用户名: 密码: 验证码:
弦支结构体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弦支结构体系作为一种高效能的空间结构,越来越多地被应用于大跨度建筑中。索穹顶、弦支穹顶和弦支梁是较为成熟的弦支结构,尤其以弦支梁和弦支穹顶应用最多。目前的空间结构向着轻量、超大跨方向发展,这种发展趋势要求必须竭尽全力地降低结构的自重,其途径一是研制出轻质高强的新型建筑材料,二是研究开发合理的结构形式。在此背景下,对弦支结构进行深入研究并开发出新型高效能的弦支结构是非常有意义的。
     本文首先对弦支梁(桁架)结构进行了研究,提出一种简单的、较容易被工程设计人员掌握的、适用于弦支梁(桁架)结构工程设计的预应力设计方法;首次采用频域法对弦支梁结构进行风振特性研究,为弦支梁结构的抗风设计提供理论依据;提出一种简单且成本较低的、适用于弦支梁结构的索力测量方法—静力平衡法;将“折叠开合”与“弦支结构”有机地组合,提出了折叠展开式弦支桁架,并详细介绍了其折叠展开原理、折叠单元形式、节点连接方式以及具体的实施方法。
     在弦支梁结构的启发下,提出一种新型的弦支结构,即弦支混凝土集成屋盖结构,详细介绍了其基本构成及实现方法,给出了其预应力设计方法,对它的基本静、动力学性能进行了研究,得到的一些初步研究成果可为这种新型弦支结构的工程设计提供理论依据。
     将弦支桁架进行拓展并与柱面网壳(即筒壳)相结合,提出另外一种新型弦支结构即弦支筒壳结构,给出了其预应力设计方法,以某实际弦支筒壳工程为背景,较为全面地对其静力特性、稳定特性、风振响应、地震波一致激励及多点激励下的响应进行了研究,为这种新型弦支结构的实际应用提供了理论依据。在此基础上,进行了1:15的缩尺模型静载荷试验研究,研究表明,弦支筒壳结构是一种刚度较好且有着一定几何非线性的空间结构,与单层筒壳相比,其面外稳定性得到大大改善,支座处产生的水平推力大幅度地减小。研究还表明,半跨雪荷载或半跨施工荷载会对结构产生不利影响,对此应在设计时给予考虑。试验结果与理论分析存在一定误差,但二者的变化规律基本保持一致,说明本文采用的弦支筒壳结构的理论计算方法是科学合理的,是可行的。
     试验最后还验证了索力测量的静力平衡法,研究结果表明,这种方法用于测算弦支筒壳结构下弦拉索的内力也是可行的。
As an effective spatial structure, the cable supported structure system is applied into the long-span building widely. The existing cable supported structure system includes mainly the cable dome, suspend-dome and beam string structure, and especially the suspend-dome and the beam string structures are applied widely. At present, the spatial structure is aiming at lighter weight and longer span, this trend demands the reduction of the structures’dead weight, one way is that the light and high strength structural materials are invented, another one is that new and more effective structural system is proposed. Under this background, it is meaningful to do deeply research on the cable supported structure system and propose new-style and effective cable supported structures.
     An initial prestress design method is proposed which is easy and suitable for practical project design of beam string structures; for the first time, the frequency domain method is adopted to analyze the structural response induced by wind vibration, and the research results can serve the anti-wind design of beam string structures; the static balance method is proposed which is easy, low-priced and suitable for surveying the cable’s stress of beam string structures; the retractable truss string structure is put forward by combining the retractable elements and the cable supported structure, the working principle of which, retractable elements, joints and measures for construction are respectively introduced.
     Based on beam string structures, a new-style cable supported structure-cable supported concrete roof is put forward, the fabrication and measures for construction of which are introduced in detail, the initial prestress design method is proposed, and the research on static and dynamic characteristics of which are carried out, the final outcome can serve the practical project design of this kind of structure.
     A new-style cable supported structure-cable supported barrel vault is put forward by extending the truss string structure and combining the cylindrical latticed shell, and the initial prestress design method is proposed, a practical cable supported barrel vault building is taken for calculating example, the research on the static characteristics, stability, response induced by wind vibration, response induced by single support excitation and multiple supports excitation of the earthquake wave are respectively carried out in detail, the research outcomes can serve the practical application of this kind of structure. On the basis of it, the test research on the reduced scale model with a scale of 1:15 is carried out, the results indicate, the cable supported barrel vault is an effective spatial structure with enough rigidity and some geometric nonlinearity, compared with the single layer cylindrical latticed shell, the out-plane stability is improved greatly, and the horizontal thrust is reduced dramatically. Moreover, it must be considered in the design that the half-span snow load and construction load are all unfavorable for cable supported barrel vault structures. Although there are difference between test results and theory analysis, the rules keep consistent, so the theory analysis method adopted in this paper is scientific and rational.
     Finally, the static balance method which is used for surveying the cable’s stress of the cable supported barrel vault is verified by the model test, the results indicate the method is feasible.
引文
[1]Fuller, R.B., Tensile-integrity structures, United States Patent 3,063,521, November 13, 1962.
    [2]Snelson, K.D., Continuous tension, discontinuous compression structures, United States Patent 3,169,611, February 16, 1965.
    [3]Pugh, A., An introduction to tensegrity, University of California Press, Berkeley, California, 1976.
    [4]Schek, H.-J., The force density method for form finding and computation of general networks, Computer Methods in Applied Mechanics and Engineering, 1974,3:115-134.
    [5]Motro. R., Forms and forces in tensegrity systems, in: H. Nooshin, ed., Proceedings of Third International Conference on Space Structures, Elsevier, Amsterdam, 1984,180-185.
    [6]Motro. R., Tensegrity systems and geodesic domes, International Journal of Space Structures, 1990, 5(3-4):341-351.
    [7]Motro. R., Tensegrity systems: the state of the art, International Journal of Space Structures, 1992, 7(2):75-83.
    [8]Vassart, N., Motro. R., Multiparametered form finding method: application to tensegrity systems, International Journal of Space Structures, 1999, 14(2):147-154.
    [9]Sultan, C., Modeling, design, and control of tensegrity structures with applications, Ph.D. Dissertation, Purdue University, 1999.
    [10]Motro. R., Foldable tensegrities, in: S. Pellegrino, ed. Deployable structures, Springer Verlag Wien-New York, 2001.
    [11]R. Motro, V. Raducanu, Tensegrity systems, International Journal of Space Structures, 2003, 18(2):77-84.
    [12]A.G. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures, International Journal of Space Structures, 2003, 18(4):209-223.
    [13]刘锡良,陈志华,一种新型空间结构—张拉整体体系,土木工程学报,1995,28(4):52-57.
    [14]陈志华,刘锡良,张拉整体体系与多面体几何,空间结构,1995,1(3):8-13.
    [15]陈志华,张拉整体结构的理论分析和试验研究:[博士学位论文],天津:天津大学,1995.
    [16]王斌兵,张拉整体的可行性研究:[博士学位论文],天津:天津大学,1995.
    [17]陈志华,王小盾,刘锡良,张拉整体力密度法找形分析,建筑结构学报,1999,20(5):29-35.
    [18]陈志华,刘锡良,张拉整体三棱柱单元体结构分析,天津大学学报,2000,33(1): 88-92.
    [19]刘锡良,现代空间结构,天津:天津大学出版社,2003
    [20]陈志华,史杰,刘锡良,张拉整体三棱柱体试验研究,天津大学学报,2004(12): 1053-1058.
    [21]陈志华,史杰,刘锡良,张拉整体四棱柱体分析试验,天津大学学报,2005,38(6):533-537.
    [22]Levis W.J., Jones M.S., Dynamic relaxation analysis of the nonlinear static response of pretensioned cable roofs, Computer and Structure, 1984,18(6):989-997.
    [23]Geiger, D.H., Stefaniuk, A., Chen. D., The design and construction of two cable domes for the Korean Olympics. Proceedings of the IASS symposium on Shells, Membranes and Space Frames, Osaka, Japan, 1986,2:265-272.
    [24]Gasparini, D.A., Perdikaris, P.C., Kanj, N., Dynamic and static behavior of cable dome model, Journal of structural engineering New York, N.Y., 1989,115(2):363-381.
    [25]Mamoru Kawaguchi, Ikuo Tatemichi, Pei Shan Chen, Optimum shapes of a cable dome structure. Engineering Structures, 1999,21(8):719-725.
    [26]Xingfei Yuan, Shilin Dong, Study on static behavior of cable domes, International Journal of Space Structures, 2002, 43:81-91.
    [27]Kim, Seung Deog, Kim, Hyung Seok, Kang, Moon Myung, A study of the nonlinear dynamic instability of hybrid cable dome structures, Structural Engineering and Mechanics, 2003,15(6):653-668.
    [28]Zhang Zhihong, Tamura Yukio, Aeroelastic model test on cable dome of geiger type, International Journal of Space Structures, 2006,21(3):131-140.
    [29]Zhang Limei, Chen Wujun, Dong Shilin, Manufacture error and its effects on the initial pre-stress of the Geiger cable domes, International Journal of Space Structures, 2006,21(3):141-147.
    [30]Zhang Zhihong, Dong Shilin, Fu Xueyi, Structural design of a spherical cable dome with stiff roof, International Journal of Space Structures, 2008,23(1):45-56.
    [31]唐建民,沈祖炎,钱若军,索穹顶结构非线性分析的曲线索单元有限元法,1996,24(1):6-10.
    [32]唐建民,卓家寿,何署廷,索穹顶结构非线性分析的杆索有限元法,工程力学,1998,15(4):34-42.
    [33]曹喜,刘锡良,张拉整体索穹顶结构预应力损失补偿与设计计算,空间结构,1998(2).11-16.
    [34]袁行飞,董石麟,索穹顶结构几何稳定性分析,空间结构,1999(1):3-9.
    [35]黄呈伟,陶燕,索穹顶结构的动力特性计算分析,空间结构,2001,7(2):27-32.
    [36]袁行飞,董石麟,索穹顶结构施工控制反分析,建筑结构学报,2001,22(2):75-79.
    [37]沈祖炎,张立新,基于非线性有限元的索穹顶施工模拟分析,计算力学学报,2002,19(4):466-471.
    [38]罗尧治,董石麟,索杆张力结构的计算机程序CSTS,空间结构,2002(2):56-62.
    [39]袁行飞,索穹顶结构截面和预应力优化设计,空间结构,2002,8(3):51-56.
    [40]袁行飞,董石麟,索穹顶结构有限元分析及试验研究,浙江大学学报(工学版),2004,38(5): 586-592.
    [41]罗尧治,沈雁彬,索穹顶结构初始状态确定与成形过程分析,浙江大学学报(工学版),2004,38(10):1321-1327.
    [42]罗尧治,王荣,索穹顶结构动力特性及多维多点抗震性能研究,浙江大学学报(工学版),2005,39(1):39-45.
    [43]袁行飞,董石麟,索穹顶结构的新形式及其预应力确定,工程力学,2005,22(2):22-26.
    [44]阚远,叶继红,动力松弛法在索穹顶结构形状确定中的应用,工程力学,2007,24(9):50-55.
    [45]郑君华,袁行飞,董石麟等,考虑膜材与索杆协同工作的索穹顶找形分析,浙江大学学报(工学版),2008,42(1): 25-28.
    [46]郑君华,罗尧治,董石麟等,矩形平面索穹顶结构的模型试验研究,建筑结构学报,2008,29(2):25-31.
    [47]张建华,张毅刚,高波涛等,索穹顶结构施工过程时变力学分析,北京工业大学学报,2008,34(1):48-52.
    [48]Kawaguchi Mamoru, Abe Masaru, Tatemichi Ikuo, Design, tests and realization of“suspen-dome”system, Journal of the IASS, 1999,40(131): 179-192.
    [49]Kawaguchi M, Abe M, Hatato T, et al., On a structure system“suspen-dome”, Proceedings of the IASS symposium, Istanbul, 1993:523-530.
    [50]Mamoru Kawaguchi, Masaru Abe, Tatsuo Hatato, et al., Structural test on the“suspen-dome”system, Proceedings of the IASS symposium, Atlanta,1994:384-392.
    [51]Kawaguchi M, Tatemichi I, Chen PS, Optimum shapes of a cable dome structure, Engineering Structures,1999,21(8):719-25.
    [52]Tatemichi I, Hatato T, Anma Y, et al., Vibration tests on a full-size suspen-dome structure, International Journal of Space Structure,1997, 12(3&4):217-224.
    [53]Kang W, Chen Z, Lam H-F, et al., Analysis and design of the general and outmost-ring stiffened suspen-dome structures, Engineering Structures,2003,25(13):1685–95.
    [54]Zhihua Chen, Yang Li, Parameter analysis on stability of a suspen-dome, International Journal of Space Structure,2005,20(2):115-124.
    [55]S. Kitipornchai, Wenjiang Kang, Heung-Fai Lam, et al., Factors affecting the design and construction of Lamella suspen-dome systems, Journal of Constructional Steel Research,2005,61:764-785.
    [56]Gao Boqing, Weng Enhao, Sensitivity analysis of cables to suspen-dome structural system, Journal of Zhejiang University SCIENCE, 2004,5(9):1045-1052.
    [57]尹越,韩庆华,谢礼立等,一种新型杂交空间网格结构—弦支穹顶,工程力学增刊,2001:772-776.
    [58]崔晓强,郭彦林,Kiewitt型弦支穹顶结构的弹性极限承载力研究,建筑结构学报,2003,24(1):74-79.
    [59]陈志华,弦支穹顶结构体系及其结构特性分析,建筑结构,2004(5):38-41.
    [60]陈志华,郭云,李阳,弦支穹顶结构预应力及动力性能理论与实验研究,建筑结构,2004(5):42-45.
    [61]陈志华,窦开亮,左晨然,弦支穹顶结构的稳定性分析,建筑结构,2004(5):46-48.
    [62]张明山,董石麟,张志宏,弦支穹顶预应力分布的确定及稳定性分析,空间结构,2004(2):9-12.
    [63]崔晓强,郭彦林,叶可明,滑动环索连接节点在弦支穹顶结构中的应用,同济大学学报,2004,32(10):1300-1303.
    [64]张明山,包红泽,张志宏等,弦支穹顶结构的预应力优化设计,空间结构,2004(3):26-30.
    [65]崔晓强,郭彦林,弦支穹顶结构的抗震性能研究,地震工程与工程振动,2005(1):67-75.
    [66]陈志华,李阳,康文江,联方型弦支穹顶研究,土木工程学报,2005(5):34-40.
    [67]张志宏,张明山,董石麟,弦支穹顶结构动力分析,计算力学学报,2005(6):646-650.
    [68]陈志华,冯振昌,秦亚丽等,弦支穹顶静力性能的理论分析及实物加载试验,天津大学学报,2006,39(8):944-950.
    [69]陈志华,秦亚丽,赵建波等,刚性杆弦支穹顶实物加载试验研究,土木工程学报,2006(9):47-53.
    [70]陈志华,张立平,李阳等,弦支穹顶结构实物动力特性研究,工程力学,2007,24:131-137.
    [71]张爱林,葛家琪,刘学春,2008奥运会羽毛球馆大跨度新型弦支穹顶结构体系的优化设计选定,建筑结构学报,2007(6):1-9.
    [72]葛家琪,王树,梁海彤等,2008奥运会羽毛球馆新型弦支穹顶预应力大跨度钢结构设计研究,建筑结构学报,2007(6):10-21.
    [73]葛家琪,张国军,王树等,2008奥运会羽毛球馆弦支穹顶结构整体稳定性能分析研究,建筑结构学报,2007(6):22-30.
    [74]王树,张国军,张爱林等,2008奥运会羽毛球馆索撑节点预应力损失分析研究,建筑结构学报,2007(6):39-44.
    [75]王树,张国军,葛家琪等,2008羽毛球馆预应力损失对结构体系的影响分析,建筑结构学报,2007(6):45-51.
    [76]秦杰,王泽强,张然等,2008奥运会羽毛球馆预应力施工监测研究,建筑结构学报,2007(6):83-91.
    [77]张志宏,傅学怡,董石麟等,济南奥体中心体育馆弦支穹顶结构设计,空间结构,2008(4):8-13.
    [78]李志强,张志宏,袁行飞等,济南奥体中心弦支穹顶结构施工张拉分析,空间结构,2008(4):14-20.
    [79]Masao Saitoh, Kurasiro Tosiya, A study on structural behaviors of beam string structure, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1985: 280–284.
    [80]Masao Saitoh, Ohtake Tohru, A Study on beam string structure with flat circular arch, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1988: 1369–1374.
    [81]Masao Saitoh, A study on structural planning of radial type beam string structures, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1988: 1365–1366.
    [82]Masao Saitoh, Akira Okada, Katsuo Maejima, et al., Study on mechanical characteristics of a light-weight complex structure composed of a membrane and a beam string structure, Spatial, lattice and tension structures, In: Proc. of the IASS-ASCE Int. Symp., 1994:632–641.
    [83]S. Kato, et al., Active control of axial forces in beam string space frames, Spatial, lattice and tension structures, In: Proc. of the IASS-ASCE Int. Symp., 1994: 664-673.
    [84]Saitoh Masao, Okasa Akira, The role of string in hybrid string structure, Engineering Structures, 1999,21(8):756–69.
    [85]刘锡良,白正仙,弦支梁结构的有限元分析,空间结构,1998,,4(4):12-21.
    [86]汪大绥,张富林,高承勇等,上海浦东国际机场(一期工程)航站楼钢结构研究与设计,建筑结构学报,1999,20(2):2-8.
    [87]陈以一,沈祖炎,赵宪忠等,上海浦东国际机场候机楼R2钢屋架足尺试验研究,建筑结构学报,1999,20(2):9-17.
    [88]白正仙,刘锡良,李义生,新型空间结构形式-弦支梁结构,空间结构,2001,7(2):33-38.
    [89]杨睿,董石麟,倪英戈,预应力弦支梁结构的找形分析-改进的逆迭代法,空间结构,2002,8(4):29-35.
    [90]孙文波,广州国际会展中心大跨度弦支梁的设计探讨,建筑结构,2002,32(2):54-56.
    [91]陈汉翔,舒宣武,预应力值对弦支梁结构受力性能的影响分析,华南理工大学学报(自然科学版),2003,31(5):79-84.
    [92]丁阳,岳增国,刘锡良,大跨度弦支梁结构的地震响应分析,地震工程与工程振动,2003,23 (5):164-168.
    [93]陈荣毅,董石麟,吴欣之,大跨度预应力弦支桁架的滑移施工,空间结构,2004,10(2):40-42.
    [94]赵宪波,叶继红,弦支梁(桁架)结构荷载态受力性能分析,空间结构,2005,11(2):9-18.
    [95]叶继红,赵宪波,弦支梁(桁架)结构两端张拉施工找形方法-分级卸载法,工程力学,2006,23(9):131-140.
    [96]王秀丽,丁南生,崔继付,弦支梁结构的自振特性分析,2006,32(4):105-108.
    [97]王秀丽,丁南生,柴宏,大跨度弦支梁结构非线性地震响应及参数分析,空间结构,2006,12(2):34-38.
    [98]赵宪忠,陈建兴,陈以一,弦支梁结构张拉过程中的结构性能试验研究,建筑结构学报,2007,28(4):1-7.
    [99]姜正荣,王仕统,一维弦支梁结构的稳定分析,空间结构,2007,13(3):26-28.
    [100]Minger Wu, Analytical method for the lateral buckling of the struts in beam string structures, Engineering Structures, 2008,30:2301-2310.
    [101]乔文涛,韩庆华,平面弦支梁结构的风致响应分析,河北工业大学学报,2006,36(6):92-98.
    [102]乔文涛,陈志华,韩庆华等,大跨度双向弦支梁的风振分析,第七届全国现代结构工程学术研讨会论文集,2007,杭州萧山,1200-1205.
    [103]乔文涛,陈志华,韩庆华,平面弦支梁结构风致响应的频域分析,天津大学学报(自然科学版),2008,41(11): 1326-1332.
    [104]尚仁杰,吴转琴,李佩勋等,双向弦支梁找形的有限元法,计算力学学报,2009,26(1):131-136.
    [105]王秀丽,高月梅,高森等,大跨度双向弦支梁地震响应分析,甘肃科学学报,2007,19(3):123-126.
    [106]张志宏,张明山,董石麟,弦支梁结构若干问题的探讨,工程力学,2004,21(6):26-30.
    [107]张相庭,结构风压和风振计算,上海:同济大学出版社,1985.5.
    [108]黄本才,结构抗风分析原理及应用,上海:同济大学出版社,2001.2.
    [109]星谷胜著,常宝琦译,随机振动分析,北京:地震出版社,1977.
    [110]George Deodatis, Simulation of ergodic multivariate stochastic processes, Journal of Engineering Mechanics,1996,122(8):32-34.
    [111]丁泉顺,大跨度桥梁耦合颤抖振响应的精细化分析[博士学位论文],上海:同济大学,2001.
    [112]H.Yasui, H.Marukawa, Study of wind-induced response of long-span structure, Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [113]G.P.Killen, C.W.Letchford, A parametric study of wind loads on grandstand roofs, Engineering Structures,2001,23:725-735.
    [114]王之宏,风荷载的模拟研究,建筑结构学报,1994,15(1):44-52.
    [115]舒新玲,周岱,风速时程AR模型及其快速实现,空间结构,2003,9(4):27-32.
    [116]边建烽,魏德敏,大跨度空间结构风速时程的数值模拟理论,暨南大学学报(自然科学版),2005, 26(1):87-90.
    [117]A.Kareem,T.Kijewski,Time-frequency analysis of wind effects on structures,Journal of Wind Engineering and Industrial Aerodynamics, 2002,90:1435-1452.
    [118]H.Yasui,H.Marukawa,Study of wind-induced response of long-span structure , Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [119]李燕,何艳丽,王锋,短程线型单层球面网壳风振响应参数分析及实用抗风设计方法,空间结构,2005,11(1):50-55.
    [120]庄表中,结构随机振动,北京:国防工业出版社,1995.
    [121]Davenport A.G., Note on the distribution of the largest value of a random function with application to gust loading, Proc. ICE (24), 1964,187-196.
    [122]胡继军,网壳风振及控制研究,[博士学位论文],上海:上海交通大学,2000.
    [123]何艳丽,董石麟,龚景海,空间网格结构频域风振响应分析模态补偿法,工程力学,2001,19(4):1-6.
    [124]沈世钊,徐崇宝,赵臣,悬索结构设计,北京:中国建筑工业出版社,1997.
    [125]黄本才,王国硕,林颖儒等,体育场屋盖结构静动力荷载实用分析方法,空间结构,2000,6(3):33-39.
    [126]刘志勇,斜拉桥斜拉索索力测试方法综述,铁道建筑,2007,4:18-20.
    [127]陈务军,空间展开桁架结构设计原理与展开动力学分析理论研究,[博士学位论文],浙江:浙江大学,1998.
    [128]陈务军,董石麟,付功义等,扭簧驱动空间展开桁架结构分析,上海交通大学学报,2000,34(8):1075-1077.
    [129]周克荣,顾祥林,苏小卒,混凝土结构设计,上海:同济大学出版社,2001.
    [130]程文瀼,李爱群,混凝土楼盖设计,北京:中国建筑工业出版社,1998.
    [131]赵国藩,钢筋混凝土结构的裂缝控制,北京:海洋出版社,1991.
    [132]徐金声,薛立红,现代预应力混凝土楼盖结构,北京:中国建筑工业出版社,1998.
    [133]王勖成,有限单元法,北京:清华大学出版社,2004.
    [134]沈祖炎,陈扬骥,网架与网壳,上海:同济大学出版社,1997.
    [135]沈世钊,陈昕,网壳结构稳定性,北京:科学出版社,1999.
    [136]李元齐,董石麟,大跨度空间结构风荷载模拟技术研究及程序编制,空间结构,2001,7(3):4-5.
    [137]H.Yasui, H.Marukawa, Study of wind-induced response of long-span structure, Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83:277-288.
    [138]G.P.Killen, C.W.Letchford, A parametric study of wind loads on grandstand roofs, Engineering Structures, 2001, 23:725-735.
    [139]范立础,王君杰,陈玮,非一致地震激励下大跨度斜拉桥的响应特性,计算力学学报,2001,18(3):359-363.
    [140]潘旦光,楼梦麟,范立础,多点输入下大跨度结构地震反应分析研究现状,同济大学学报,2001,29(10):1213-1219.
    [141]丁阳,王波,大跨度空间网格结构在地震行波作用下的响应,地震工程与工程振动,2002,22(5):71-76.
    [142]王秀丽,丁南生,柴宏,大跨度弦支梁结构非线性地震响应及参数分析,空间结构,2006,12(2):34-38.
    [143]Loh C H and Yeh Y T, Spatial variation and stochastic modeling of seismic differential ground movement, EESD, 1988, 16:583-596.
    [144]Lin J H, Williams F W, Zhang W S, A new approach to multi-excitation stochastic seismic response, Micro. Computers in Civil Engineering, 1993, 8(4): 283-290.
    [145]李杰,李国强,地震工程学导论,北京:地震出版社,1994.
    [146]李忠献,工程结构试验理论与技术,天津:天津大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700