani. Adaptive extended Kalman filtering for visual motion estimation of 3D objects [J]. Control Engineering Practice, 2007, 15(1): 123-134.
    [166] Kitagawa, G. Non-Gaussian State-Space Modeling of Nonstationary Time Series [J]. Journal of the American Statistical Association, 1987, 82(400): 1032-1041.
    [167] Hanzi, W., et al. Adaptive Object Tracking Based on an Effective Appearance Filter [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2007, 29(9): 1661-1667.
    [168] Smal, I., et al. Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis [J]. Medical Imaging, IEEE Transactions on, 2008, 27(6): 789-804.
    [169] Muz-Salinas, R., et al. A multiple object tracking approach that combines colour and depth information using a confidence measure [J]. Pattern Recognition Letters, 2008, 29(10): 1504-1514.
    [170] Ingemar, J.C. A review of statistical data association for motion correspondence [J]. Int. J. Comput. Vision, 1993, 10(1): 53-66.
    [171] Chang, Y.L. and J.K. Aggarwal. 3D structure reconstruction from an ego motion sequence using statistical estimation and detection theory [C]. in Visual Motion, 1991., Proceedings of the IEEE Workshop on. 1991. 268-273.
    [172] Rasmussen, C. and G.D. Hager. Probabilistic data association methods for tracking complex visual objects [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2001, 23(6): 560-576.
    [173] Reid, D. An algorithm for tracking multiple targets [J]. Automatic Control, IEEE Transactions on, 1979, 24(6): 843-854.
    [174] Hue, C., J.P. Le Cadre, and P. Perez. Sequential Monte Carlo methods for multiple target tracking and data fusion [J]. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2002, 50(2): 309-325.
    [175] Jepson, A.D., D.J. Fleet, and T.F. El-Maraghi. Robust online appearance models for visual tracking [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003, 25(10):1296-1311.
    [176] Isard, M. and J. MacCormick. BraMBLe: a Bayesian multiple-blob tracker [C]. in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. 2001. 34-41 vol.2.
    [177] Baoxin, L., et al. Model-based temporal object verification using video [J]. Image Processing, IEEE Transactions on, 2001, 10(6): 897-908.
    [178] Haritaoglu, I., D. Harwood, and L.S. Davis. Real-time surveillance of people and their activities [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22(8): 809-830.
    [179] Demetri, T. and S. Richard. Tracking with Kalman snakes [A]. in Active vision. Editor^Editors.: MIT Press, 1993.
    [180] MacCormick, J. and A. Blake. Probabilistic exclusion and partitioned sampling for multiple object tracking [J]. Int. J. Comput. Vision, 2000, 39(1): 57-71.
    [181] Yunqiang, C., R. Yong, and T.S. Huang. JPDAF based HMM for real-time contour tracking [C]. in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. 2001. I-543-I-550 vol.1.
    [182] Mansouri, A.R. Region tracking via level set PDEs without motion computation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002, 24(7): 947-961.
    [183] Cremers, D. and C. Schn. Statistical shape knowledge in variational motion segmentation [J]. Image and Vision Computing, 2003, 21(1): 77-86.
    [184] Neves, S.R., E.A.B. da Silva, and G.V. Mendonca. Wavelet-watershed automatic infrared image segmentation method [J]. Electronics Letters, 2003, 39(12): 903-904.
    [185] Wei, Y., Z. Shi, and H. Yu. Wavelet analysis based detection algorithm for infrared image small target in background of sea and sky [C]. in Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the 3rd International Symposium on. 2003. 23-28 Vol.1.
    [186] Zhou, W., K. Xu, and S. Li. A Method for Ship Target Detection Based on Image Fusion [C]. in Electronic Measurement and Instruments, 2007. ICEMI '07. 8th International Conference on. 2007. 2-923-2-926.
    [187]王立地,黄莎白,史泽林.基于小波和分形的海面红外小目标自动检测方法[J].激光与红外, 2004, 34(6): 481-483.
    [188] Yang, L., J. Yang, and K. Yang. Adaptive detection for infrared small target under sea-sky complex background [J]. Electronics Letters, 2004, 40(17): 1083-1085.
    [189]李寒松,鲁传运. .红外舰船小目标的检测[J].红外与激光工程, 2006, 35(4): 495-498.
    [190]张芳,王岳环. .基于显著特征引导的红外舰船目标快速分割方法研究[J].红外与激光工程, 2004, 33(6): 603-606.
    [191]刘延武,等.舰船目标红外图像预处理[J].红外技术, 2003, 25(3): 9-12.
    [192]何友金,李楠. .舰船红外图像边缘检测方法对比研究[J].计算机仿真, 2006, 23(4): 201-203.
    [193]王岳环,曾南志,张天序.基于注意机制的实时红外舰船检测[J].中国图像图形学报, 2003, 8A(3): 241-245.
    [194]张天序,等.一种快速递归红外舰船图像分割新算法[J].红外与毫米波学报, 2006, 25(4): 295-300.
    [195] Feng, D. and S. Wen—Kang. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimizaion [J]. Pattern Recognition Letters, 2005, 26: 597-603.
    [196] Kaiyu, X., et al. Target detection based on the artificial neural network technology [C]. in The 9th international conference on Control, Automation, Robotics and Vision. 2006. Singapore.
    [197]许开宇.基于红外图像的运动船舶检测及跟踪技术的研究[D].上海海事大学.博士论文. 2006.
    [198]缪德超.复杂海空背景下红外舰船小目标检测技术研究[D].哈尔滨工程大学.硕士论文. 2007.
    [199]陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报, 2007, 26(1): 61-64.
    [200]裴继红,谢维信,刘上乾.舰船红外成像目标实时识别跟踪算法研究[J].光电工程, 1995, 22(5): 21-31.
    [201]刘松涛,等.舰船红外成像目标智能跟踪算法研究与实现[J].激光与红外, 2005, 35(3): 193-195.
    [202]刘松涛,等.舰船红外成像目标实时识别与跟踪系统研究[J].系统工程与电子技术, 2005, 27(8): 1405-1447.
    [203]刘士建.红外图象中点目标检测与跟踪算法的研究[D].中国科技大学.博士论文. 2004.
    [204]季卫亚,等.舰船的红外辐射特性[J].舰船电子对抗, 2007, 30(5): 43-45.
    [205]徐军.红外图像中弱小目标检测技术研究[D].西安电子科技大学. 2001.
    [206]张锋,杨树谦,倪汉昌.舰船红外图像特征提取及目标识别技术探讨[J].红外与激光技术, 1991, 20(2): 21-25.
    [207] Mohanty, N.C. Image Enhancement and Recognition of Moving Ship in Cluttered Background [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1981, 3(5): 606-610.
    [208]裴继红.海面舰船红外成像目标的实时识别与跟踪[D].西安电子科技大学.博士论文. 1994.
    [209]刘松涛,沈同圣,韩艳丽.舰船目标海天线提取方法研究[J].激光与红外, 2003, 33(1): 51-53.
    [210] Yang, L., et al. Variance WIE based infrared images processing [J]. Electronics Letters, 2006, 42(15): 857-859.
    [211]吕俊伟,等.基于分形特征和Hough变换的海天线检测算法[J].海军航空工程学院学报, 2006, 21(5): 544-548.
    [212] Jun-Wei, L., et al. A Modified Canny Algorithm for Detecting Sky-Sea Line in Infrared Images [C]. in Intelligent Systems Design and Applications, 2006. ISDA '06. Sixth International Conference on. 2006. 289-294.
    [213]裴立力,史泽林,罗海波.一种基于小波多尺度分析的水天线检测方法[J].沈阳工业大学学报, 2003, 25(2): 125-128.
    [214]温佩芝,史泽林,于海斌.复杂海面背景红外小目标自动检测方法[J].红外与激光工程, 2003, 32(6): 590-594.
    [215]刘松涛,周晓东,王成刚.复杂海空背景下鲁棒的海天线检测算法研究[J].光电工程, 2006, 33(8): 5-10.
    [216] Wang, Z. and A.C. Bovik. Modern Image Quality Assessment [A]. Editor^Editors. USA:Morgan & Claypool, 2006.
    [217] Gonzalez, R.C. and R.E. Woods. Digital Image Processing [M]. Beijing: Publishing House of Electronics Industry, 2003.
    [218] Mandelbrot, B.B. The fractal geometry of nature [M]. [Rev. ed. New York: W.H. Freeman, 1982.
    [219] Mandelbrot, B.B. Fractals : form, chance, and dimension [M]. W.H. Freeman, 1977.
    [220] Falconer, K.J. Fractal geometry : mathematical foundations and applications [M]. Chichester: Wiley, 1990.
    [221] Kube, P. and A. Pentland. On the imaging of fractal surfaces [J]. Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 704-707.
    [222] Pentland, A. On describing complex surface shapes [J]. Image and Vision Computing, 1985, 3(4): 153-162.
    [223] Hu, J., W. Tung, and J. Gao. Detection of low observable targets within sea clutter by structure function based multifractal analysis [J]. Antennas and Propagation, IEEE Transactions on, 2006, 54(1): 136-143.
    [224] Di Martino, G., et al. A Novel Approach for Disaster Monitoring: Fractal Models and Tools [J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007, 45(6): 1559-1570.
    [225] Yang, J., P. Zhang, and R. Wang. Extracting Man-made Region(s) based on Attention driven Level-set Evolution [C]. in Image and Graphics, 2007. ICIG 2007. Fourth International Conference on. 2007. 465-470.
    [226] Chen, S.S., J.M. Keller, and R.M. Crownover. On the calculation of fractal features from images [J]. Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1087-1090.
    [227] Keller, J.M., S. Chen, and R.M. Crownover. Texture description and segmentation through fractal geometry [J]. Computer Vision, Graphics, and Image Processing, 1989, 45(2): 150-166.
    [228] Chen, C.C., J.S. DaPonte, and M.D. Fox. Fractal feature analysis and classification in medical imaging [J]. Medical Imaging, IEEE Transactions on, 1989, 8(2): 133-142.
    [229] Keller, J.M., R.M. Crownover, and S.S. Chen. Characteristics of natural scenes related to thefractal dimension [J]. Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 621-627.
    [230] Jie, F., L. Wei-Chung, and C. Chin-Tu. Fractional box-counting approach to fractal dimension estimation [C]. in Pattern Recognition, 1996., Proceedings of the 13th International Conference on. 1996. 854-858 vol.2.
    [231] Sarkar, N. and B.B. Chaudhuri. An efficient differential box-counting approach to compute fractal dimension of image [J]. Systems, Man and Cybernetics, IEEE Transactions on, 1994, 24(1): 115-120.
    [232] Liebovitch, L.S. and T. Toth. A fast algorithm to determine fractal dimensions by box counting [J]. Physics Letters A, 1989, 141(8-9): 386-390.
    [233] Burrough, P.A. Fractal dimensions of landscapes and other environmental data [J]. Nature, 1981, 294(5838): 240-242.
    [234] Zhou, G. and N.S.N. Lam. A comparison of fractal dimension estimators based on multiple surface generation algorithms [J]. Computers & Geosciences, 2005, 31(10): 1260-1269.
    [235] Lam, N.S.-N., et al. An evaluation of fractal methods for characterizing image complexity [J]. Cartography and Geographic Information Science, 2002, 29(1): 25-35.
    [236] Clarke, K.C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method [J]. Computers & Geosciences, 1986, 12(5): 713-722.
    [237] Dubuc, B., et al. Evaluating the Fractal Dimension of Surfaces [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1989, 425(1868): 113-127.
    [238] Dubuc, B., et al. The variation method: a technique to estimate the fractal dimension of surfaces [J]. Proceedings of SPIE: Visual Communication and Image Processing II, 1987, 845: 241-248.
    [239] Stein, M.C. Fractal image models and object detection [J]. Society of Photo-optical Instrumentation Engineers, 1987, 845: 293-300.
    [240] Kluth, V.S., et al. Detecting Man-made Objects In Low Resolution Sar Using Fractal Texture Discriminators [C]. in Geoscience and Remote Sensing Symposium, 1992. IGARSS '92. International. 1992. 1105-1107.
    [241] Caron, Y., P. Makris, and N. Vincent. A method for detecting objects using Legendretransform [C]. in Maghrebian Conference on Computer Science MCSEAI. 2002. Annaba (Algeria): RFAI team publication. 219-225.
    [242] Peng, Z., B. Huang, and Q. Zhang. Detecting the man-made target based on enhanced fractal feature using PRIA [C]. in Systems and Control in Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International Symposium on. 2006. 208-211.
    [243] Du, G. Detection of sea-surface radar targets based on fractal model [J]. Electronics Letters, 2004, 40(14): 906-907.
    [244] Xie, W. and W. Xie. Image object detection based on fractional brownian motion [J]. Journal of Electronics (China), 1997, 14(4): 289-294.
    [245] Li, X., Z. Zhuang, and G. Guo. Algorithm for target recognition based on fractal Brownian motion model [C]. in Signal Processing, 1996., 3rd International Conference on. 1996. 1366-1369 vol.2.
    [246]李捷,张天序.基于多尺度分形参数变化的目标检测方法研究[J].数据采集与处理, 1996, 11(3): 218-221.
    [247]赵亦工,朱红.一种基于分形模型的新特征及其在自动目标识别中的应用[J].红外与毫米波学报, 1997, 16(3): 215-220.
    [248] Cooper, B.E., D.L. Chenoweth, and J.E. Selvage. Fractal error for detecting man-made features in aerial images [J]. Electronics Letters, 1994, 30(7): 554-555.
    [249] Allen, B.S., et al. Neural and genetic approximations of fractal error [C]. in Aerospace Conference, 1998. Proceedings., IEEE. 1998. 205-220 vol.4.
    [250]赵亦工,朱红,向健勇.基于分形模型的人造目标检测技术[J].红外与毫米波学报, 1995, 14(5): 336-340.
    [251]黄斌,彭真明,张启衡.基于增强分形特征的人造目标检测[J].光电工程, 2006, 33(10): 9-12.
    [252]魏颖,等.一种基于多尺度分形新特征的目标检测方法[J].东北大学学报(自然科学版), 2005, 26(11): 1062-1066.
    [253] Parrinello, T. and R.A. Vaughan. Multifractal analysis and feature extraction in satellite imagery [J]. International Journal of Remote Sensing, 2002, 23(9): 1799 - 1825.
    [254] Evertsz, C.J.G. and B.B. Mandelbrot. Multifractal measures [M]. New York Springer-Verlag,1992.
    [255] Zhong, L., T. Xiaodong, and Z. Dechao. Man-made Object Detection Algorithm of Sonar Image Based on Texture Analysis [C]. in Signal Processing, The 8th International Conference on. 2006.
    [256] Shekarforoush, H. and R. Chellappa. A multi-fractal formalism for stabilization, object detection and tracking in FLIR sequences [C]. in Image Processing, 2000. Proceedings. 2000 International Conference on. 2000. 78-81 vol.3.
    [257] Fukunaga, K. and L. Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition [J]. Information Theory, IEEE Transactions on, 1975, 21(1): 32-40.
    [258] Cheng, Y. Mean shift, mode seeking, and clustering [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1995, 17(8): 790-799.
    [259] Comaniciu, D., V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift [C]. in Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on. 2000. Hilton Head Island, SC, USA. 142-149.
    [260] Comaniciu, D. and P. Meer. Mean shift: a robust approach toward feature space analysis [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002, 24(5): 603-619.
    [261]李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报, 2005, 16(3): 365-373.
    [262] Hager, G.D., M. Dewan, and C.V. Stewart. Multiple kernel tracking with SSD [C]. in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. 2004. 790-797.
    [263]彭宁嵩,等. Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报, 2005, 16(9): 1542-1550.
    [264] Parameswaran, V., V. Ramesh, and I. Zoghlami. Tunable Kernels for Tracking [C]. in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. 2006. 2179-2186.
    [265] Yang, C., R. Duraiswami, and L. Davis. Efficient mean-shift tracking via a new similarity measure [C]. in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. 2005. 176-183.
    [266]程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报, 2005, 24(3): 231-235.
    [267]连洁,韩传久.基于Mean Shift的红外目标自动跟踪方法[J].微计算机信息, 2008, 24(2): 278-281.
    [268]宋新,等.基于改进均值位移的红外目标跟踪方法[J].红外与毫米波学报, 2007, 26(6): 429-432.
    [269]齐飞,罗予频,胡东成.基于均值漂移的视觉目标跟踪方法综述[J].计算机工程, 2007, 33(21): 24-27.
    [270]张旭光,赵恩良,王延杰.基于Mean-shift的灰度目标跟踪新算法[J].光学技术, 2007, 33(2): 226-229.
    [271] Arnaud, D., G. Simon, and A. Christophe. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10(3): 197-208.
    [272] Arulampalam, M.S., et al. A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking [J]. Signal Processing, IEEE Transactions on, 2002, 50(2): 174-188.
    [273] Julier, S., J. Uhlmann, and H.F. Durrant-Whyte. A new method for the nonlinear transformation of means andcovariances in filters and estimators [J]. Automatic Control, IEEE Transactions on, 2000, 45(3): 477-482.
    [274]胡士强,敬忠良.粒子滤波算法综述[J].控制与决策, 2005, 20(4): 361-366.
    [275]张共愿,赵忠.粒子滤波及其在导航系统中的应用综述[J].中国惯性技术学报, 2006, 14(6): 91-94.
    [276]杨小军,等.粒子滤波进展与展望[J].控制理论与应用, 2006, 23(2): 261-267.
    [277] Hammersley, J.M. and K.W. Morton. Poor Man's Monte Carlo [J]. Journal of the Royal Statistical Society. Series B (Methodological), 1954, 16(1): 23-38.
    [278] Handschin, J.E. Monte Carlo techniques for prediction and filtering of non-linear stochastic processes [J]. Automatica, 1970, 6(3): 555-563.
    [279] Isard, M. and A. Blake. CONDENSATION– Conditional Density Propagation for Visual Tracking [J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
    [280] Liu, J.S. and R. Chen. Sequential Monte Carlo Methods for Dynamic Systems [J]. Journal ofthe American Statistical Association, 1998, 93(443): 1032-1044.
    [281]盛骤,谢式千,潘承毅.概率论与数理统计[M].第三版ed.北京:高等教育出版社, 2001.
    [282] Moral, P.D. Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems [J]. Annals of Applied Probability, 1998, 8(2): 438-495.
    [283] Hugues, H., Smooth view-dependent level-of-detail control and its application to terrain rendering, in Proceedings of the conference on Visualization '98. 1998, IEEE Computer Society Press: Research Triangle Park, North Carolina, United States.
    [284] Kotecha, J.H. and P.M. Djuric. Gaussian particle filtering [J]. Signal Processing, IEEE Transactions on, 2003, 51(10): 2592- 2601.
    [285] Pitt, M.K. and N. Shephard. Filtering via Simulation: Auxiliary Particle Filters [J]. Journal of the American Statistical Association, 1999, 94(446): 590-599
    [286] John, M. Stochastic Algorithms for Visual Tracking: Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking [M]. Springer-Verlag New York, Inc., 2002.
    [287] Carine, H., et al., A Particle Filter to Track Multiple Objects, in Proceedings of the IEEE Workshop on Multi-Object Tracking (WOMOT'01). 2001, IEEE Computer Society.
    [288] Bruno, M.G.S. Sequential Importance Sampling Filtering for Target Tracking in Image Sequences [J]. Signal Processing Letters, IEEE, 2003, 10(8): 246- 249.
    [289] Chang, C. and R. Ansari. Kernel particle filter for visual tracking [J]. Signal Processing Letters, IEEE, 2005, 12(3): 242- 245.
    [290] Lanz, O. Approximate Bayesian multibody tracking [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006, 28(9): 1436- 1449.
    [291] Maggio, E., F. Smerladi, and A. Cavallaro. Adaptive Multifeature Tracking in a Particle Filtering Framework [J]. Circuits and Systems for Video Technology, IEEE Transactions on, 2007, 17(10): 1348 - 1359.
    [292] Xu, X. and B. Li. Adaptive Rao–Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance [J]. Image Processing, IEEE Transactions on, 2007, 16(3): 838 - 849.
    [293] Vadakkepat, P. and L. Jing. Improved Particle Filter in Sensor Fusion for Tracking Randomly Moving Object [J]. Instrumentation and Measurement, IEEE Transactions on, 2006, 55(5):1823- 1832.
    [294] Wang, H., et al. Adaptive Object Tracking Based on an Effective Appearance Filter [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2007, 29(9): 1661-1667.
    [295] Rafael, M., et al. A multiple object tracking approach that combines colour and depth information using a confidence measure [J]. Pattern Recogn. Lett., 2008, 29(10): 1504-1514.
    [296] Mukesh, A.Z., S.N. Merchant, and B.D. Uday, Tracking of Point Targets in IR Image Sequence using Multiple Model Based Particle Filtering and MRF Based Data Association, in Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04) Volume 4 - Volume 04. 2004, IEEE Computer Society.
    [297]薛建儒.视频序列跟踪的统计计算方法[D].西安交通大学. 2003.
    [298]姚剑敏.粒子滤波跟踪方法研究[D].中国科学院长春关学精密机械与物理研究所. 2004.
    [299]何广.基于粒子滤波的目标跟踪算法研究[D].哈尔滨工业大学. 2006.
    [300]李涛.基于MEAN SHIFT算法和particle filter算法的目标跟踪[D].南京理工大学. 2007.
    [301]张长城,等.基于MSPF方法的红外弱小目标自适应跟踪算法分析[J].红外技术, 2007, 29(8): 447-451.
    [302]程建,等.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报, 2005, 25(2): 113-117.
    [303]康莉,谢维信,黄敬雄.基于unscented粒子滤波的红外弱小目标跟踪[J].系统工程与电子技术, 2007, 29(1): 1-4.
    [304]李静,陈兆乾,秦小麟.基于粒子滤波算法的非刚性目标实时跟踪[J].南京航空航天大学学报, 2006, 38(6): 775-779.
    [305]查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报, 2007, 29(1): 92-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700