用户名: 密码: 验证码:
基于被测介质电导特性的冰水情传感器及系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,社会经济高速发展,城市化进程不断加速,人民的生活水平也在显著提高,工业、生活等各方面对水的需求量越来越大。然而,在一些水资源匮乏的地区,水资源成为制约社会发展和人民生活水平提高的重要因素。因此,跨流域引水工程作为调节水资源分布不均、实现水资源合理配置的重要调控手段,在工业生产、人民生活和社会的可持续发展方面发挥着无可替代的作用。长距离引水工程是一项复杂的系统工程,而且在一些特殊的工程中会存在安全运行问题和预警问题。
     本文主要针对引水工程中存在的一些科学难题和工程技术难点,研究在恶劣环境下进行冰水位信号的自动采集的新理论和新方法,以解决北方冬季水道明渠在结冰的恶劣环境下,冰水位信号采集难题。研究开发适合我国北方冬季条件下,具有冰水情数据自动采集、处理、存储和实时监测为一体的技术方案和新型的冰水位传感器采集设备。主要研究内容为:
     (1)基于水与冰的物理和化学特性差异,分析其在不同的温度条件下电导率变化的规律,提出了基于被测介质的等效电阻-温度梯度特性差异的冰水情检测技术方案。
     (2)实验室条件下,仿真验证基于被测介质的等效电阻-温度梯度特性的冰水情检测技术的可行性,为进一步研制应用于工程的冰水情检测传感器提供了理论支持和实现途径。
     (3)现场条件下,应用设计了基于被测介质的等效电阻-温度梯度特性的冰水情传感器,设计、研制了整套数据处理系统,用于数据的现场调试。
     (4)对实验室仿真数据和现场采集数据进行分析、验证,设计了“最小二乘法变点冰水情数据处理算法”,以解决工程测量中的奇异点判别误差问题。
     (5)在太原理工大学测控技术研究所马福昌教授的感应式数字水位传感器的基础上,做了保温结构的设计和改进,设计了一套防冰冻传感器系统,解决了全冰冻条件下无压全水位的检测难题,为实现冰水情检测技术提供了一些新思路和新方法。
     本文涉及到的基于感应式数字水位传感器防冰冻水位检测技术的应用研究已经取得了了一些初步成果,获得了相应专利。研制成功的基于被测介质的等效电阻-温度梯度特性的冰水情传感器及数据采集系统,也已经应用于国家的第21次南极科学考察项目研究中。但是我们的理论研究和技术实现仍然存在问题需要解决,需要对更广阔的科学技术领域和更深层次的科学问题进行探索研究。真诚地希望能够得到同行专家学者们的指导和帮助,为中国的现代水利建设做出更大的贡献。
In the21st century, social and economic is rapidly developing, and the process of urbanization is constantly accelerating, people'living standards are improved significantly. The demand of water is growing on the industrial, domestic and other aspects. However, in some areas of water scarcity, the development of social and the improvement of people's living standards are seriously restricted by water resources. Therefore, as a control means of rationally allocating water resources, inter-basin diversion project plays an irreplaceable role in industrial production, people'lives and social sustainable development. Long-distance diversion project is a complicated systematic project, and there will be security operation issuses and early warning issuses in some special projects.
     This paper studies some new theories and new methods on automatic collection of ice water level signal in harsh environment, aiming at solving the existing scientific questions and difficult engineering Problems in the Diversion Project. The research results can be used to solve the ice water level signal acquisition problem in the harsh environment of the waterways open channel icing in the winter. This paper researches and explores new technical solutions and new ice water level sensor and collection system device with automatic data acquisition, processing, storage, and real-time monitoring as one to suit the condition of the northern winter. The main achievements of this paper are as follows.
     1) In view of the water and ice differences in physical and chemical properties, this paper proposed the ice water detection scheme based on the equivalent resistance-temperature gradient characteristic differences of the measured medium.
     2) The simulation experiment have be done to verify the feasibility of the ice water detection scheme based on the equivalent resistance-temperature gradient characteristic differences of the measured medium, provide theoretical support and implementation way for further developing the engineering applications of ice water detection.
     3) Under field conditions we had tested the ice water detection sensor we designed based on the equivalent resistance-temperature gradient characteristic differences of the measured medium, and designed, developed a set of data processing system for data field debugging.
     4) We analyzed and verified laboratory simulation data and field data, designed the "least squares point of ice water situation data processing algorithm", to solve judgment error problem of singularity in engineering measurement.
     5) On the basis of the inductive digital level sensor designed by Professor MaFuchang of Taiyuan University of Technology, Institute of Measurement and Control Technology, we made some improvement on heat preservation structure, and designed a set of anti-freeze sensor system for solving the water level detection problem without full water pressure in the freezing condition, which also provided some new ideas and new methods for achieving water level detection technology in winter.
     The anti-freezing water level detection technology based on the inductive digital level sensor has achieved some initial success related to the paper, and obtained the corresponding patents. And the ice water detection sensor based on the equivalent resistance-temperature gradient characteristic differences of the measured medium and the data processing system have also been applied to the country's first21research projects in Antarctica. But our theoretical research and technology still have problems to be solved, and we also need to explore and research to a wider science and technology fields and deeper scientific issues. We also hope to be able to get much guidance and help from peer expert and scholars, make contribute to china's contemporary conservancy construction.
引文
[1]国巧真,顾卫,李京等.基于遥感数据的渤海海冰灾害风险研究[J].灾害学,2008,23(2):10-14.
    [2]深圳卫视《正午30分》.渤海遭遇30年来最严重冰冻40%海面结冰[EB/OL].http://video.sina.com.cn/p/news/c/v/2010-01-17/175060469032.html,2010-01-17.
    [3]贾君洋.黄河防总部署2008~2009年度黄河防凌工作[EB/OL].http://www.sxwater.gov.cn/home/details.asp?articleid=9584,2008-10-18.
    [4]康东海.壶口凌灾损失预计逾千万[N].山西晚报,2009-01-21(3).
    [5]民政部门户网站.李立国:冰雪灾害历史罕见,抗灾救灾成效显著[EB/OL].www.mca.gov.cn/article/zwgk/mzyw/200802/20080200011687.shtml,2008-02-14.
    [6]国家科学技术部“十五”期间国家高新技术研究发展计划(863计划).资源与环境技术领域-海洋监测技术主题第二期指南[R],2001.
    [7]Lu Peng, Li Zhijun, Dong Xilu etc. Sea ice thickness and concentration in Arctic obtaining from remote sensing images[J]. Chinese Journal of Polar Science,2004, 15(2):91-97.
    [8]李志军,张占海,董西路等.北极海冰生消过程关键指标的观测新技术[J].自然科学进展,2004,14(9):1077-1080.
    [9]王流泉.南水北调中线总干渠冰期输水的设计和管理[J].南水北调与水利科技,2002,23(4):2-7.
    [10]范北林,张细兵,蔺秋生.南水北调中线工程冰期输水冰水情及措施研究[J].南水北调与水利科技,2008,6(1):66-69.
    [11]王涛,杨开林.神经网络算法在南水北调冰期输水中的应用[J].水利学报.2009,40(11):1403-1408.
    [12]蔺长增,刘东斌.渠道冰期输水的安全管理[J].水利建设与管理.2007(06):50.
    [13]张成,王开.冰期输水研究进展[J].南水北调与水利科技.2006,4(6):59-63.
    [14]严增才,吴新玲.南水北调中线工程冰期输水原型观测与冰水情分析[J].河北水利.2008(04):28-29.
    [15]高霈生,靳国厚,吕斌秀.南水北调中线工程输水冰水情的初步分析[J].水利学报,2003,(11):96-103.
    [16]山西省万家寨引黄入晋工程全线自动化系统总体设计方案设计报告[R].水利部电力工业部天津感测设计研究院,1994.
    [17]山西省万家寨引黄入晋工程全线自动化系统总体设计方案设计报告[R].水利部电力工业部天津感测设计研究院,1996.
    [18]山西省万家寨引黄入晋工程详细设计说明书[R].天津:水利部电力工业部天津感测设计研究院,1996.
    [19]引黄工程安全运行管理及灾害预警防治信息系统研究报告[R].太原理工大学测控技术研究所,2012.
    [20]郝建忠,熊运阜.冰凌对万家寨水利枢纽效益的影响及其对策[J].水利建设与管理,2000,(5):45-46.
    [21]袁学安,李林.万家寨水利枢纽冰水情及其对电站效益的影响[J].水利水电工程设计,2001,20(3):11-13.
    [22]郑春茂,闫新光.万家寨水利枢纽对内蒙古段黄河凌汛的影响及防凌措施[J].内蒙古水利,2002,(1):18-19.
    [23]陆正毅,李彬.万家寨水利枢纽对上下游冰水情影响的分析研究[J].水文,1996,(3):50-53.
    [24]丁德文.工程海冰学概论[M].北京:海洋出版社,1999:91-115.
    [25]茅泽育,董曾南,陈长植.河冰数学模拟研究综述[J].水力发电,1996,(12):58-61.
    [26]Foltyn E. P. and Shen H. T. St. Lawrence River Freeze-Up Forecast[J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1986,112(4):467-481.
    [27]Shen H. T. Dynamic transport of river ice[J]. Journal of Hydraulic Research.1990, 28(6):659-671
    [28]Shen H T. Under cover transport and accumulation of frazil granules[J]. Journal of Hydraulic Engineering.1995,121(2):184-195.
    [29]茅泽育,吴剑疆,张磊等.天然河道冰塞演变发展的数值模拟[J].水科学进展,2003,14(06):700-705.
    [30]杨开林,刘之平,李桂芬等.河道冰塞的模拟[J].水利水电技术.2002,33(10):40-47.
    [31]Greco M., Irvolino M. and Leopardi A. etc. A two-phase model for fast geomorphic shallow flows[J]. International Journal of Sediment Research,2012,27(04):409-425.
    [32]ZHANG Xiaoqin, BAO Weimin. Modified Saint-Venant equations for flow simulation in tidal rivers[J]. Water Science and Engineering,2012,5(1):34-45.
    [33]Barker A., Abreu R. De and Timco G.W. Satellite Detection and Monitoring of Sea Ice Rubble Fields[C]. Proceedings of the 19Th IAHR International Symposium on Ice. Using New Technology to Understand Water-Ice Interaction(1). Vancouver:St. Joseeph Communications,2008:419-430.
    [34]Melvold K., Kvambekk A. S. and Orthe N.K. etc. Monitoring Lake Ice in Norway using Remote Sensing (MODIS, RADARSAT), System Development[C]. Proceedings of the 19Th IAHR International Symposium on Ice. Using New Technology to Understand Water-Ice Interaction(1). Vancouver:St. Joseeph Communications,2008:469-470.
    [35]朱海天,曾韬,梁超等.卫星遥感海冰监测系统在渤海海冰监测中的应用[J].海洋预报,2011,28(6):55-59.
    [36]Johannessen O. M., Alexandrov V.Y. and Frolov I.Y. etc. Remote Sensing of Sea Ice in the North-ern Sea Route:Studies and Applications[M]. Chichester:Praxis Publishing, 2007:171-182.
    [37]Huang Haijun,He Yijun. Monitoring the diffusion of suspended sediments and stability of tidal radial sand ridges area using multi-satellite remote sensing data[J]. Chinese Journal of Oceanology and Limnology,2001,19(4):361-367.
    [38]Hao Liu. Annual cycle of stratification and tidal fronts in the Bohai Sea:A model study[J]. Journal of Oceanography,2007,63(1):67-75.
    [39]Garcia E., Maksym, T. and Simard M. etc. A comparison of sea ice field observations in the Barents Sea marginal ice zone with satellite SAR data[C].2002 IEEE International Geoscience and Remote Sensing Symposium. REMOTE SENSING:Integrating Our View of the Planet (5). New Jersey:IEEE Publications,2002:3035-3037.
    [40]崔华义.利用非线性声学测量冰厚的方法研究[J].海洋技术.2005,24(3):58-60.
    [41]Norbert E.Y., Ryerson C. C. and Crocker A. etc. Measuring the thickness of clear freshwater ice using geometric optics and a spectrometer[J]. Cold Regions Science and Technology.2005,43(3):177-186.
    [42]Hussein Z. A., Holt B. and McDonald K. C. etc. Remote sensing of sea ice thickness by a combined spatial and frequency domain interferometer:formulations, instrument design, and development. Sensors, Systems, and Next-generation Satellites:IX. SPIE Press.2005, 5978:96-105.
    [43]Bergeron C. J., Brusstar J. R. and Yi N. etc. A new vertical continuation procedure for airborne electromagnetic field data from the modified image method[J]. Geophysics,1999, 64(5):1364-1368.
    [44]Eicken, H., Grenfell T. C. and Perovich D. K. Hydraulic controls of summer Arctic pack ice albedo[J]. Journal of Geophysical Research:Oceans,2004,109, C08007, doi: 10.1029/2003JC001989.
    [45]Haas, C. Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica[J]. Cold Regions Science and Technology,1998,27(1):1-16.
    [46]Heil, P. Atmospheric conditions and fast ice at Davis, East Antarctica:A case study. [J] Journal of Geophysical Research,2006,111, C05009, doi:10.1029/2005 JC002904.
    [47]Allison I. and Lytle V. I. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover. Journal of Geophysical Research,1996,101 (C11):25741-25752.
    [48]Hristoforou E. and Chiriac H. Position measuring system for applications in field sports[J]. Journal of Magnetism and Magnetic Materials,2002,249(2):407-410.
    [49]作者不详.欧洲发明新型冰层传感器[J].传感器世界,2003,(10):34.
    [50]张杰,周磊,张洪等.飞机结冰探测技术[J].仪器仪表学报,2006,27(12):1578-1586.
    [51]Ikiades A., Howard G and David J. A. etc. Measurement of optical diffusion properties of ice for direct detection ice accretion sensors[J]. Sensors and Actuators A:Physical, 2007,140(1):24-31.
    [52]DeAnna R. G, Mehregany M and Roy S. Microfabricated Ice-Detection Sensor[R]. Washington D.C.:Army Research Laboratory, NASA,1997.
    [53]崔静.中国机器人首次在高纬度海域开展冰下调查[EB/OL].http://news.xinhuanet.com/tech/2008-09/09/content_9866498.htm,2008-08-09.
    [54]孙延维.雷达监测海冰、海浪参数系统的研究[J].海洋预报,1999,16(3):57-61.
    [55]岳前进,毕样军,季顺迎等.航海雷达识别与跟踪海冰试验[J].大连理工大学学报,2000,40(4):500-504.
    [56]Li Zhijun and Lu Peng. Measurement of iceberg Draft motion with marine radar[C]. Proeeedings of the 6th International symposium on Test and Measurement. Dalian:2005, 3:2972-2975.
    [57]Li Zhijun etc. Relation of thermal conductivity coefficient with temperature of sea ice in Bohai Sea[C]. OMAE'92,1992:329-333.
    [58]Petrenko V. F. Electrical properties of ice[R]. US Army Corps of Engineers,1993: 69-73.
    [59]Birch R., Fissel D. and Melling H. etc. Ice-profiling sonar[J]. Sea Technology,2000, 41(8):48-52.
    [60]邓世坤,孙波.冰面雷达探测揭示东南极Amery冰架内部结构基本特征[J].工程地球物理学报,2004,1(1):1-9.
    [61]孙波,温家洪,康建成等.北冰洋海冰厚度穿透雷达探测与下表面特征形态分析[J].中国科学,2002,32(11):951-958.
    [62]Wolfgang D. Laser profiling of the ice surface topography during the Winter Weddell Gyre Study 1992. Journal of Geophysical Researeh,1995,100(C3):4807-4820.
    [63]张树风,梁灿才,刘文勉.探地雷达目标识别原理及其在工程中的应用[J].广州建筑,1996,(1):18-24.
    [64]王俊茹,吕继东.地下障碍物雷达定位探测的技术应用[J].地质与勘探,2003,39(3):84-86.
    [65]徐维刚,侯玉洁,任华峰.探地雷达在工程无损检测中的应用[J].河南水利与南水北调,2009,(3):30-31.
    [66]张宝森,郜国明.宁蒙河段冰凌监测技术实验研究[J].黑龙江水专学报,2009,36(4):90-95.
    [67]马德胜,王珍宝,马涛.不冻孔测桩式冰厚测试仪简介[J].水文,2001,21(2):61-62.
    [68]孙波.极地冰芯固体直流导电特性检测(ECM)及环境意义[J].极地研究,1998,10(3):235-240.
    [69]Hristoforou E., Chiriacb H. and Neagu M. On the calibration of position sensors based on magnetic delay lines[J]. Sensors and Actuators A:Physical,1997,59(1):89-93.
    [70]Hristoforou E., Dimitropoulos P. D. and Petrou J. A new position sensor based on the MDL technique[J]. Sensors and Actuators A:Physical,2006,132(1):112-121.
    [71]Hudson R. Annual measurement of sea ice thickness using an upward-looking sonar[J]. Nature,1990,344(6262):135-137.
    [72]Karagiannis V., Manassis C. and Bargiotas D. Position sensors based on the delay line principle. Sensors and Actuators A:Physical,2003,106(1):183-186.
    [73]王听,程言峰,雷瑞波等.接触式磁致位移冰厚测量的原理及应用[C].水利量测技术论文选集(第五集),郑州:黄河出版社,2006:9-12.
    [74]雷瑞波,程言峰,李志军等.磁致位移传感器冰雪厚度测量仪原理及其应用[J].大连理工大学学报,2010,50(3):416-420.
    [75]Cheng Yanfeng, Li Zhijun and Lei Ruibo etc. Development of an Ice Thickness Monitoring Apparatus Based on a Magnetostrictive Displacement Sensor[J]. Proceedings of the 19Th IAHR International Symposium on Ice. Using New Technology to Understand Water-Ice Interaction(1). Vancouver:St. Joseeph Communications,2008:353-360.
    [76]李志军,张占海,李广伟等.接触式自动测量冰、雪厚度变化过程的方法[P].中国专利:ZLO3111668.X,2003-5-13.
    [77]刘秋勇.输电线路覆冰GPRS/CDMA在线监测预警系统[EB/OL].http://www.chinabaike.corn/z/gyzd/928578.html,2008-1-30.
    [78]叶林,王颖,黄琴等.基于摄像的结冰厚度测量方法的研究[J].计量与测试技术,2006,33(6):4-5,8.
    [79]何清,汪涛,金涛等.输电线路覆冰监测技术[J].湖北电力,2009,33(1):16-17.
    [80]邵瑰玮,胡毅,王力农等.输电线路覆冰监测系统应用现状及效果[J].电力设备,2008,9(6):13-15.
    [81]丛沛桐,马振兴,刘祥君.黄河冰凌地电预警技术初探[J].天津师范大学学报(自然科学版),2007,27(2):43-45.
    [82]王军,邢向荣,崔雅民.高密度电法探测小窑采空区[J].山西建筑,2009,35(2):118-119.
    [83]任妹娟,曹福祥.高密度电阻率法在红层区地下水勘查中的应用[J].中国西部科技,2009,8(5):51-53.
    [84]杨树流.综合物探方法在大宝山矿采空区勘察中的应用效果探讨[J].工程地球物理学报,2009,6(2):203-207.
    [85]秦建敏,沈冰.基于冰和水导电特性的新型冰层厚度传感器[J].传感器技术,2004,23(9):55-57.
    [86]秦建敏.基于空气、冰与水的电导率检测冰厚的理论与应用研究[D],西安:西安理工大学,2005.
    [87]Qin jianmin, Huang Yue and Qin Mingqi. Research on automation measurement for the circumstance of ice and water based on the physics characteristic difference of air, ice and water[J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument.2007,28(2):p 414-419.
    [88]秦建敏,程鹏,李霞.电容式冰层厚度传感器及其检测方法的研究[J].微纳电子技术,2007,(8):185-187.
    [89]秦建敏,程鹏,秦明琪.冰层厚度传感器及其检测方法[J].水科学进展,2008,19(3):418-421.
    [90]秦建敏,程鹏,赵凯.利用空气、冰与水物理特性差异实现水情全天候自动化监测[J].水力发电学报,2008,27(1):24-27.
    [91]秦建敏,刘笑达,李学春.基于空气、冰与水物理特性的冰水情检测系统[J].信息与电子工程,2011,9(5):646-650.
    [92]宁德亮.新型电容传感器测量流动湿蒸汽湿度的研究[D].哈尔滨:哈尔滨工程大学,2006.
    [93]李赞.平面电容式屋面渗漏检测仪的研制[D].郑州:郑州大学硕士学位论文,2005.
    [94]Teraoka Y., Saito A. and Okawa S. Ice crystal growth in supercooled solution[J]. International Journal of Refrigeration,2002,25(2):218-225.
    [95]大连工学院无机化学教研室.无机化学[M],北京:人民教育出版社,1978.
    [96]李荻.电化学原理[M].北京:北京航空航天大学出版社,1989.
    [97]郁祖湛等译.应用电化学[M].上海:复旦大学出版社,1992.
    [98]陈国华,王光信等.电化学方法应用[M].北京:化学工业出版社出版,2003.
    [99]闻瑞梅,工在忠.高纯水的制备及检测技术[M].北京:科学出版社,1997.
    [100]雷瑞波,李志军,秦建敏等.定点冰厚观测新技术研究[J].水科学进展,2009,20(2):287-292.
    [101]赵保丰.具有GPS卫星定位功能的冰水情检测系统的设计[D].太原:太原理工大学,2010.
    [102]杜宇.基于CPLD的冰层厚度传感器的设计[D].太原:太原理工大学,2010.
    [103]黄河冰水情自动监测系统研发与现场试验技术研发合同附件1.黄河水利委员会黄河水利科学研究院/太原理工大学,2012-2-29.
    [104]陈希孺.变点统计分析简介[J].数学统计与管理.1991,52-59.
    [105]严运国,杨辉.最小二乘法参数辨识及其微机实现[J].福建电脑,2005(8):90-93.
    [106]陈宁,秦建敏,李国宏等.“最小二乘法变点冰水情数据处理算法”的研究与应用[J].数学的实践与应用,2012,42(1):108-114.
    [107]马福昌,元江博,马珺.感应式数字水位传感器智能变送器设计[J].电子设计工程,2011,19(7):128-130.
    [108]吴建华,郝新平,马福昌.数字式导电液位传感器及其应用[J].农业机械学报,1999,30(6):134-136.
    [109]臧敏.智能超声波水位控制器研究[J].计量测试与检定.2012(05):7-9.
    [110]朱江.超声波液位仪设计与精确度的研究[D].吉林大学.2009.
    [111]郭凤仪,刘丹,王爱军,赫广杰,缪传海.计算机测量与控制.[J].2012(07).
    [112]王伟,马福昌.基于图像处理的水位自动测量技术.[J].南水北调与水利科技.2012(10):147-149.
    [113]陈渊.基于ARM和GPRS的水文测报系统的设计与研究[D].太原理工大学2011.
    [114]刘亮,邓世建,张建,胡媛媛.给排水系统中水位检测技术的研究.[J].工矿自动化2012(12):22-23.
    [115]祝玲,卢胜利,马国华等.智能浮子式水位计[J].传感器与微系统,2006,25(6):52-54.
    [116]冯斌.一种与介质无关的电容式液位测量方法研究[D].重庆:重庆大学,2009.
    [117]张英梅,王胜强.便携式数字水位传感器无线变送器的设计[J].电子设计工程.2011(05).
    [118]马福昌,元江博,马珺.感应式数字水位传感器智能变送器设计[J].电子设计工程.2011(07).
    [119]王维,侯媛彬,张晓文.多级导电式水位传感器设计及应用[J].自动化与仪表.2012(01).
    [120]马恒.矿井水仓水位监测监控系统设计及应用[D].辽宁工程技术大学.2012.
    [121]陈云.基于嵌入式平台的船舶水位自动监测系统研究[D].华中师范大学.2011.
    [122]冯磊.基于GSM的水位测量与水量控制系统研究[D].兰州理工大学.2007.
    [123]李东明.基于振弦式传感器的智能水位计的研究与开发[D].河海大学.2006.
    [124]耿晓明.无线数据传输水位监测仪的研究[D].南京理工大学.2009.
    [125]梁先国.城市污水监测系统中的无线视频传输研究与关键技术实现[D].江苏大学.2010.
    [126]范林刚;汪志水;陈泽宗;赵晨.基于探针式传感器的一种新型水位检测系统的研究[A].2009中国仪器仪表与测控技术大会论文集[C].2009.
    [127]杨朝红,李焕.新型液位检测技术的现状与发展趋势[J].工况自动化,2009,(6):61-64.
    [128]荆向峰,杨成忠.霍尔式窨井水位检测装置的设计与实现[J].杭州电子科技大学学报,2011,31(4):121-123.
    [129]于柏,一种新型的自动水位测控系统的设计研究[D].天津:天津大学电子信息工程 学院,2008.
    [130]H.Golnabi.Design and operation of a fiber optic sensor for liquid level detection. Optics and Lasers in Engineering.2004.
    [131]葛君山.液位检测技术的现状与发展趋势[J].船电技术.2013(02).
    [132]唐正茂,王惠玲,刘志远,蔡春丽,崔体波.一种电容阵列式液位传感器的设计与实现[J].传感器与微系统.2010(03).
    [133]淮文博.基于串行扩展技术的霍尔液位传感器[J].宝鸡文理学院学报(自然科学版).2010(01).
    [134]杨朝虹,李焕.新型液位检测技术的现状与发展趋势[J].工矿自动化.2009(06).
    [135]卫开夏,李斌,朱信诚.导电性液体新型液位测量方法研究及应用[J].电子测量与仪器学报.2010(10).
    [136]秦品乐,林焰,陈明.基于改进EMD的船舶液舱液位测量方法及数据分析[J].大连理工大学学报.2009(03).
    [137]王林生,曹建生,王风燕,毕新熙.大坝测压管水位监测系统设计[J].人民黄河.2013(07).
    [138]张波.分段电容式液位测量的研究[D].大连海事大学.2010.
    [139]张岚.磁致伸缩液位传感器的设计及优化[D].南京理工大学.2011.
    [140]高超.新型栅状电容式液位传感器的设计研究[D].上海交通大学.2011.
    [141]曹苗苗,王娟娟,刘维.超声液位传感器的实验研究[A].第六届全国高等学校物理实验教学研讨会论文集(下册)[C].2010.
    [142]施修祥,郑国范.光导液位检测、报警和控制装置[P].中国专利:CN87213411.
    [143]于雷,孙品超.自动液位巡检系统设计[J].长春工程学院学报(自然科学版).2012(12).
    [144]无线液位测量系统装备船舶[J].军民两用技术与产品.2009(06)8.
    [145]向平.对污水液位检测装置方案的分析[J].重庆电力高等专科学校学报.2010(01).
    [146]王海军,鲍帮玉.非接触式超声波液位检测仪系统中的单片机应用[J].科技广场.陈炜峰,张维旺.一种基于可编程逻辑器件的液位测量装置的设计[J].安徽农业科学.2007(24).
    [147]秦建敏.基于空气、冰与水的电导率检测冰厚的理论与应用系统.西安理工大学博士论文.2005.
    [148]Hossein Golnabi. Design and operation of a fiber optic sensor for liquid level detection.Optics and Lasers in Engineering, Volume 41, Issue 5, May 2004, Pages 801-812.
    [149]Eldar Musayev, Sait Eser Karlik. A novel liquid level detection method and its implementation.Sensors and Actuators A:Physical, Volume 109, Issues 1-2,1 December 2003, Pages 21-24.
    [150]Dong Xiaowei, Zhao Ruifeng. Detection of liquid-level variation using a side-polished fiber Bragg grating.Optics & Laser Technology, Volume 42, Issue 1, February 2010, Pages 214-218.
    [151]Wenhua Wang, Fang Li. Large-range liquid level sensor based on an optical fibre extrinsic Fabry-Perot interferometer.Optics and Lasers in Engineering, In Press, Corrected Proof, Available online 6 July 2013.
    [152]Elizabeth Guihen, Wen Lyn Ho, Anna-Marie Hogan. Rapid quantification of histamine in human psoriatic plaques using microdialysis and ultra high performance liquid chromatography with fluorescence detection.Journal of Chromatography B, Volume 880,1 January 2012, Pages 119-124.
    [153]Ying Chen, Pengcheng Xu, Min Liu, Xinxin Li. Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors. Microelectronic Engineering, Volume 87, Issue 12, December 2010, Pages 2468-2474.
    [154]Syed Azer Reza, Nabeel A. Riza. Agile lensing-based non-contact liquid level optical sensor for extreme environments.Optics Communications, Volume 283, Issue 18,15 September 2010, Pages 3391-3397.
    [155]Serge Camou, Akira Shimizu, Tsutomu Horiuchi, Tsuneyuki Haga. Selective aqueous benzene detection at ppb level with portable sensor based on pervaporation extraction and UV-spectroscopy.NTT Corporation, Microsystem integration labs,3-1,林瑞凤;徐海.基于图像传感器的明渠水位自动测量方法[J].传感器与微系统.2013(08).
    [156]马福昌.数字水文信息采集与自动化报送理论及新技术研究.西安理工大学博士论文.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700