用户名: 密码: 验证码:
鄂尔多斯盆地延长组凝灰岩夹层特征和形成环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地延长组烃源岩中存在明显的放射性异常现象,结合国家973项目所取得的部分研究成果发现,这种异常主要由放射性铀元素引起。延长组凝灰岩与富铀烃源岩互层产出,在测井曲线上独特的表现为低电位、高伽玛、高声波时差和高电阻率值,人们以往关注的多,而深入研究的少,过去仅把这些夹层作为地层划分对比的标志层,一直未对其开展深入的岩石学和地球化学研究工作,对这些凝灰岩的成因的认识尚没有科学的数据和结论。所有的研究工作都未将延长组中铀元素的迁移和这些凝灰岩相联系,因此探索延长组富铀烃源岩的形成与凝灰岩夹层和铀异常之间的关系,为探讨凝灰岩的成因类型及其在烃源岩演化中所起的作用,具有重要的理论和实践意义。
     在深入分析前人研究成果的基础上,综合应用薄片鉴定、扫描电镜及能谱分析、X射线衍射分析、元素地球化学分析、铅和氧同位素分析等多项现代分析测试技术,详细研究了凝灰岩夹层的岩石学、地球化学特征,探讨了其属性,并分析了凝灰岩中铀元素的迁移特征;通过多次野外考察和细致的岩芯观察,结合测井资料,调查了凝灰岩发育井位及层位,分析了其展布规律,揭示了其形成环境,阐述了凝灰岩与烃源岩二者之间的关系等科学问题。
     论文首次把传统意义上的延长组凝灰岩分成凝灰岩、斑脱岩、热水沉积岩三类,并且认为凝灰岩和斑脱岩包含有空降型和水携型两种成因机制;分析了凝灰岩中铀元素近代发生过丢失迁移现象,很可能是富铀烃源岩中铀元素的母岩;绘制了凝灰岩夹层单井、联井剖面图和长7_3底凝灰岩平面展布图。综合对比发现延长组凝灰岩夹层与盆地内同期烃源岩和放射性异常展布基本一致,相互之间可能存在联系;凝灰岩夹层的形成环境主要为浊积扇和深湖环境,浊积岩中的凝灰岩蚀变后使其储层各项指标发生变化,而深湖相中的凝灰岩可能是沉积环境从氧化向还原过渡的有利因素,同时利用地球化学数据判别出凝灰岩可能来自于火山弧或板内、钙碱性岩浆环境。
     综合分析认为,凝灰岩夹层不仅是地层划分的标志层。也是有机—无机相互作用的重要纽带,对生油层和储集层具有重要的石油地质意义,同时也可能是促使鄂尔多斯盆地原油品质较好的重要因素。
There is remarkable radioactive abnormal phenomenon in the source rocks of Yanchang formation in Ordos. It has been found that the anomaly mainly caused by radioactive uranium element, combined with partial research achievements of the National Important Basic Research Program. The tuffs and the rich uranium hydrocarbon source rocks interbed output, with the unique characteristics of low SP, high Ga, high AC and high Resistivity value in well logging curves. People pay much attention, but deeply research few on tuffs, just regarded which as stratum division and contrast marker beds, and without thorough petrology and geochemistry research work, there are not science data and conclusions to understand the tuffs' genesis yet. And all past research work had not discussed the relationship between uranium element migration and tuffs. So exploring the formational mechanism of rich uranium hydrocarbon source rocks, explaining the relationships between tuff interlayer and uranium abnormality of Yanchang formation, it has important theory and practice significance, for discussing tuffs' genetic types and the role which plays in hydrocarbon source rocks mature process.
     Based on the analysis of predecessor research thoroughly, with the help of synthesis using many modern analysis and test technologies, including thin slice identification, scanning electron microscope and energy spectrum analysis, X-ray diffraction analysis, elements geochemistry analysis, Lead and Oxygen isotopes analysis and so on, the petrology and geochemistry characteristics of tuff interlayer has been particular researched and discussed its attribute, the uranium element migration characteristic in the tuff has been analyzed. Through several outfield work and careful rock cores observation, combining well log data, then investigated the position of well and layer about tuffs, and the relationship between the tuffs and hydrocarbon source rocks, the distribution rule and formation environment, as well as some scientific questions had been discussed.
     It is divided the traditional tuffs into three types which in Yanchang formation: ash tuffs, bentonites and hot water sedimentary rocks, the formational mechanisms of tuffs and bentonites containing fall down and water-carrying. Proved the phenomena of uranium element loss and transport in tuffs in modern time, and the tuffs maybe were the source rocks of uranium element in the rich uranium hydrocarbon source rocks. At the same time, the single well and the associated wells sections of tuffs interlayer and the Chang 7_3 bottom tuffs' plane had been done. The synthesis contrast had shown that the distribution of tuffs interlayer, the hydrocarbon source rocks and the radioactive abnormal was basic consistent in Yanchang formation. So it has the inevitable relationship. The tuffs' formational environments mainly are turbidity fan and deep lacustrine facies. The altered tuffs in turbidity fan maybe influence reservoir indexes, and tuffs in deep lacustrine facies maybe were the favorable factor on the transition from oxidation to reduction environment. Meanwhile, tuffs was distinguished maybe were from the volcano arc or within plate and calc-alkaline lavas through geochemistry data.
     Synthesis analysis believed that the tuff interlayer was not only the stratum division contrast horizon marker bed, but also was the important belt of organic-inorganic interaction, it had the important petroleum geology significance for source rocks layer and the reservoir, at the same time, it maybe was the important factor on improving the crude oil quality in Ordos basin.
引文
1.包洪平,杨奕华,王晓方,等.同沉积期火山作用对鄂尔多斯盆地上古生界砂岩储层形成的意义.古地理学报,2007,9(4),397-406
    2.长庆油田地质志编写组.中国石油地质志(卷十二)-长庆油田.北京:石油工业出版社,1992
    3.陈骏,王鹤年.地球化学.北京:科学出版社,2004
    4.陈全红,李文厚,郭艳琴,等.鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义.地质学报,2006,80(5):656-663
    5.冯胜斌,刑矿,周洪瑞,等.北秦岭二郎坪群重晶石岩热水沉积地球化学证据及其成矿意义.世界地质,2007,26(2):199-207
    6.付金华,孙六一,等.鄂尔多斯盆地东部上古生界浅层天然气成藏机理与勘探方向.长庆油田勘探开发研究院,2002
    7.甘肃地质矿产局.甘肃省区域地质志.北京:地质出版社,1989,243
    8.高山林,陈海泓,窦伟坦,等.鄂尔多斯盆地延长组的湖泊风暴沉积.沉积学报,1999,17(增刊):58-761
    9.郭彦如,等.鄂尔多斯盆地延长组凝灰岩沉积特征与构造活动关系研究.内部报告,2006
    10.何自新,等著.鄂尔多斯盆地演化与油气.北京:石油工业出版社,2003
    11.李琼.鄂尔多斯盆地西南地区深部放射性异常及其对烃源岩演化的影响.西北大学硕士论文.2007
    12.李文厚.鄂尔多斯盆地层序地层学与烃源岩及凝灰岩研究.多种能源“973项目”年度成果,2007
    13.李元昊,刘池洋,王秀娟,等.鄂尔多斯盆地三叠系延长组砂岩强(脉)特征及其地质意义.中国地质,2007,34(3):400-406
    14.李祯,温显端,周慧堂,等.鄂尔多斯盆地东缘中生代延长组浊流沉积的发现与意义.现代地质,1995,9(1):99-106
    15.刘池洋.渤海湾盆地的构造演化及其特点.见:西北大学地质系编.西北大学地质系成立45周年学术报告会论文集.西安:陕西科学技术出版社,1987,447-458
    16.刘池洋.对弧后扩张作用的探讨.地质论评,1993,39(3):187-195
    17.刘池洋.渤海湾盆地油气赋存和分布的特点--翘倾断块控制油气论.见:赵重远,刘池洋,等编.含油气盆地地质学研究进展.西北大学出版社,1993,334-346
    18.刘池洋.后期改造强烈--中国沉积盆地的重要特点之一.石油与天然气地质,1996,17(4):255-261
    19.刘池洋.盆地多种能源矿产共存富集成藏(矿)研究进展.北京:科学出版社,2005a
    20.刘池洋,赵红格,王锋,等.鄂尔多斯盆地西缘(部)中生代构造属性.地质学报,2005b,79(6):738-747
    21.刘池洋.盆地构造动力学研究的弱点、难点及重点.地学前缘,2005c,12(3):113-124
    22.刘池洋,赵红格,桂小军,等.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应.地质学报,2006a,80(5):617-638
    23.刘池洋,赵红格,谭成仟,等.多种能源矿产赋存与盆地成藏(矿)系统.石油与天然气地 质,2006b,27(2):131-142
    24.刘池洋.叠合盆地类型及其特征和油气赋存.石油学报,2007a,28(1):1-7
    25.刘池洋,邱欣卫,吴柏林,等.中-东亚能源矿产成矿域基本特征及其形成的动力学环境.中国科学D辑:地球科学,2007b,37(增刊Ⅰ):1-15
    26.刘池洋.沉积盆地动力学与盆地成藏(矿)系统.地球科学与环境学报,2008,30(1):1-23
    27.刘绍龙.华北地区大型三叠纪原始沉积盆地的存在.地质学报,1986,60(2):128-138
    28.刘招君,王东坡,何起祥.攀西地区上三叠统湖泊浊积岩沉积特征及其地质意义.见:张云湘主编.中国攀西裂谷文集.北京:地质出版社,1985,298-306
    29.刘招君.湖泊水下扇沉积特征及影响因素--以伊通盆地莫里青断陷双阳组为例.沉积学报,2003,21(1):148-154
    30.卢龙飞,史基安,蔡进功,等.鄂尔多斯盆地西峰油田三叠系延长组浊流沉积及成因模式.地球学报,2006,27(4):303-309
    31.闵琪,付金华,席胜利,等.鄂尔多斯盆地上古生界天然气运移聚集特征.石油勘探与开发,2000,27(4):26-32
    32.潘爱芳,赫英,马润勇.鄂尔多斯盆地地表元素地球化学场与能源矿产关系初探.石油天然气地质,2004,25(6):629-633
    33.潘爱芳,赫英,黎荣剑,等.鄂尔多斯盆地基底断裂与能源矿产成藏成矿的关系.大地构造与成矿学,2005,29(4):459-464
    34.蒲仁海,姚宗慧,张艳春.鄂尔多斯盆地古构造演化在气田形成中的作用及意义.天然气工业,2000,20(6):27-29
    35.乔秀夫.中国震积岩的研究与展望.地质论评,1996,42(4):317-320
    36.孙国凡,谢秋元,刘景平,等.鄂尔多斯盆地的演化叠加与含油气性.石油与天然气地质,1986,7(4):356-366
    37.腾格尔,刘文汇,徐永昌,等.缺氧环境及地球化学判识标志的探讨--以鄂尔多斯盆地为例.沉积学报,2004,22(2):365-372
    38.王起琮,李文厚,赵虹,等.鄂尔多斯盆地东南部三叠系延长组一段湖相浊积岩特征及意义.地质科学,2006,41(1):54-63
    39.王同和.渤海湾盆地中、新生代应力场的演化与古潜山油气藏的形成.石油与天然气地质,1986,7(3):15-22
    40.魏永佩,王毅.鄂尔多斯盆地多种能源矿产富集规律的比较.石油天然气地质,2004,25(4):385-392
    41.吴志亮.热水沉积成岩成矿作用.北京:地质出版社,1996
    42.吴紫电,等.陕甘宁盆地北部古生界构造研究.长庆物探处,1989
    43.席胜利等.鄂尔多斯盆地烃源岩类型分布及生烃潜力评价.中国石油长庆油田分公司勘探开发研究院科研报告.2002
    44.夏青松,田景春,黄昌武.鄂尔多斯盆地上三叠统延长组震积岩识别标志研究.成都理工大学学报(自然科学版),2007a,4(3):312-317
    45.夏青松,田景春.鄂尔多斯盆地南部上三叠统延长组震积岩的发现及地质意义.沉积学报,2007b,25(2):246-252
    46.夏毓亮.铅同位素方法寻找铀矿.北京:原子能出版社,1982
    47.杨华.鄂尔多斯盆地三叠系延长组沉积体系及含油性研究.成都理工大学博士学位论文, 2004
    48.杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征.地球化学,2005,34(2):147-154
    49.杨俊杰.鄂尔多斯盆地构造演化与油气分布规律.北京:石油工业出版社,2002
    50.杨学明,杨晓勇,陈双喜,译.Hugh R.Rollison.著.岩石地球化学.合肥:中国科学技术大学出版社,2000
    51.杨友运,张蓬勃.鄂尔多斯盆地延长组火山碎屑沉积物特征及其石油地质意义.《低渗透油气田》创刊五十周年暨低渗透油气田研发中心技术研讨会会议材料,长庆油田分公司,2006,41-48
    52.叶先任,任建国,陶明信,等.事件沉积及其周期性的氦同位素指示.沉积学报,2003,21(4):640-647
    53.于津生.中国同位素地球化学研究.北京:科学出版社,1997
    54.张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001
    55.张泓,李恒堂,熊存卫,等.中国西北侏罗纪含煤地层与聚煤规律.北京:地质出版社,1998,115-119
    56.张进,马宗晋,任文军.鄂尔多斯盆地西缘逆冲断褶带构造特征及其南北差异的形成机制.地质学报,2004,78(5):601-611
    57.张俊明,李国祥,周传明.滇东下寒武统含磷岩系底部火山喷发事件沉积及其意义.地层学杂志,1997,21(2):91-99
    58.张蓉蓉.鄂尔多斯盆地中深部放射性异常的研究及意义.西北大学硕士论文,2005
    59.张文正,杨华,傅锁堂,等.鄂尔多斯盆地长91湖相优质烃源岩的发育机制探讨.中国科学D辑:地球科学,2007,37(增刊Ⅰ):33-38
    60.赵靖舟,杨县超,武富礼,等.论隆起背景对鄂尔多斯盆地陕北斜坡区三叠系油藏形成和分布的控制作用.地质学报,2006,80(5):648-655
    61.赵军龙,谭成仟,刘池阳,等.鄂尔多斯盆地油、气、煤、铀富集特征分析.石油学报,2006,27(2):58-63
    62.赵文智,胡素云,汪泽成,等.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用.石油勘探与开发,2003,30(5):1-5
    63.赵文智,王新民,郭彦如,等.鄂尔多斯盆地西部晚三叠世原型盆地恢复及其改造演化.石油勘探与开发,2006,33(1):6-13
    64.赵希刚,吴汉宁,韩玲,等.鄂尔多斯盆地环弧构造的多源信息特征识别.西北大学学报(自然科学版),2006,36(2):275-278
    65.赵重远,汤锡元,郭忠铭,等.鄂尔多斯盆地及山西地块地质构造和沉积盆地的形成、演化及其与油气关系.西北大学、长庆油田(内部资料),1988
    66.赵重远,刘池洋.华北克拉通中新生代区域地质构造及含油气盆地的形成和演化.见:赵重远,刘池洋,等著.华北克拉通沉积盆地形成与演化及其油气赋存.西北大学出版社,1990,10-21
    67.赵重远,刘池洋.残延克拉通内盆地及其含油气性-以鄂尔多斯盆地和四川盆地为例.见:中国地质学会编,“七五”地质科技重要成果学术交流会议论文选集.北京:科学技术出版社,1992,610-613
    68.郑荣才,文华国,韩永林,等.鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特 征及其研究意义.成都理工大学学报(自然科学版),2006,33(6):566-575
    69.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000
    70.钟蓉.华北石炭系火山事件沉积新发现及其地质意义.中国地质,1993,2(2):22-33
    71.钟蓉,孙善平,陈芬,等.大青山、大同煤田太原组流纹质沉凝灰岩的发现及地层对比.地球学报,1995,5:291-301
    72.钟蓉,孙善平,傅泽明.山东及邻区晚石炭世-早二叠世火山事件沉积及地层对比.地质学报,1996,70(2):142-152
    73.Allo W A,Murray H H.Mineralogy,chemistry and potential application of a white bentonite in San Juan province,Argentina.Applied Clay Science,2004,25:237-243
    74.Beattie P D,Dade W B.Is scaling in turbidite deposition consistent with forcing by earthquakes?Journal of Sedimentary Research,1996,66(5):909-915
    75.Bhatia M.R.Plate tectonics and geochemical composition of sandstones.Journal of Geology,1983,91:611-627
    76.Bhatia M.R,Crook K.A.W.Trace element characteristics of graywacks and tectonics discrimination of sedimentary basins.Contrib.Mineral.Petrol,1986,92:181-193
    77.Bouma A H.Sedimentology of some flysch deposit--A graphic approach to facies interpretation.1962
    78.Boynton W.V.Geochemistry of the rare earth elements:meteorite studies.In:Henderson P.(ed),Rare earth element geochemistry.Elservier,1984,63-114
    79.Cabanis B,Lecolle M.Le diagramme La/10-Y/15-Nb/8:un outil pour la discrimination de series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale.C.R.Acad.Sci.Ser.Ⅱ,1989,309:2023-2029
    80.Chen D.Z,Qing H.R,Yan X,et al.Hydrothermal venting and basin evolution(Devonian,South China):Constraints from rare earth element geochemistry of chert.Sedimentary geology,2006,183:203-216
    81.Clayton R.N,Mayeda T.K.The use of bromine pentafluoride in the extraction of oxygen from oxide and silicates for isotopic analysis.Geochimica et Cosmochimica Acta,1963,27:43-52
    82.Cuadros J,Caballero E,Hueratas F J,et al.Experimental alteration of volcanic tuff:smecite formation and effect on ~(18)O isotope composition.Clays and clay minerals,1999,47(6):769-776
    83.Cullen-L J,Huff W D.Correlation of Chamlinian(Middle Ordovician)K-bentonite beds in central Pennsylvania based on chemical fingerpring.J.Geol,1986,94:865-874
    84.Davis C,Pratt L,Silter W,etal.Factors influencing organic carbon and trace metal accumulation in the upper Cretaceous La Luna Formation of the western Maracaibo Basin,Venezuela.Denver:Special Paper 332 of Geological Society of America,1999:203-230
    85.Desmares D,Grosheny D,Beaudoin B,et al.High resolution stratigraphic record constrained by volcanic ash beds at the Cenomanian-Turonian boundary in the Western Interior basin,USA.Cretaceous research,2007,28:561-582
    86.Doe B.R,Zartman R.E.Plumbotectonics l,the Phanerozoic.In:Barnes H L.ed.Geochemistry of Hydrothermal Ore Deposits,2~(nd)Ed.,Holt,Rinehart and Winston,New York.1979,22-70
    87.Dong H L,Hall C M,Halliday A N,et al.40Ar/39Ar illite dating of Late Caledonian(Acadian) metamorphism and cooling of K-bentonites and slates from the Welsh basin, U.K. Earth and Planetary Science Letters. 1997, 150: 337-351
    88. Fisher R V, Schmincke H-U, Pyroclastic Rocks. Berlin: Springer-Verlag, 1984
    89. Foreman B.Z, Rogers R.R, Deino A.L, et al. Geochemical characterization of bentonite beds in the two Medicine Formation (Campanian, Montana), including a new ~(40)Ar/~(39)Ar age. Cretaceous Research, 2007, doi:10.1016/j.cretres.2007.07.001
    90. Graham R.D, Langhorne B.S. Structurally controlled hydrothermal dolomite reservoir fades: An overview. AAPG Bulletin, 2006, 90(11):1640-1690
    91. Grevenitz P, Carr P, Hutton A. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia. International Journal of Coal Geology, 2003, 55: 27-46
    92. Haskin L.A, Haskin M.A, Frey F.A, et al. Relative and absolute terrestrial abundances of the rare earth. In: Ahrens L.H.(ed.), Origin and distribution of the elements, Oxford: Pergamon, 1968,1:889-911
    93. He Bin, Xu Yi-Gang, Huang Xiao-Long, et al. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei formation and clay tuff at the Chaotian section. EPSL, 2007, 255: 306-323
    94. Helge J.H, Harald F, Ole J. M. Paleogene tuffaceous intervals, Grane Field (Block 25-11), Norwegian North Sea: their depositional, petrographical, geochemical character and regional implications. Marine and Petroleum Geology, 2000,17(1): 101-118
    95. Hints R, Kirsimae K, Somelar P, et al. Chloritization of Late Ordovician K-bentonites from the northern Baltic Palaeobasin-influence from source material or diagenetic environment? Sedimentary geology, 2006, 191: 55-66
    96. Huff W D, Kolata D R. Correlation of K-bentonite beds by chemical fingerprinting using multivariate statistics. In: Cross, T.A(Ed.), Quantitative Dynamic stratigraphy. Prentice Hall, Englewood Cliffs, NJ, 1989, 567-577
    97. Huff, W.D., Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quaternary International. 2007, doi:10.1016/j.quaint.2007.04.007
    98. Inglezakis V.J, Stylianou M.A, Gkantzou D, et al. Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 2007, 210: 248-256
    99. Kauffman E.G Concepts and methods of high-resolution event stratigraphy. Annual Review Earth Planet Science, 1988,16: 606-654
    100. Kolata D R, Forst J K, Huff W D. Chemical correlation applied to K-bentonite beds in the Middle Ordovician Decorah Subgroup, upper Mississippi Valley. Geology, 1987,15: 208-211
    101. Kramer W, Weatherall G, Offler R. Origin and correlation of tuffs in the Permian Newcastle and Wollombi Coal Measures, NSW, Australia, using chemical fingerprinting. International Journal of Coal Geology. 2001,47:115-135.
    102. Lewan M D. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta, 1984,48: 2231-2238
    103. Marfil R, Hall A, Garcia-Gil S, et al. Petrology and geochemistry of diagenetically altered tuffaceous rocks from the middle Triassic of central Spain. Journal of Sedimentary Research. 1998, 68(3): 391-403
    104. Marshall B D, Kyser T K, Peterman Z E. Oxygen isotopes and trace elements in the Tiva Canyon tuff, Yucca Mountain and vicinity, Nye country, Nevada. USGS Open-file report 95-431, Denver, Colorado, 1996, 1-49
    105. McLennan S.M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin B.R. and McKay G.A.(eds), Geochemistry and mineralogy of rare earth elements. Rev. Mineral. 1989,21:169-200
    106. Muchangos A C. The mobility of rare-earth and other elements in the process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic) Mountainous Chain, Mozambique. Journal of Geochemical Exploration, 2006, 880: 300-303
    107. Mulder T. Classification of offshore mass movements. Journal of Sedimentary Research, 1996, 66(1): 43-57
    108. Mutakyahwa MKD. Mineralogy and chemistry of bentonite (?) deposits at Minjingu, Lake Manyara, North Tanzania. Journal of African Earth Science. 2002, 34: 213-221
    109. Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982,299: 715-717
    110. Neymark L A, Marshall B D, Kwak L M, et al. Geochemical and Pb, Sr, and O isotopic study of the Tiva Canyon tuff and topopah spring tuff, Yucca Mountain, Nye country, Nevada. USGS Open-file report 95-431, Denver, Colorado, 1995,1-17
    111. Norden B, Forster Andrea. Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. AAPG Bulletin, 2006,90(6): 939-962
    112. O'Brien R.T. Classification of tuff. Journal of sedimentary petrology. 1963, 33:234-235
    113. Olsen P.E. Giant lava flows, mass extinction, and mantle plumes. Science, 1999, 284: 604-605
    114. Parker G. Conditions for the ignition of catastrophically erosive turbidity currents. Marine Geology, 1982, 46: 302-327
    115. Pearce J A. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S (ed.), Andesits. Chichester: Wiley, 1982,525-548
    116. Pearce J A, Harris, N., Tindle, A., Trace element discrimination diagrams for the tectonic interpretation of granite rocks. J. Petrol. 1984,15:956-983
    117. Pearce J.A, Norry M.J. Petrogenetic implication of Ti, Zr, Y, Nb variations in volcanic rocks. Contib. Mineral. Petrol, 1979, 69: 33-47
    118. Pearce. J. A and Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 1973,19: 190-200
    119. Rampino M.R, Stothers R.B. Flood basalt volcanism during the past 250 million years. Science, 1988,241:663-668
    120. Raul B, Javier G G, Francisco J V-F, et al. Mineralogy, geochemistry and use of the mordenite-bentonite ash-tuff beds of Los Escullos, Almeria, Spain. Journal of Geochemical Exploration. 1998, 62: 229-240
    121. Richardson S.W, Oxburgh E.R. Heat flow, radiogenic heat production and crustal temperatures in England and Wales. Journal of geological society, London. 1978, 135: 323-337
    122. Roberts B, Merriman R T. Cambrian and Ordovician metabentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Palaeozoic welsh marginal basin. Geology Magzine, 1990, 127( 1): 31 -43
    123. Salvatore C, Kathleen M.M, Cathy J.B. Tectonic history of a Jurassic backarc-basin sequence (the Gran Canon Formation, Cedros Island, Mexico), based on compositional modes. GSA Bulletin, 2002, 114(5): 515-527
    124. Sant'Anna L.G, Clauer N, Cordani U.G, et al. Origin and migration timing of hydrothermal fluids in sedimentary rocks of the Parana Basin, South America. Chemical geology, 2006, 230: 1-21
    125. Tuli S. Nuclear wallet cards. Natural Nuclear Data Center, Brookhaven National Laboratory, 1985,55
    126. Wignall P.B. Large igneous provinces and mass extinctions. Earth science review, 2001, 53: 1-33
    127. William C S. Home J L, David C T, et al. Sediment mass-flow processes on a depositional lobe outer Mississippi fan. Journal of Sedimentary Research, 1996,66(5): 916-927
    128. Wood D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary vocanic province. EPSL, 1980, 50: 11-30
    129. Xu Y.G, He B, Chung S.L, et al. The geologic, geochemical and geophysical consequences of plume involvement in the Emeishan flood basalt province. Geology, 2004, 30: 917-920
    130. Zheng Y.F, Wang Z. R, Li S.G, et al. Oxygen isotope equilibrium between eclogite minerals and its constraint on mineral Sm-Nd chronometer. Geochimica et Cosmochimica Acta, 2002, 66(4): 625-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700