用户名: 密码: 验证码:
双光子成像量化观测小鼠卵母细胞染色体三维构象
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵母细胞成熟要经历两次减数分裂过程,染色质逐渐卷曲凝聚成染色体。此过程中染色体构象(指染色体空间位置、形态、分布等)经历了许多复杂变化。如何可视化并原位定量分析染色体构象的“时-空”四维发育特点,对认识复杂的遗传与变异过程,及探讨重大疾病的机理有重要作用。由于卵母细胞体积大、光散射强、对发育环境敏感,因此要在微干扰条件下,原位观测并量化分析卵母细胞染色体三维构象随发育的变化特点,存在较大困难,目前此类研究较少。
     本文利用穿透能力强、光损伤性小、三维分辨率高的双光子荧光成像系统和图像重构技术,提出量化分析卵母细胞染色体构象的方法,尝试通过染色体体积、表面积、类球因子(RF)、平均距离、粘连程度、包裹染色体圆柱的高宽比(H/D)等指标定量描述染色体的形态、形貌、空间分布等构象特点。并将该方法应用于诱发有机体生理环境改变的内因“衰老”和外因“氨甲喋呤(MTX)”对小鼠卵母细胞染色体构象影响的研究中。
     我们的研究结果表明:衰老导致卵母细胞质量下降。在第一次减数分裂前中期和中期,衰老干扰染色体的正常凝聚,引起染色体平均体积和表面积增大,平均距离缩短,粘连加重,形成团状体。在第二次减数分裂中期,衰老增加了小鼠体内成熟卵母细胞染色体错误排列的几率,并造成染色体的总体积、总表面积、H/D值增大。衰老还影响了卵胞质内DNA甲基转移酶蛋白的空间定位及表达水平。
     MTX是常用的抗肿瘤药物,但其具有干扰叶酸代谢功能,可能引起生殖异常。实验结果表明,腹腔注射MTX可造成小鼠体内成熟卵母细胞染色体异常空间排布比率升高、纺锤体形态改变。亚叶酸钙和自身代谢两种回救方式都可缓解MTX对体内成熟卵母细胞的毒副影响,恢复染色体空间排布及纺锤体形态至正常状态。
     本文还提出一种实时观测减数分裂纺锤体四维运动的便捷方法,并通过空间位置、速度、加速度等指标量化分析其运动特点。该方法基于我们观察到的一种重要实验现象:无损染料Fura-2标记小鼠活卵母细胞内钙离子,由于Fura-2与钙离子结合后双光子激发截面减小,钙离子的聚集使第一次减数分裂中期染色体赤道板两侧的纺锤体区域,形成两个对称荧光弱区。此现象即荧光弱区与纺锤体共定位,通过实时追踪活卵母细胞内荧光弱区的运动,可获知纺锤体的动态行为。
The oocyte maturation undergoes two meiotic divisions, and the chromatintransforms into the chromosome. In this process, the chromosomal conformation, suchas the chromosomal spatial position, morphology, arrangement, etc., experiences thecomplex changes. How to visualize and quantitatively analyze the ‘spatio-temporal’four-dimensional developmental characteristics of the chromosomal conformation, isvery important for learning the complicated process of the heredity and variation, andresearching the mechanism of the emergent diseases. The oocytes have the features oflarge size, high light scattering and sensitivity to the developmental environment whichmake their chromosomal conformation difficult to be observed and qualitativelyassessed nearly without interference. At present, there are few studies on quantitativeanalyses of oocyte chromosomes.
     This thesis provides a method for quantitative analysis of the chromosomalconformation in the oocytes by the image reconstruction technique and two-photonfluorescence imaging system which provides high penetration capability, minimalphotodamage, and high three-dimensional spatial resolution. We attemptted to usechromosomal volume, surface area, roundness factor, mean distance, degree ofadherence, and the ratio of height to diameter of a circular cylinder enclosing thechromosomes (H/D), etc., to quantitatively depict the morphology, shape, and spatialarrangement of the chromosomes. This methodology was applied to study the changesof the chromosomal conformation caused by aging and methotrexate which were theinternal and external inducements to the changes in physical environments of anindividual organism respectively.
     Our results showed that aging leaded a decline on the oocyte quality. At theprometaphase and metaphase of meiosis I, aging interfered with the condensed foldedform of the chromosomes, increasing both the mean volume and the mean surface areaof chromosomes. The mean distance was shorter, the adhesion among chromosomesbecame more severe, and the chromosomes huddled together. At the metaphase ofmeiosis II, aging caused increased errors in the chromosomal arrangement in in-vivomatured mouse oocytes, and leaded the increased total volume and surface area of chromosomes and the high H/D value. Also, aging had effects on the localizations andexpression levels of the DNA methyltransferases in the oocyte cytoplasm.
     Methotrexate is a common antineoplastic agent with the function of interfering themetabolism of folic acid and leading the reproduction abnormality possibly. Our resultsshowed that the peritoneal injection of the methotrexate leaded an increase in the rate ofthe in-vivo matured oocytes having abnormal chromosomal arrangement, and thechanges in the spindle morphology. Both calcium folinate and body metabolism canrescue the in-vivo matured oocytes from the toxic and adverse effects of themethotrexate, and can help the chromosomal arrangement and the spindle morphologyreturn to normal.
     Additionally, this thesis provides a convenient method for real-time visualizationof meiotic spindle movements, and quantifies its movements by the spatial position,speed, and acceleration, etc. The method was based on an important phenomenonobserved in our experiment. The calcium ions in living mouse oocytes were labeledwith the non-damaging dye Fura-2. Since the two-photon excitation cross section ofFura-2was much lower after binding to calcium ions, two symmetrical weaklyfluorescent areas, caused by calcium ions accumulation, appeared on both sides of theequatorial plate of the chromosomes where the spindle located at the metaphase ofmeiosis I. This indicated co-localization of calcium ions and the spindles. By real-timetracking of the weakly fluorescent areas in living mouse oocytes, the movements of themeiotic spindle were recorded.
引文
[1]张丹研,李练兵,马明福.出生缺陷的研究进展.中国优生优育,2010,16(1):4-7.
    [2]李颖,杨柳,杨文方.出生缺陷的相关因素.中国计划生育学杂志,2010,183:755-757.
    [3] Mathews T J, MacDorman M F. Infant mortality statistics from the2005period linkedbirth/infant death data set. Natl vital Stat Rep,2008,57(2):1-32.
    [4] Lopes F L, Fortier A L, Darricarrère N, et al. Reproductive and epigenetic outcomesassociated with aging mouse oocytes. Hum Mol Genet,2009,18(11):2032-2044.
    [5] Tan J H, Wang H L, Sun X S, et al. Chromatin configurations in the germinal vesicle ofmammalian oocytes. Mol Hum Reprod,2009,15(1):1-9.
    [6] Battaglia D E, Goodwin P, Klein N A, et al. Influence of maternal age on meiotic spindleassembly in oocytes from naturally cycling women. Hum Reprod,1996,11(10):2217-2222.
    [7] Leland S, Nagarajan P, Polyzos A, et al. Heterozygosity for a Bub1mutation causesfemale-specific germ cell aneuploidy in mice. Proc Natl Acad Sci U S A,2009,106(31):12776-12781.
    [8] Rubio C, Simón C, Vidal F, et al. Chromosomal abnormalities and embryo development inrecurrent miscarriage couples. Hum Reprod,2003,18(1):182-188.
    [9] Hartman R J, Rasmussen S A, Botto L D, et al. The contribution of chromosomalabnormalities to congenital heart defects: a population-based study. Pediatr Cardiol,2011,32:1147-1157.
    [10] Compton D A. Mechanisms of aneuploidy. Curr Opin Cell Biol,2011,23:109-113.
    [11] Bonnet C, Andrieux J, Béri-Dexheimer M, et al. Microdeletion at chromosome4q21defines anew emerging syndrome with marked growth restriction, mental retardation and absent orseverely delayed speech. J Med Genet,2010,47:377-384.
    [12] Jones K T. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence withage. Hum Reprod Update,2007,14(2):143-158.
    [13] Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat RevGenet,2001,2:280-291.
    [14] Durlej M, Kopera I, Knapczyk-Stwora K, et al. Connexin43gene expression in male andfemale gonads of porcine offspring following in utero exposure to an anti-androgen, flutamide.Acta Histochem,2011,113:6-12.
    [15] Wang H Y, Thorson J A, Broome H E, et al. t(4;22)(q12;q11.2) involving presumptiveplatetet-derived growth factor receptor A and break cluster region in a patient with mixedphenotype acute leukemia. Hum Pathol,2011,42(12):2029-2036.
    [16] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes asfluorescent labels. Nat Methods,2008,5(9):763-775.
    [17] Keppler A, Gendreizig S, Gronemeyer T, et al. A general method for the covalent labeling offusion proteins with small molecules in vivo. Nat Biotechnol,2003,21:86-89.
    [18] Ma P, Pan H, Montgomery R L, et al. Compensatory functions of histone deacetylase(HDAC1) and HDAC2regulate transcription and apoptosis during mouse oocytedevelopment. Proc Natl Acad Sci U S A,2012, E481-489.
    [19] Sasano H, Date F, Itakura Y, et al. Confocal laser scanning microscopy in cytopathology. ModPathol,1993,6(5):625-629.
    [20] Liu S, Weaver D L, Taatjes D J. Three-dimensional reconstruction by confocal laser scanningmicroscopy in routine pathologic specimens of benign and malignant lesions of the humanbreast. Histochem Cell Biol,1997,107:267-278.
    [21] White J G, Amos W B. Confocal microscopy comes of age. Nature,1987,328:183-184.
    [22] Glass M, Dabbs T. The experimental effect of detector size on confocal lateral resolution. JMicrosc,1991,164:153-158.
    [23] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy.Science,1990,248(4951):73-76.
    [24] Xu C, Zipfel W, Shear J B, et al. Multiphoton fluorescence excitation: new spectral windowsfor biological nonlinear microscopy. Proc Natl Acad Sci U S A,1996,93:10763-10768.
    [25]陈德强,夏安东,王克逸,等.双光子激光扫描荧光显微镜及其应用.物理,2000,29(4):232-236.
    [26]林克椿,吴本玠.医学生物物理学.北京:北京大学医学出版社,2004.
    [27] Masters B R. The development of fluorescence microscopy. Encyclopedia of Life Science,2010, online.
    [28] Paddock S W. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol,2000,16:127-149.
    [29] Valeur B, Berberan-Santos M N. Molecular fluorescence: principles and applications. German:Wiley-Vch,2012.
    [30] Lichtman J W, Conchello J A. Fluorescence microscopy. Nat methods,2005,2(12):910-919.
    [31] Kurita H, Takata T, Yasuda H, et al. Fluorescent observation of individual DNA molecules onphospholipid bilayers and its application to analysis of DNA-protein interactions.Micro-Nanomechatronics and Human Science,2009,285-290.
    [32]王盛满.双光子荧光显微镜的研究[硕士学位论文].杭州:浙江大学,2006.
    [33] Klunk W E, Pettegrew J W, Abraham D J. Two simple methods for quantifying low-affinitydye-substrate binding. J Histochem Cytochem,1989,37(8):1293-1297.
    [34]刘爱平,王琦琛.细胞生物学荧光技术原理和应用.合肥:中国科学技术大学出版社,2007.
    [35] Ploton D, Menager M, Jeannesson P, et al. Improvement in the staining and in thevisualization of the argyrophilic proteins of the nucleolar organizer region at the optical level.Histochem J,1986,18:5-14.
    [36] Braeckmans K, Peeters L, Sanders N N, et al. Three-dimensional fluorescence recovery afterphotobleaching with the confocal scanning laser microscope. Biophys J,2003,85:2240-2252.
    [37] Karpova T S, Baumann C T, He L, et al. Fluorescence resonance energy transfer from cyan toyellow fluorescent protein detected by acceptor photobleaching using confocal microscopyand a single laser. J Microsc,2003,209:56-70.
    [38] Ruckstuhl T, Seeger S. Attoliter detection volumes by confocal total-internal-reflectionfluorescence microscopy. Optics Letters,2004,29(6):569-571.
    [39] Lemasters J J, Qian T, Elmore S P, et al. Confocal microscopy of the mitochondrialpermeability transition in necrotic cell killing, apoptosis and autophagy. BioFactors,1998,8:283-285.
    [40] Godbey W T, Barry M A, Saggau P, et al. Poly (ethylenimine)-mediated transfection: a newparadigm for gene delivery. J Biomed Mater Res,2000,51(3):321-328.
    [41] Liu Y, Li W, Lao F, et al. Intracellular dynamics of cationic and anionic polystyrenenanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials,2011,32(32):8291-8303.
    [42] Roppolo D, Rybel B D, Tendon V D, et al. A novel protein family mediates casparian stripformation in the endodermis. Nature,2011,473:380-383.
    [43] Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron,2012,73(5):862-885.
    [44] So P T C, Dong C Y, Masters B R, et al. Two-photon excitation fluoresce microscopy. Annurev Biomed Eng,2000,2:399-429.
    [45] Oheim M, Michael D J, Geisbauer M, et al. Principles of two-photon excitation fluorescencemicroscopy and other nonlinear imaging approaches. Adv Drug Deliv Rev,2006,58:788-808.
    [46]赵凯华,钟锡华.光学(上册).北京:北京大学出版社,1984.
    [47] Xu C, Webb W W. Measurement of two-photon excitation cross sections of molecularfluorophores with data from690to1050nm. J Opt Soc Am B,1996,13(3):481-491.
    [48] Supatto W, Truong T V, Débarre D, et al. Advances in multiphoton microscopy for imagingembryos. Curr Opin Genet Dev,2011,21:538-548.
    [49] Christensen D J, Nedergaard M. Two-photon in vivo imaging of cells. Pediatr Nephrol,2011,26:1483-1489.
    [50] Carriles R, Schafer D N, Sheetz K E, et al. Invited review article: imaging techniques forharmonic and multiphoton absorption fluorescence microscopy. Rev Sci Instrum,2009,80(8):081101.1-081101.23.
    [51] Kobat D, Horton N G, Xu C. In vivo two-photon microscopy to1.6-mm depth in mousecortex. J Biomed Opt,2011,16(10):106014.1-106014.4.
    [52] Olivier N, Luengo-Oroz M A, Duloquin L, et al. Cell lineage reconstruction of early zebrafishembryos using label-free nonlinear microscopy. Science,2010,329(5994):967-971.
    [53] Cho E E, Drazic J, Ganguly M, et al. Two-photon fluorescence microscopy study ofcerebrovascular dynamics in ultrasound-induced blood-brain barrier opening. J Cerebr BloodF Met,2011,31:1852-1862.
    [54] Mathey M P, Cahalan M D, Parker L. Immunoimaging: studying immune system dynamicsusing two-photon microscopy. Cold Spring Harb Protoc,2011(2): pdb.top99.
    [55] Truong T V, Supatto W, Koos D, et al. Deep and fast live imaging with two-photon scannedlight-sheet microscopy. Nat methods,2011,8(9):757-760.
    [56] Wang B G, K nig K, Halbhuber K J. Two-photon microscopy of deep intravital tissues and itsmerits in clinical research. J Microsc,2010,238:1-20.
    [57] Liu X, Wang P, Fu J, et al. Two-photon fluorescence real-time imaging on the development ofearly mouse embryo by stages. J Microsc,2011,241:212-218.
    [58] Wang P F, Fu J H, Ma W Y, et al. A quantification model for apoptosis in mouse embryos inthe early stage of fetation. Sci China Ser C,2009,52(10):922-927.
    [59] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins atnanometer resolution. Science,2006,313:1642-1645.
    [60] Shroff H, Galbraith C G, Galbraith J A, et al. Dual-color superresolution imaging ofgenetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A,2007,104(51):20308-20313.
    [61] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic opticalreconstruction microscopy (STORM). Nat methods,2006,3(10):793-795.
    [62] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging withphoto-switchable fluorescent probes. Science,2007,317(5845):1749-1753.
    [63] Pavani S R, Thompson M A, Biteen J S. Three-dimensional single-molecule fluorescenceimaging beyond the diffraction limit by using a double-helix point spread function. Proc NatlAcad Sci U S A,2009,106(9):2995-2999.
    [64] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagminremains clustered after synaptic vesicle exocytosis. Nature,2006,440:935-939.
    [65] Westphal V, Rizzoli S O, Lauterbach M A, et al. Video-rate far-field optical nanoscopydissects synaptic vesicle movement. Science,2008,320(5873):246-249.
    [66] Ding J, Takasaki K T, Sabatini B L. Supraresolution imaging in brain slices usingstimulated-emission depletion2-photon laser scanning microscopy. Neuron,2009,63(4):429-437.
    [67] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology. Applspectrosc,2011,65(9):967-980.
    [68] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescenceimaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A,2005,102(37):13081-13086.
    [69] Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy. Annu rev biochem,2009,78:993-1016.
    [70]毛峥乐,王琛,程亚.超分辨远场生物荧光成像——突破光学衍射极限.中国激光,2008,35(9):1283-1307.
    [71]吕志坚,陆敬泽,吴雅琼,等.几种超分辨率荧光显微技术的原理和近期进展.生物化学与生物物理进展,2009,36(12):1626-1634.
    [72] Markaki Y, Smeets D, Cremer M, et al. Fluorescence in situ hybridization applications forsuper-resolution3D structured illumination microscopy. Methods Mol Biol,2013,950:43-64.
    [73]刘恩歧,尹海林,顾为望.医学实验动物学.北京:科学出版社,2008.
    [74] Bradley A. Mining the mouse genome. Nature,2002,420:512-514.
    [75] Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals.Physiol rev,2007,87:1-28.
    [76] Mclaren A. Germ and somatic cell lineages in the developing gonad. Mol Cell Endocrinol,2000,163(1-2):3-9.
    [77] Bowles J, Knight D, Smith C, et al. Retinoid signaling determines germ cell fate in mice.Science,2006,312:596-600.
    [78]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000.
    [79] Baillet A, Mandon-Pepin B. Mammalian ovary differentiation-a focus on female meiosis. Molcell Endocrinol,2012,356:13-23.
    [80] Tsai J H, McKee B D. Homologous pairing and the role of pairing centers in meiosis. J CellSci,2011,124:1955-1963.
    [81] Blerkom J V. Microtubule mediation of cytoplasmic and nuclear maturation during the earlystages of resumed meiosis in cultured mouse oocytes. Proc Natl Acad Sci U S A,1991,88:5031-5035.
    [82] Vanhoutte L, Sutter P D, Nogueira D, et al. Nuclear and cytoplasmic maturation of in vitromatured human oocytes after temporary nuclear arrest by phosphodiesterase3-inhibitor. HumReprod,2007,22(5):1239-1246.
    [83] Zhang L, Lu D Y, Ma W Y, et al. Age-related changes in the localization of DNAmethyltransferases during meiotic maturation in mouse oocytes. Fertil Steril,2011,95(4):1531-1534.
    [84] Tian N, Zhang L, Zheng J H, et al. Three-dimensional quantitative analysis of chromosomesin the oocytes of aging mice during meiosis I in vitro. Theriogenology,2013,79(2):249-256.
    [85] De La Fuente R. Chromatin modifications in the germinal vesicle (GV) of mammalianoocytes. Dev Biol,2006,292(1):1-12.
    [86] Tan J H, Wang H L, Sun X S, et al. Chromatin configurations in the germinal vesicle ofmammalian oocytes. Molecular Hum Reprod,2009,15(1):1-9.
    [87] Bestvater F, Spiess E, Stobrawa G, et al. Two-photon fluorescence absorption and emissionspectra of dyes relevant for cell imaging. J Microsc,2002,208:108-115.
    [88] Brakenhoff G J. Imaging modes in confocal scanning light microscopy (CSLM). J Microsc,1979,117:233-242.
    [89]刘昪.小鼠卵细胞内钙信号的高分辨4D成像[硕士学位论文].北京:清华大学,2003.
    [90]王鹏飞.小鼠生殖细胞发育的四维量化观测[硕士学位论文].北京:清华大学,2009.
    [91] Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev,1998,12:599-606.
    [92] Akiyama T, Nagata M, Aoki F. Inadequate histone deacetylation during oocyte meiosis causesaneuploidy and embryo death in mice. Proc Natl Acad Sci U S A,2006,103(19):7339-7344.
    [93] Matarazzo M R, Boyle S, D’Esposito M, et al. Chromosome territory reorganization in ahuman disease with altered DNA methylation. Proc Natl Acad Sci U S A,2007,104:16546-16551.
    [94] Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol,2010,28:1057-1068.
    [95] Bornfleth H, Edelmann P, Zink D, et al. Three-dimensional analysis of genome topology//Handbook of computer vision and applications. San Diego California: Academic Press,1999,3:859-878.
    [96] Velde E R, Pearson P L. The variability of female reproductive ageing. Hum Reprod Update,2002,8(2):141-154.
    [97] Tatone C. Oocyte senescence: a firm link to age-related female subfertility. GynecolEndocrinol,2008,24(2):59-63.
    [98] Burzynski S R. Gene silencing-a new theory of ageing. Med Hypotheses,2003,60(4):578-583.
    [99] Liu L, Keefe D L. Ageing-associated aberration in meiosis of oocytes fromsenescence-accelerated mice. Hum Reprod,2002,17(10):2678-2685.
    [100] Eichenlaub-Ritter U, Staubach N, Trapphoff T. Chromosomal and cytoplasmic contextdetermines predisposition to maternal age-related aneuploidy: brief overview and update onMCAK in mammalian. Biochem Soc Trans,2010,38(6):1681-1686.
    [101] Eichenlaub-Ritter U. Genetics of oocyte ageing. Maturitas,1998,30:143-169.
    [102] Merriman J A, Jennings P C, Mclaughlin E A, et al. Effect of aging on superovulationefficiency, aneuploidy rates, and sister chromatid cohesion in mice aged up to15-months.Biol Reprod,2012,86(2):1-6.
    [103] Manosalva I, González A. Aging alters histone H4acetylation and CDC2A in mouse germinalvesicle stage oocytes. Biol Reprod,2009,81:1164-1171.
    [104] van den Berg I M, Eleveld C, van der Hoeven M, et al. Defective deacetylation of histone4K12in human oocytes is associated with advanced maternal age and chromosomemisalignment. Hum Reprod,2011,26:1181-1190.
    [105] Ivanovska I, Orr-Weaver T L. Histone modifications and the chromatin scaffold for meioticchromosome architecture. Cell cycle (Georgetown, Tex),2006,5:2064-2071.
    [106] Eot-Houllier G, Fulcrand G, Magnaghi-Jaulin L, et al. Histone deacetylase inhibitors andgenomic instability. Cancer Lett,2009,274:169-176.
    [107] Dang W, Steffen K K, Perry R, et al. Histone H4lysine16acetylation regulates cellularlifespan. Nature,2009,459:802-807.
    [108] Jelínková L, Kubelka M. Neither aurora B activity nor histone H3phosphorylation is essentialfor chromosome condensation during meiotic maturation of porcine oocytes. Biol Reprod,2006,74:905-912.
    [109] Hamatani T, Falco G, Carter M G, et al. Age-associated alteration of gene expression patternsin mouse oocytes. Hum Mol Genet,2004,13:2263-2278.
    [110] Revenkova E, Eijpe M, Heyting C, et al. Cohesin SMC1beta is required for meioticchromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol,2004,6:555-562.
    [111] Chiang T, Schultz R M, Lampson M A. Meiotic origins of maternal age-related aneuploidy.Biol Reprod,2012,86:1-7.
    [112] Jones K T. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence withage. Hum Reprod,2008,14:143-158.
    [113] Garcia-Cruz R, Casanovas A, Brie o-Enríquez M, et al. Cytogenetic analyses of humanoocytes provide new data on non-disjunction mechanisms and the origin of trisomy16. HumReprod,2010,25:179-191.
    [114] Burzynski S R. Gene silencing-a new theory of ageing. Med Hypotheses,2003,60:578-583.
    [115] Fraser P, Bickmore W. Nuclear organization of the genome and the potential for generegulation. Nature,2007,447:413-417.
    [116] Misteli T. Beyond the sequence: cellular organization of genome function. Cell,2007,128:787-800.
    [117] Wiech T, Stein S, Lachenmaier V, et al. Spatial allelic imbalance of BCL2genes andchromosome18territories in nonneoplastic and neoplastic cervical squamous epithelium. EurBiophy J,2009,38:793-806.
    [118] Küpper K, K lbi A, Biener D, et al. Radial chromatin positioning is shaped by local genedensity, not by gene expression. Chromosoma,2007,116:285-306.
    [119] Pellestor F, Andréo B, Arnal F, et al. Maternal aging and chromosomal abnormalities: newdata drawn from in vitro unfertilized human oocytes. Hum Genet,2003,112:195-203.
    [120] Li Y, Feng H L, Cao Y J, et al. Confocal microscopic analysis of the spindle and chromosomeconfigurations of human oocytes matured in vitro. Fertil Steril,2006,85:827-832.
    [121]方喜业.医学实验动物学.北京:人民卫生出版社,1995.
    [122] Nichols S M, Gierbolini L, Gonzalez-Martinez J A, et al. Effects of in vitro maturation andage on oocyte quality in the rhesus macaque Macaca mulatta. Fertil Steril,2010,93:1591-1600.
    [123] Miyara F, Migne C, Dumont-Hassan M, et al. Chromatin configuration and transcriptionalcontrol in human and mouse oocytes. Mol Reprod Dev,2003,64:458-470.
    [124] Endo T, Naito K, Aoki F, et al. Changes in histone modifications during in vitro maturation ofporcine oocytes. Mol Reprod Dev,2005,71:123-128.
    [125] Lamb N E, Feingold E, Savagel A, et al. Characterization of susceptible chiasmaconfigurations that increase the risk for maternal nondisjunction of chromosome21. HumMol Gen,1997,6:1391-1399.
    [126] Tatone C, Carbone M C, Gallo R, et al. Age-associated changes in mouse oocytes duringpostovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2.Biol Reprod,2006,74:395-402.
    [127] Pan H, Ma P P, Zhu W, et al. Age-associated increase in aneuploidy and changes in geneexpression in mouse eggs. Dev Biol,2008,316:397-407.
    [128] Semsei I. On the nature of ageing. Mech Ageing Dev,2000,117(1):93-108.
    [129] Sato A, Otsu E, Negishi H, et al. Aberrant DNA methylation of imprinted loci insuperovulated oocytes. Hum Reprod,2007,22(1):26-35.
    [130] Kulis M, Esteller M. DNA methylation and cancer. Adv genet,2010,70:27-56.
    [131] Goll M G, Bestor T H. Eukaryotic cytosine methyltransferases. Annu Rev Biochem,2005,74:481-514.
    [132] Luczak M W, Jaqodziński P P. The role of DNA methylation in cancer development. FoliaHistochem Cytobiol,2006,44(3):143-154.
    [133] Miyake T, Endo K, Honjo S, et al. Expression of DNA methyltransferase (DNMT)1,3a and3b proteins in human hepatocellular carcinoma. Yonago Acta medica,2010,53:1-7.
    [134] Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a novel murinemodel of senescence. Exp Gerontol,1997,32:105-109.
    [135] Margot J B, Ehrenhofer-Murray A E, Leonhardt H. Interactions within the mammalian DNAmethyltransferase family. J Mol Biol,2003,4:7-15.
    [136] Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. Dnmt1overexpression causes genomichypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol,2002,22(7):2124-2135.
    [137] Lees-Murdock D J,Shovlin T C,Gardiner T, et al. DNA methyltransferase expression in themouse germ line during periods of de novo methylation. Dev Dyn,2005,232:992-1002.
    [138] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science,2001,293:1089-1093.
    [139] Zin’ Kovskaia G G, Berdyshev G D, Vaniushin B F. Tissue-specific decrease and change inthe character of DNA methylation in cattle with aging. Biokhimiia,1978,43(10):1883-1892.
    [140] Suetake I, Shinozaki F, Miyagawa J, et al. DNMT3L stimulates the DNA methylation activityof Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem,2004,279(26):27816-27823.
    [141] Lucifero D, Salle S L, Bourc’his D, et al. Coordinate regulation of DNA methyltransferaseexpression during oogenesis. BMC Dev Biol,2007,7:36-50.
    [142] Marhhom E, Cohen I. Fertility preservation options for women with malignancies. ObstetGynecol Surv,2007,62(1):58-72.
    [143] Spanos C P, Mamopoulos A, Tsapas A, et al. Female fertility and colorectal cancer. Int JColorectal Dis,2008,23:735-743.
    [144] Karri S, Vanithakumari G. Effect of methotrexate and leucovorin on famale reproductive tractof albino rats. Cell Biochem Funct,2011,29:1-21.
    [145] Kwong W Y, Adamiak S J, Gwynn A, et al. Endogenous folates and single-carbon metabolismin the ovarian follicle, oocyte and pre-implantation embryo. Reproduction,2010,139:705-715.
    [146] Qiu A, Jansen M, Sakaris A, et al. Identification of an intestinal folate transporter and themolecular basis for hereditary folate malabsorption. Cell,2006,127(5):917-928.
    [147] Whitehead A S, Gallagher P, Mills J L, et al. A genetic defect in5,10methylenetetrahydrofolate reductase in neural tube defects. QJM-Int J Med,1995,88(11):763-766.
    [148] Hobbs C A, Cleves M A, Melnyk S, et al. Congenital heart defects and abnormal maternalbiomarkers of methionine and homocysteine metabolism. Am J Clin Nutr,2005,81:147-153.
    [149] James S J, Pogribna M, Pogribny I P, et al. Abnormal folate metabolism and mutation in themethylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome.Am J Clin Nutr,1999,70:495-501.
    [150] Pogribna M, Melnyk S, Pogribny I, et al. Homocysteine metabolism in children with Downsyndrome: in vitro modulation. Am J Hum Genet,2001,69(1):88-95.
    [151] Martínez-Frías M L, Pérez B, Desviat L R, et al. Maternal polymorphisms677C-T and1298A-C of MTHFR, and66A-G MTRR genes: is there any relationship betweenpolymorphisms of the folate pathway, maternal homocysteine levels, and the risk for having achild with Down syndrome. Am J med genet,2006,140(9):987-997.
    [152] Pedrazas C H, Azevedo M N, Torres S R. Oral events related to low-dose methotrexate inrheumatoid arthritis patients. Braz Oral Res,2010,24(3):368-373.
    [153] Braun J, Baraliakos X. Treatment of ankylosing spondylitis and other spondyloarthritides.Curr Opin Rheumatol,2009,21:324-334.
    [154] Shiina H, Oka K, Okane M, et al. Coexisting true hermaphroditism and partial hydatidiformmole developing metastatic gestational trophoblastic tumors. A case report. Virchows Arch,2002,441:514-518.
    [155] Thurman A R, Cornelius M, Korte J E, et al. An alternative monitoring protocol forsingle-dose methotrexate therapy in ectopic pregnancy. Am J Obstet Gynecol,2010,202(2):139.e1-139.e6.
    [156] Reich K, Langley R G, Papp K A, et al. A52-week trial comparing briakinumab withmethotrexate in patients with psoriasis. N Engl J Med,2011,365:1586-1596.
    [157] Karsdorp V H M, Van der Veen F, Schats R, et al. Successful treatment with methotrexate offive vital interstitial pregnancies. Hum Reprod,1992,7(8):1164-1169.
    [158] Dalaklioglu S, Genc G E, Aksoy N H, et al. Resveratrol ameliorates methotrexate-inducedhepatotoxicity in rats via inhibition of lipid peroxidation. Hum Exp Toxicol,2013, on line.
    [159] Chan E S, Cronstein B N. Methotrexate—how does it really work? Nat Rev Rheumatol,2010,6(3):175-178.
    [160] Iqbal M P, Ahmed M, Umer M, et al. Effect of methotrexate and folinic acid on skeletalgrowth in mice. Acta Paediatr,2003,92:1438-1444.
    [161] Soga N, Arima K, Sugimura Y. Adjuvant methotrexate, vinblastine, adriamycin, and cisplatinchemotherapy has potential to prevent recurrence of bladder tumors after surgical removal ofupper urinary tract transitional cell carcinoma. Int J Urol,2008,15:800-803.
    [162] Padmanabhan S, Tripathi D N, Vikram A, et al. Methotrexate-induced cytotoxicity andgenotoxicity in germ cells of mice: intervention of folic and folinic acid. Mutat Res,2009,673:43-52.
    [163]张秀国,吴德政.高剂量氨甲喋呤的临床药代动力学.药学学报,1983,18(11):801-807.
    [164] Kasahara Y, Nakai Y, Miura D, et al. Mechanism of induction of micronuclei andchromosome aberration in mouse bone marrow by multiple treatments of methotrexate. MutatRes,1992,280(2):117-128.
    [165] Rath H, Tlsty T, Schimke R T. Rapid emergence of methotrexate resistance in cultured mousecells. Cancer Res,1984,44:3303-3306.
    [166] Fenech M. The role of folic acid and vitamin B12in genomic stability of human cells. MutatRes,2001,475:57-67.
    [167] Refsum H, Ueland P M. Homocysteine and cardiovascular disease. Annu rev med,1998,49:31-62.
    [168] Van Rooij I A L M, Vermeij-Keers C, Kluijtmans L A J, et al. Does the interaction betweenmaternal folate intake and the methylenetetrahydrofolate reductase polymorphisms affect therisk of cleft lip with or without cleft palate? Am J Epidemiol,2003,157(7):583-591.
    [169] Mondello C, Giorgi R, Nuzzo F. Chromosomal effects of methotrexate on cultured humanlymphocytes. Mutat Res Lett,1984,139(2):67-70.
    [170]彭芸,杨建一,李莉,等. MTX致小鼠组织DNA损伤的研究.热带医学杂志,2005,5(3):293-296.
    [171] Hansmann I. Chromosome aberrations in metaphase II-oocytes stage sensitivity in the mouseoogenesis to amethopterin and cyclophosphamide. Mutat Res,1974,22(2):175-191.
    [172] Alexiou M, Leese H J. Purine utilization, de novo synthesis and degradation in mousepreimplantation embryos. Development,1992,114:185-192.
    [173] Knobil E, Neill J. Female reproductive system//Neill J D, Wassarman P. In physiology ofreproduction. San Diego California: Academic Press,2005.
    [174]曹新燕.性成熟和促性腺激素对小鼠卵母细胞体外发育能力的影响[博士学位论文].山东:山东农业大学,2010.
    [175] Wu Y G, Liu Y, Zhou P, et al. Selection of oocytes for in vitro maturation by brilliant cresylblue staining: a study using the mouse model. Cell Res,2007,17:722-731.
    [176] Boxmeer J C, Brouns R M, Lindemans J, et al. Preconception folic acid treatment affects themicroenvironment of the maturing oocyte in humans. Fertil Steril,2008,89(6):1766-1770.
    [177] Berker B, Kaya C, Aytac R, et al. Homocysteine concentrations in follicular fluid areassociated with poor oocyte and embryo qualities in polycystic ovary syndrome patientsundergoing assisted reproduction. Hum Reprod,2009,24(9):2293-2302.
    [178] Morey C, Silva N R D, Perry P, et al. Nuclear reorganisation and chromatin decondensationare conserved, but distinct, mechanisms linked to hox gene activation. Development,2007,134:909-919.
    [179] Padmanabhan S, Tripathi D N, Vikram A, et al. Methotrexate-induced cytotoxicity andgenotoxicity in germ cells of mice: Intervention of folic and folinic acid. Mutat Res,2009,673:43-52.
    [180] Black D J, Livingston R B. Antineoplastic drugs in1990. Drugs,1990,39(5):652-673.
    [181] Stover P, Schirch V. The metabolic role of leucovorin. Trends Biochem Sci,1993,18:102-106.
    [182] Wolfgang W J. Exploring protection from methotrexate-induced teratogenicity in flies.Toxicol sci,2007,99(2):363-365.
    [183] Keshava C, Keshava N, Whong W Z, et al. Inhibition of methotrexate-induced chromosomaldamage by folinic acid in V79cells. Mutat res,1998,397:221-228.
    [184] Prey S, Paul C. Effect of folic or folinic acid supplementation on methotrexate-associatedsafety and efficacy in inflammatory disease: a systematic review. Br J Dermatol,2009,160:622-628.
    [185] O’Neill C. Endogenous folic acid is essential for normal development of preimplantationembryos. Hum Reprod,1998,13:1312-1316.
    [186] Affleck J G, Neumann K, Wong L, et al. The effects of methotrexate on drosophiladevelopment, female fecundity, and gene expression. Toxicol Sci,2006,89(2):495-503.
    [187] Henderson E S, Adamson R H, Denham C, et al. The metabolic fate of tritiated methotrexate I.Absorption, excretion, and distribution in mice, rats, dogs and monkeys. Cancer res,1965,25:1008-1017.
    [188] Vogt E, Kirsch-Volders M, Parry J, et al. Spindle formation, chromosome segregation and thespindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat Res,2008,651(1-2):14-29.
    [189] Ma W, Koch J A, Viveiros M M. Protein kinase C delta (PKCdelta) interacts with microtubuleorganizing center (MTOC)-associated proteins and participates in meiotic spindleorganization. Dev Biol,2008,320(2):414-425.
    [190] Sanfins A, Plancha C E, Overstrom E W, et al. Meiotic spindle morphogenesis in in vivo andin vitro matured mouse oocytes: insights into the relationship between nuclear andcytoplasmic quality. Hum Reprod,2004,19(12):2889-2899.
    [191]尚彦霞,解世朋,张铭连,等. DNA损伤反应性蛋白参与中心体调控.中国生物化学与分子生物学报,2011,27(11):1019-1024.
    [192] Na J, Zernicka-Goetz M. Asymmetric positioning and organization of the meiotic spindle ofmouse oocytes require CDC42function. Curr Biol,2006,16:1249-1254.
    [193] Ai J S, Li M, Schatten H, et al. Regulatory mechanism of spindle movements during oocytemeiotic division. Asian Austral J Anim Sci,2009,22(11):1477-1486.
    [194] Maro B, Verlhac M H. Polar body formation: New rules for asymmetric divisions. Nat CellBiol,2002,4: E281-E283.
    [195] Zhu Z Y, Chen D Y, Li J S, et al. Rotation of meiotic spindle is controlled by microfilamentsin mouse oocytes. Biol Reprod,2003,68:943-946.
    [196] Eichenlaub-Ritter U, Shen Y, Tinneberg H R. Manipulation of the oocyte: possible damage tothe spindle apparatus. Reprod BioMed Online,2002,5:117-124.
    [197] Hardarson T, Lundin K, Hamberger L. The position of the metaphase II spindle cannot bepredicted by the location of the first polar body in the human oocyte. Hum Reprod,2000,15:1372-1376.
    [198] Galli M, van den Heuvel S. Determination of the cleavage plane in early C. elegans embryos.Annu Rev Genet,2008,42:389-411.
    [199] Aarabi M, Qin Z, Xu W, et al. Sperm-borne protein, PAWP, initiates zygotic development inXenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev,2010,77:249-256.
    [200] White K L, Pate B J, Sessions B R. Oolemma receptors and oocyte activation. Syst BiolReprod Med,2010,56(5):365-375.
    [201] Dupont G, Heytens E, Leybaert L. Oscillatory Ca2+dynamics and cell cycle resumption atfertilization in mammals: a modeling approach. Int J Dev Biol,2010,54(4):655-665.
    [202] Xu C, Williams R M, Zipfel W, et al. Multiphoton excitation cross-sections of molecularfluorophores. Bioimaging,1996,4:198-207.
    [203] Verlhacl M H, Lefebvre C, Guillaud P, et al. Asymmetric division in mouse oocytes: with orwithout Mos. Curr Biol,2000,10:1303-1306.
    [204] Izant J G. The role of calcium ions during mitosis. Chromosoma,1983,88(1):1-10.
    [205] Poenie M, Alderton J, Tsien R Y, et al. Changes of free calcium levels with stages of the celldivision cycle. Nature,1985,315:147-149.
    [206] Stracke R, B hm K J, Wollweber L, et al. Analysis of the migration behaviour of singlemicrotubules in electric fields. Biochem Biophys Res Commun,2002,293(1):602-609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700