用户名: 密码: 验证码:
电场调控下合金凝固微观行为同步辐射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合金的宏观力学性能与其微观组织紧密相关,而微观组织演变主要受控于凝固过程。电场通过作用于合金熔体的力与热来改变合金凝固过程的热力学与动力学,是一种先进而有效的凝固过程调控手段。探究电场调控下合金凝固微观行为,深入系统地研究凝固过程的动力学机制,从而为科学合理地制定凝固参数提供理论依据。
     传统的实验研究方法是借助金相显微镜、扫描电镜等对淬火后的凝固组织进行观察和分析,但仅可以得到某一特定时刻某一截面的微观组织特征,这样势必会错失一些重要的凝固过程动态信息。高能同步辐射硬X射线原位成像技术的出现为研究合金凝固过程动态行为提出了新的思路和技术途径。利用具有高亮度、高能量、高分辨率的同步辐射X射线光源以及具有高速读写的CCD成像系统,能够对合金凝固过程中微观组织演变的动态过程进行实时成像。其成像结果可为合金凝固过程微观行为及内在机制的研究提供直观的实验数据。本文应用同步辐射实时成像技术,原位研究了电场调控下Sn-Pb、 Sn-Bi合金的枝晶生长行为以及A1-Bi难混溶合金的液液相变/分离过程,深入理解了电场调控下枝晶生长与两相分离的动力学机制。
     研究了直流电场对Sn-Pb合金的枝晶生长形貌和生长速率的影响。实时成像结果表明,由电场产生的洛伦兹力驱动的熔体流动能够冲刷枝晶的底部和侧枝,减少其周围的溶质富集,使得枝晶臂在各个方向均衡发展,大大减弱了枝晶的“自我中毒”现象(即枝晶臂生长不均衡),最终呈现出近似于规则的等轴晶形貌。同时发现电流的作用会改变枝晶生长前沿的溶质分布,使得邻近的枝晶彼此之间通过溶质扩散层相互干扰,从而降低了生长速率,并提前终止了枝晶的自由生长。
     研究了直流电场对Sn-Bi合金凝固过程的影响。实验结果发现,由于固液相之间电导率的差异,电流聚集于枝晶尖端,枝晶尖端以分散聚集电流(降低焦耳热)的自我调节方式来维持继续生长,尖端形状呈圆润或平直形貌。在施加直流电场的熔体中并且存在温度梯度情况下,熔体中会产生具有一定扰动性的电磁体积力,加之自然对流和溶质偏析导致的密度差,驱使上浮枝晶发生明显的大角度旋转。
     在凝固过程中的不同阶段施加脉冲电流对Sn-Bi合金的凝固组织有很大的影响。成像结果表明,在Sn-Bi合金的整个凝固过程持续施加脉冲电流时,经历了长时间的孕育形核期后,枝晶在很短的时间内迅速形核与生长,一次枝晶细化现象非常明显。仅在形核过后的枝晶生长阶段施加脉冲电流时,已经长大的枝晶先被脉冲电流加热重熔,而后重新凝固生长的枝晶仍然在原来的枝晶臂位置处生长,呈现一定的金属遗传性特征,并且未观察到一次枝晶细化现象,实时成像印证了脉冲电流施加时机的重要性。
     对Al-Bi难混溶合金凝固过程中第二相液滴的微观行为进行了原位观察。证实了两个半径尺寸相近的液滴之间是以碰撞的形式发生聚合进而粗化成一个接近于椭圆形的液滴;半径尺寸相差悬殊的液滴之间是通过尺寸较大的液滴慢慢吞并周围无数的小液滴而发生Oswald熟化,形成一个近似于圆形的液滴。
     原位观察了脉冲电流对Al-Bi难混溶合金第二相液滴微观行为的影响。结果表明,施加脉冲电流后,在液液相难混溶区中分离出的富Bi液滴不再是圆球形貌,而是凝聚成许多云状的大团簇。第二相液滴因为受到Marangoni力和电磁挤压力的共同影响而沿着两力的合力方向运动,最终在基体中形成了一个明显的倒三角形状。
     基于同步辐射X射线三维CT成像技术研究了Al-Bi难混溶合金第二相颗粒的三维形貌及分布特征,同时考察了三种不同晶粒细化剂Al-3B、Al-5Ti-B和Al-3Ti对第二相颗粒的影响。三维重构结果可清晰地显示Al-Bi难混溶合金的内部结构信息,结果表明A1-3B和Al-5Ti-B细化剂对Al-Bi难混溶合金凝固组织细化的效果不明显,球形的第二相颗粒尺寸较大且在基体中分布不均匀。经Al-3Ti细化的第二相颗粒尺寸较小,颗粒三维形貌呈球形,而且均匀弥散地分布在基体中,在所选的几种细化剂中对Al-Bi难混溶合金凝固组织的细化效果最优。
Macroscopical mechanical properties of alloys mainly depend on its microstructure. The solidification process plays a dominate role in the evolution of microstructure. Electric field is an advanced and effective methold to vary thermodynamics and kinetics during solidification of alloys by affecting the force and heat in alloy melt. It is helpful to study the kinetics mechanism of microstructure under electric field based on probing microscopic behavior of alloys with electric field treatment during solidification. Accordingly, it can provide theoretical proofs to scientifically and reasonably work out electric field parameters.
     The conventional experimental methods are based on scanning electron microscope (SEM) and transmission electron microscope (TEM) to observe and analyze the final solidification structure after complete solidification or interrupting solidification by quenching. It can be only obtained the characters of microstructure in the particular moment and the particular section. It will lead to the missing of some crucial dynamic information during solidification process. Synchrotron radiation real-time in situ imaging technology raises a new research idea and opens a novel window for the study on dynamic solidification process of alloys. This method, which utilizes the high brightness, energy and resolution synchrotron radiation X-ray source combined with a high fast-readout charge coupled device (CCD) could capture many dynamic process of microstructure evolution during solidification process of alloys and real-time record the whole solidification process of alloys. The real-time imaging results can offer the direct proofs to investigate microscopic behavior and intrinsic mechanism during solidification of alloys. In present work, the study of the microscopic behavior in Sn-Pb, Sn-Bi alloys and the liquid-liquid phase transformation and separation in Al-Bi alloys during solidification process with electric field treatment has been achieved by synchrotron radiation X-ray real-time in situ imaging technology. The kinetics mechanism of dendrites growth and two-phase separation under eceltric field has been understood in depth.
     The modification of dendrite growth morphology and growth rate in Sn-Pb alloy with direct current (DC) treatment has been studied. The results show that the Lorentz force generated by DC washes the sides and underpart of the dendrites, which decreases the solute concentration nearby. The dendrites in every direction grow with the same rate and the dendrite "self-poisoning" is thus weakened. Finally, a nearly regular equiaxed dendrite appears. Meantime, it is clear that the electric current can vary solute distribution ahead of dendrite growth front. The neighbouring dendrites growth will be affected by solute diffusion layer. Consequently, the growth rate decteases and dendrite growth stops ahead of time.
     The influence of DC on the solidification process of Sn-Bi alloy is observed. The results demonstrate that the electric current will gather on the dendrite tip due to the difference of conductivity between solid and liquid phase. The sharp tip tends to be round or flat with an ability of self-adjustment to scatter the electric current for reducing Joule heat in order to keep growing. When the melt with temperature gradient subjected to the case of direct current, an electrical body force appears which can disturb the melt intensively, together with natural convection and density difference caused by solute segregation, leading to the floating dendrite rotate obviously.
     The effect of electric current pulse (ECP) on microstructure of Sn-Bi alloy during different solidification stages has been investigated. When ECP was imposed on the whole solidification process, dendrites break out to grow with a large growth rate in such a short time after the long nucleation incubation period. It can be seen that the refinement of Sn-Bi alloy is clear. When ECP was imposed only on the stage of dendrite growth, the grown dendrites are melted due to the heat effect of ECP. As the solidification proceeding, the melted dendrites reappear based on the previously growing trajectories and present hereditary character. However, no refined dendrites can be found in this experiment. The imaging experiments confirme the importance of time to impose ECP.
     The microscopic behavior of second-phase droplets in Al-Bi immiscible alloy during solidification process is in situ observed. It is demonstrated that the droplets with little difference in radius size collide with each other to form a new ellipse-like droplet. While the Swald coarsening occurred among droplets with extreme difference in radius size. The bigger droplet gradually engulfs a great number of droplets around it and form a nearly rounded droplet with tremendous radius.
     The influence of ECP on microscopic behavior of second-phase droplets in Al-Bi immiscible alloy has been investigated. It is clear that the separated Bi-rich droplets form lots of big clusters which are no longer the sphere in shape but the cloud morphology. Due to the effect of Marangoni force and electromagnetic pinch force, the second-phase droplets move along the direction of their resultant force and form an inverted triangle shape in the Al matrix finally.
     Based on synchrotron tomography imaging technology, the three-dimensional morphology and distribution of second-phase particles in Al-Bi immiscible alloy have been studied. Meanwhile, the effect of A1-3B, Al-5Ti-B and Al-3Ti grain refiner on Al-Bi immiscible alloy has been probed. After restructuring the solidification microstructure of the alloys, it is found that A1-3B and Al-5Ti-B can refine Al-Bi alloy, but the second-phase particles distribute inhomogeneously in matrix and the larger particles still exist. After Al-3Ti grain refiner added, not only second-phase particles appear as spherical morphology with tiny radius size, but also distribute homogeneously in matrix. The refining effect of Al-3Ti on Al-Bi immiscible alloy is excellent.
引文
[1]BOETTINGER W J, CORIELL S R, GREER A L, et al. Solidification microstructures: recent developments, future directions [J]. Acta Materialia,2000,48:43-70.
    [2]ZHU M F, LEE S Y, HONG C P. Modified cellular automaton model for the prediction of dendritic growth with melt convection [J]. Physical Review E,2004,69:061610.
    [3]郑红星,马伟增,郭学锋,等.偏晶合金凝固研究进展[J].稀有金属材料与工程,2004,33(8):893-896.
    [4]宋涛,王同敏,赵九洲,等.均质难混溶合金制备技术研究进展[J].铸造,2007,56(10):1025-1030.
    [5]何杰,赵九洲,王晓峰,等.Al-Bi难混溶合金快速连续凝固的实验研究[J].金属学报,2006,42(1):67-72.
    [6]WANG N, WEI B. Phase separation and structural evolution of undercooled Fe-Sn monotectic alloy [J]. Materials Science and Engineering,2003, A 345:145-154.
    [7]STOCKER C, RATKE L. A new "Jackson-Hunt" model for monotectic composite growth [J]. Journal of Crystal Growth,1999,203:582-593.
    [8]RATKE L, DIEFENBACH S. Liquid immiscible alloys [J]. Materials Science Engineering R:Reports,1995,15:263-347.
    [9]JIA J, ZHAO J Z, GUO J J, et al. Immiscible Alloy and Preparation Technology [M]. Harbin.-Harbin Institute of Technology Press,2002:1.
    [10]RUDRAKSHI G B, SRIVASTAVA V C, PATHAK J P, et al. Spray forming of Al-Si-Pb alloys and theit wear characteristics [J]. Materials Science Engineering A,2004, 383:30-38.
    [11]HE J, ZHAO J Z. Microstructures of rapidly solidified Cu-Fe immiscible alloy [J]. Acta Metallurgica Sinica,2005,41(4):407-410.
    [12]HE J, ZHAO J Z. Behavior of Fe-rich phase during rapid solidification of Cu-Fe hypopertectic alloy [J]. Materials Science Engineering A,2005,404:85-90.
    [13]HE J, ZHAO J Z, Wang X F, et al. Microstructure development in finely atomized droplets of cooper-iron alloys [J]. Metallurgical and Materials Transactions A, 2005,36:2449-2454.
    [14]MATHIESEN R H, ARNBERG L, MO F, et al. Time Resolved X-Ray Imaging of Dendritic Growth in Binary Alloys [J]. Physical Review Letters,1999,83:5062-5065.
    [15]LACOMBE J C, KOSS M B, FRADKOV V E, et al. Three-dimensional dendrite-tip morphology [J]. Physical Review E,1995,52:2778-2786.
    [16]朱鸣芳,于金,洪俊杓.金属凝固显微组织的计算机模拟[J].中国工程科学,2004,6(5):8-16.
    [17]朱昌盛,王智平,荆涛,等.对流影响枝晶生长的相场法模拟研究进展[J].材料导报,2004,18(12):26-28.
    [18]WU M H, LUDWIG A. Influence of Phase-Transport Phenomena on Macrosegregation and Structure Formation During Solidification [J]. Advanced Engineering Materials, 2003,5:62-66.
    [19]HUO Y, LI B Q. Surface deformation and convection in electrostatically-positioned droplets of immiscible liquids under microgravity [J]. Journal of Heat Transfer, 2006,128:520-529.
    [20]WU M H, LUDWIG A, Ratke L. Modelling of Marangoni-Induced Droplet Motion and Melt Convection during Solidification of Hyoermonotectic Alloys [J]. Metallurgical and Materials Transactions A,2003,34A:3009-3019.
    [21]NESTLER B, WHEELER A A, RATKE L, et al. Phase-field model for solidification of a monotectic alloy with convection [J]. Physica D,2000,141:133-154.
    [22]RATKE L, ALKEMPER J. Modelling of phase separation in liquids with a miscibility gap [J]. Advance in colloid and interface science,1995,58:151-170.
    [23]ZHAO J Z, RATKE L. Modelling of rapid unidirectional solidification of hypermonotecitic alloys [J]. Materials letters,1999,38:235-238.
    [24]WU M H, LUDWIG A. Study of spatial phase separation during solidification and its impact on the formation of macrosegregations [J]. Materials Science and Engineering A,2005, A413-414:192-199.
    [25]RATKE L. Theoretical considerations and experiments on microstructural stability regimes in monotectic alloys [J]. Materials Science and Engineering A,2005, A413-414:504-508.
    [26]RATKE L. Coarsening of liquid Al-Pb dispersions under reduced gravity conditions [J]. Materials Science and Engineering A,2005, A203:399-407.
    [27]TONHARDT R, AMBERG G. Dendritic growth of randomly oriented nuclei in a shear flow [J]. Journal of Crystal Growth,2000,213:161-187.
    [28]LAN C W, HSU C M, LIU C C, et al. Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings [J]. Physical Review E,2002, 65:061601.
    [29]JEONG J H, DANTZIG J A, GOLDENFELD N. Dendritic growth with fluid flow in pure materials [J]. Metallurgical and Materials Transactions A,2003,34A:459-466.
    [30]朱鸣芳,戴挺,李成允,等.对流作用下枝晶生长行为的数值模拟[J].中国科学,2005,35(7):673-688.
    [31]CURRERI P A, KAUKLER W F. Real-time X-ray transmission microscopy of solidifying Al-In Alloys [J]. Metallurgical and Materials Transactions A,1996,27:801-808.
    [32]KAUKLER W F, ROSENBERGER F. X-ray microscopic observations of metal solidification dynamics [J] Metallurgical and Materials Transactions A,1994,25:1775-1777.
    [33]KAULER W F, ROSENBERGER F, CURREI P A. In situ studies of precipitate formation in Al-Pb monotectic solidification by X-ray transmission microscopy [J]. Metallurgical and Materials Transactions A,1997,28:1705-1710.
    [34]黄立国,张伟强.直流电场对Al-Cu共晶合金凝固组织的影响[J].材料工程,2004,10:36-41.
    [35]PFANN W G. Principles of field freezing [J]. Trans. Mer. Soc. AIME,1962, 224:1139-1141.
    [36]黄立国,高志玉.电场对Al-4%Si亚共晶合金凝固组织的影响[J].铸造,2009,58(1):14-17.
    [37]王劲,尹建军,丁雨田,等.直流电场对Zh27合金凝固组织的影响[J].铸造,2003,52(2):84-88.
    [38]田莉莉.脉冲电流作用下金属凝固组织的研究[D].山东:山东大学,2011.
    [39]廖希亮.脉冲电流对金属凝固组织的影响[D].上海:上海大学,2007.
    [40]CONRAD H. Effects of electric current on solid state phase transformations in metal [J]. Materials Science and Engineering A,2000,287:227-237.
    [41]CHANG G W, YUAN J P, WANG Z D, et al. Mechanism of reduction of columnar dendrite spacing in unidirectional solidification caused by electric current passing through solid-liquid interface [J]. Transactions of Nonferrous Metals Society of China,2000,10:610-613.
    [42]常国威,袁军平,王自东,等.电流密度对定向凝固组织中柱状晶间距的影响[J].金属学报,2000,36:30-32.
    [43]李珍玲,苍大强,崔衡,等.电流对金属熔体过冷度的影响[J].特种铸造及有色合金,2006,26:332-334.
    [44]崔衡,苍大强,李珍玲,等.液态下施加直流电对工业纯铝凝固组织的影响[J].铸造技术,2006,27:729-731.
    [45]黄立国,高志玉,张志明.直流电场对Al-10%Si亚共晶合金凝固组织的影响[J].铸造技术,2009,30:650-652.
    [46]徐前刚,武保林,万刚,等.直流电场对Al-4.5%Cu合金定向凝固组织的影响[J].航空材料学报,2006,26:16-19.
    [47]李万锋,杨院生,于力,等.直流电场作用对K417G镍基高温合金凝固组织的影响[J].材料工程,2001,9:7-13.
    [48]王劲,尹建军,丁雨田,等.ZA27合金在直流电流作用下的凝固行为[J].甘肃工业大学学报,2003,29:36-38.
    [49]VASHCHENKO K I, CHERNEGA D F, VOROBEV S L, et al. Effect of electric current on the solidification of cast iron [J]. Metal Science and Heat Treatment,1974,16: 261-265.
    [50]MISRA A K. Misra technique applied to solidification of cast iron [J]. Metallurgical Transactions A,1986,17:358-360.
    [51]NAKADA M, SHIOHARA Y, FLEMINGS M C. Modification of solidification structures by pulse electric discharging [J]. ISIJ International,1990,30:27-33.
    [52]LI J, MA J H, SONG C J, et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse [J]. Journal of iron and steel research International,2009,16:7-12.
    [53]郭丽丽,王倩,常国威.脉冲电场对Al-5.6%Cu合金柱状晶间距的影响[J].铸造,2004,53:531-533.
    [54]鄢红春,何冠虎,周本濂,等.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报,1997,33:352-358.
    [55]陈文杰,廖希亮,甘长红,等.脉冲电流对Al-4.5%Cu合金定向凝固组织的影响[J].特种铸造及有色合金,2006,26:523-525.
    [56]钱章秀,王海川,廖直友,等.脉冲电场及电极施加方式对铝合金凝固组织的影响研究[J].内蒙古科技大学学报,2012,31:279-283.
    [57]何丽佳,王建中,张震斌,等.脉冲电场对KS282合金凝固组织的影响[J].特种铸造及有色合金,2007,27:342-343.
    [58]张旺胜,廖直友,闵常杰,等.脉冲电场对普碳钢凝固组织的影响[J].宽厚板,2007,13:1-4.
    [59]ZI B T, YAO K F, LIU W J, et al. Effect of higher density pulsed current on solidification structures of 2024 Al-alloy [J]. Rare Metal Materials and Engineering,2003,32:9-12.
    [60]周全,杨院生.低压脉冲电场下纯铝的晶粒细化[J].热加工工艺,2006,35:16-18.
    [61]冼鼎昌.同步辐射光源史话[J].现代物理知识,1992,1:12-14.
    [62]马礼敦,杨福家.同步辐射应用概论[M].上海:复旦大学出版社,2001:1.
    [63]杨传铮,程国锋,黄月鸿.同步辐射的基本知识[J].理化检验-物理分册,2008,44:28-32.
    [64]何多慧.同步辐射光源的发展和展望[J].强激光与粒子束,1990,2(4):387-400.
    [65]赵传荣,赵屹东.同步辐射技术应用发展简介[J].呼伦贝尔学院学报,2006,14(2):57-59.
    [66]徐彭寿,潘国强.同步辐射应用基础[M].合肥:中国科学技术大学出版社,2009:1-3.
    [67]曾昭权.同步辐射光源及其应用研究综述[J].云南大学学报(自然科学版),2008,30(5):477-483.
    [68]刘祖平.同步辐射光源物理引论[M].合肥:中国科学技术大学出版社,2009:6-16.
    [69]谭伟石,蔡宏灵,吴小山,等.同步辐射光源简介[J].常数理工学院学报,2006,20(2):84-101.
    [70]齐日迈拉图.同步辐射的特性[J].呼伦贝尔学院学报,2006,14(4):62-64.
    [71]渡边诚,佐藤繁.同步辐射科学基础[M].上海:上海交通大学出版社,2010:6-10.
    [72]冼鼎昌.同步辐射现状和发展[J].中国科学基金,2005,6:321-325.
    [73]吴苍生.同步辐射的特性和应用[J].物理,1985,1:1-7.
    [74]唐福元.同步辐射的发现、特性及其应用领域的开拓[J].物理与工程,2004,3:34-38.
    [75]姜晓明.同步辐射X射线成像和中子成像的应用及发展[J].第九届全国X射线衍射学术大会暨国际衍射数据中心(ICDD)研讨会论文摘要集,2006:1.
    [76]MACCHIARELLI R, BONDIOLI L, DEBENATH A, et al. How Neanderthal molar teeth grew. Nature,2006,444:748-751.
    [77]陈建文,高鸿奕,朱化凤,等.硬x射线相衬成像技术[J].自然杂志,2005,27:139-144.
    [78]YASUDA H, INOUE K, MINAMI Y, et al. The 7th International Conference on Electromagnetic Processing of Materials, Beijing, China,2012 [C]. Journal of Iron and Steel Research (Supplement),2012.
    [79]MIRIHANGE W U, ARNBERG L, MATHIESEN R H. International Conference on Modelling of Casting and Advanced Solidification Processes, Schladming of Austria,2012 [C]. IOP Conference Series:Materials Science and Engineering,2012.
    [80]SHEVCHENKO N, ECKERT S, BODEN S, et al. International Conference on Modelling of Casting and Advanced Solidification Processes, Schladming of Austria,2012 [C]. IOP Conference Series:Materials Science and Engineering,2012.
    [81]LIMODIN N, SALVO L, BOLLER E, et al. In situ and real time 3-D microtomogtaphy investigation of dendritic solidification in an Al-10wt.% Cualloy [J]. Acta materialia,2009,57:2300-2310.
    [82]REEVES J J, KATTAMIS T Z. A model for isothermal dendritic coarsening [J]. Scripta Metallurgica,1971,5:223-229.
    [83]WHISLER N J, KATTAMIS T Z. Dendrite coarsening during solidification [J]. Journal of Crystal Growth,1972,15:20-24.
    [84]PETERSON P W, KATTAMIS T Z, Giamei A F. Coarsening kinetics during solidification of Ni-Al-Ta dendritic monocrystals [J]. Metallurgical and Materials Transactions A,1980,11:1059-1065.
    [85]CHEN M, KATTAMIS T Z. Dendrite coarsening during directional solidification of Al-Cu-Mn alloys [J]. Materials Science and Engineering A,1998,247:239-247.
    [86]MORTENSEN A. On the influence of coarsening on microsegregation [J]. Metallurgical and Materials Transactions A,1989,20:247-253.
    [87]LUDWIG 0, DIMICHIEL M, SALVO L, et al. In-situ Three-Dimensional Microstructural investigation of Solidification of an Al-Cu Alloy by Ultrafast X-Ray Microtomography [J].Metallurgical and Materials Transactions A,2005, 36A:1515-1523.
    [88]RAPPAZ M, JACOT A, BOETTINGER W J. Last-stage solidification of alloys:Theoretical model of dendrite-arm and grain coalescence [J]. Metallurgical and Materials Transactions A,2003,34A:467-479.
    [89]SCHAFFER P L, MATHIESEN R H, ARNBERG L. Liquid decomposition, droplet coagulation and droplet-interface interactions in hypermonotectic Al-Bi alloys [J]. Transactions of The Indian Institute of Metals,2009,62:437-442.
    [90]SCHAFFER P L, MATHIESEN R H, ARNBERG L, et al. In situ investigation of spinodal decomposition in hypermonotectic Al-Bi and Al-Bi-Zn alloys [J]. New Journal of Physics,2008,10:053001-1-16.
    [91]SCHAFFER P L, MATHIESEN R H, ARNBERG L. L2 droplet interaction with a-Al during solidification of hypermonotectic Al-8 wt.% Bialloys [J]. Acta Materialia,2009, 57:2887-2895.
    [92]SCHAFFER P L, MATHIESEN R H, ARNBERG L. Modeling of Casting, Welding and Advanced Solidification Processes-XI, Club Mediterranee, Opio, France,2006 [C]. The Minerals, Metals & Materials Society,2006.
    [93]THI H H, REINHART G, BUFFET A, et al. In situ and real-time analysis of TGZM phenomena by synchrotron X-ray radiography [J]. Journal of Crystal growth,2008 310:2906-2914.
    [94]Halder E, Exner H E. Coarsening of sencondary dendrite arms in a temperature gradient [J]. Acta Metallurgica,1988,36:1665-1668.
    [95]TURKELI A. Simple Analytical Models for Dendrite Arm Coarsening under High and Medium Temperature Gradients [J]. Materials Science Forum,2006,508:331-336.
    [96]TURKELI A. Proceedings of the fifth Decennial Conference on Solidification Processing, UK,2007[C]. University of Sheffield, UK,2007.
    [97]KAHLWEIT M. On the ageing of dendrites [J]. Scripta Metallurgica,1968,2:251-254.
    [98]KATTAMIS T Z, COUGHLIN J C, FLEMINGS M C. Influence of coarsening on dendrite arm spacing of Aluminum-Copper alloys [J]. Transactions of the metallurgical society of AIME,1967,239:1504-1512.
    [99]LI B, BRODY H D, KAZIMIROV A. Synchrotron Microradiography of Temperature Gradient Zone Melting in Directional Solidification [J]. Transactions of The Indian Institute of Metals,2006,37A:1039-1044.
    [100]LI B. Real time Microradiography of Dendrite Growth and Coarsening in Sn-13%Bi Alloy [D]. State of Connecticut:University of Connecticut,2004.
    [101]XU J J, WANG T M, ZHU J, et al. In situ study on secondary dendrite arm coarsening of Sn-Bi alloy by synchrotron microradiography [J]. Materials Research Innovations,2011,15:156-159.
    [102]许菁菁.金属合金凝固枝晶生长同步辐射实时成像研究[D].大连:大连理工大学,2010.
    [103]DONG Q, ZHANG J, DONG J F, et al. Anaxial columnar dendrites in directional solidification of an Al-15wt.% Cualloy [J]. Materials letters,2011,65:3295-3297.
    [104]东青Al-Cu合金定向凝固过程中的形态演化[D].上海:上海交通大学,2011.
    [105]王晓东,曾桥石,蒋建中.同步辐射技术在无序合金结构与性能研究中的应用[J].物理,2009,38:489-495.
    [106]MA H T, QU L, HUANG M L, et al. In-situ study on growth behavior of Ag3Sn in Sn-3.5Ag/Cu soldering reaction by synchrotron radiation real-time imaging technology [J]. Journal of Alloys and Compounds,2007,443:94-98.
    [107]于健.硬X射线衍射增强成像CT[D].大连:大连理工大学,2006.
    [108]DAVID C, NOHAMMER B, SOLAK H H, et al. Differential X-ray phase contrast imaging using a shearing interferometer [J]. Applied Physics Letters,2002,81:3287-3289.
    [109]BONSE U, HART M. An X-ray interferometer [J]. Applied Physics Letters,1965, 6:155-56.
    [110]INGAL V N, BELIAEVSKAYA E A. X-ray plane-wave topography observation of the phase contrast from a non-crystalline object [J]. Journal of Physics D:Applied Physics, 1995,28:2314-2317.
    [111]DAVIS T J, GUREYER T E, GAO D, et al. X-ray image contrast from a simple phase object [J]. Applied Physics Letters,1995,74:3173-3176.
    [112]黄志峰.衍射增强成像的相位信息提取[D].北京:清华大学,2006.
    [113]CHAPMAN L D, THOMLINSON W C, JOHNSTON R E, et al. Diffraction enhanced x-ray imaging [J]. Physics in Medicine and Biology,1997,42:2015-2025.
    [114]DAVIS T J, GAO D, GUREYEV T E, et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays [J]. Nature,1995,373:595-598.
    [115]WILKINS S W, GUREYEV T E, GAO D, et al. Phase-contrast imaging using polychromatic hard X-rays [J]. Nature,1996,384:335-338.
    [116]MOMOSE A, TAKEDA T, ITAI Y, et al. Phase-contrast X-ray computed tomography for observing biological soft tissues [J]. Nature Medicine,1996,2:473-475.
    [117]HTRANO K, MOMOSE A. Investigation of the phase shift in x-ray forward diffraction using an x-ray interferometer [J]. Physical Review Letters,1996,76:3735-3737.
    [118]MARGARRITONDO G, TROMBA G. Coherence-based edge diffraction sharpening of X-ray images:a simple model [J]. Journal of Applied Physics,1999,85:3406-3408.
    [119]HWU Y, HSIEH H, LU M J, et al. Coherence-enhanced synchrotron radiology:Refraction versus diffraction mechanisms [J]. Journal Applied Physics,1999,86:4613-4618.
    [120]DILMANIAN F A, ZHONG Z, REN B, et al. Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method [J]. Physics in Medicine and Biology,2000,45:933-946.
    [121]TSAI W L, HSU P C, HWU Y, et al. Electrochemistry:Building on bubbles in metal electrodeposition [J]. Nature,2002,417:139.
    [122]朱佩平,袁清习,黄万霞.衍射增强成像原理[J].物理学报,2006,55(3):1089-1098.
    [123]朱佩平,袁清习,田玉莲等.X射线衍射增强相衬成像的实验结果[J].光学学报,2004,24(8):1151-1152.
    [124]朱佩平,袁清习,田玉莲,等.两块晶体衍射增强成像方法研究[J].物理学报,2005,54(1):58-63.
    [125]黄万霞,袁清习,田玉莲,等.同步辐射硬X射线衍射增强成像新进展[J].物理学报,2005,54(2):677-681.
    [126]彭屹峰.相位衬度医学成像的实验研究[D].上海:复旦大学,2006.
    [127]李晨.类同轴法X射线相衬成像的质量评价和图像处理的研究[D].北京:清华大学,2007.
    [128]许菁菁,王同敏,谢红兰,等[J]. Sn-12%Bi合金二次枝晶生长行为的实时成像[J].核技术,2010,33(6):447-450.
    [129]SNIGIREV A, SNIGIREVA I, KOHN V, et al. On the possibilities of x-ray phase constrast microimaging by coherent high-energy synchrotron radiation [J]. Review of Scientific Instruments,1995,66:5486-5492.
    [130]陈建文,高鸿奕,朱化凤,等.硬x射线相衬成像技术[J].自然杂志,2005,27(3):139-143.
    [131]陈建文,高鸿奕,孪儒新,等.X射线相衬成像[J].物理学进展,2005,25(2):175-194.
    [132]CONRAD H. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid [J]. Materials Science and Engineering A,2000,287:205-212.
    [133]CHANG G W, YUAN J P, WANG Z D, et al. Mechanism of reduction of columnar dendrite spacing in undirectional solidification caused by electric current passing through solid-liquid interface [J]. Transactions of Nonferrous Metals Socciety of China, 2000,10:610-613.
    [134]LI F, REGEL L, WILCOX W R. The influence of electric current pulses on the microstructure of the MnBi/Bi eutectic [J]. Journal of Crystal Growth,2001, 223:251-64.
    [135]ZHANG W, WU B, ZHANO W S, et al. Formation of novel p-Ti martensites in Ti-6A1-4V under an electric-current-pulse heat treatment [J]. Materials Science and Engineering A,2006,438-440:320-323.
    [136]LIAO X L, ZHAI Q J, SONG C, et al. Effects of electric current pulse on stability of solid/liquid interface of Al-4.5wt.% Cu alloy during directional solidification [J]. Materials Science and Engineering A,2007,466:56-60.
    [137]DELVILLE R, MALARD B, PILCH J, et al. Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy [J]. Acta Materialia,2010. 58:4503-4515.
    [138]MA J H, LI J, GAO Y L, et al. Grain refinement of pure Al with different electric current pusle modes [J]. Materials Letters,2009,63:142-144.
    [139]REINHART G, MANGELINCK-NOEL N, NGUYEN-THI H, et al. Investigation? of columnar-equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography [J]. Materials Science and Engineering A,2005,413-414:384-8.
    [140]YASUDA H, OHNAKA I, KAWASAKI K, et al. Direct observation of stray crystal formation in unidirectional solidification of Sn-Bi alloy by X-ray imaging [J]. Journal of Crystal Growth,2004,262:645-652.
    [141]RUVALCABA D, MATHIESEN R H, ESKIN D G, et al. In-s-itu analysis of coarsening during directional solidification experiments in high-solute aluminum alloys [J]. Merallurgical and Materials Transactions B,2009,40:312-316.
    [142]LI B, BRODY H, KAZIMIROV A. Real-time observation of dendrite coarsening in Sn-13%Bi alloy by synchrotron microradipgraphy [J]. Physical Review E,2004, 70:062602.
    [143]LI B, BRODY H D, BLACK D R, et al. Real time observation of dendritic solidification in alloys by synchrotron microradiography [J]. Journal of Physics D:Applied Physics,2006,39:4450-4456.
    [144]MATHIESEN R H, ARNBERG L. X-ray radipgraphy observations of columnar dendritic growth and constitutional undercooling in an Al-30%Cu alloy [J]. Acta Materialia, 2005,53:947-56.
    [145]BOGNO A, NGUYEN-THI H, BILLIA B, et al. In situ analysis of dendritic equiaxed microstructure formation in' Al-Cu alloys by synchrotron X-ray radiography [J]. Transactions of the Indian Institute of Metals,2009,62:427-31.
    [146]VERHOEVER J D. The effect of an field upon solute redistribution during solidification of Bi-Sn alloy [J]. Transactions of the metallurgical society of AIME,1967,239:694-702.
    [147]FENG X H, YANG Y S. Numerical modeling of crystal growth of a nickel-based superalloy with applied direct current [J]. Journal of Crystal Growth,2011, 334:170-176.
    [148]何树先,王俊,周尧和.电流在金属凝固过程中应用[J].特种铸造及有色合金,2001,5:28-31.
    [149]郭景杰,李新中,苏彦庆,等.二元合金等轴晶生长相场模拟[J].特种铸造及有色合金,2003,6:1-5.
    [150]WANG H P, YAO W J, WEI B. Remarkable solute trapping within rapidly growing dendrites [J]. Applied Physics Letters,2006,89:201905.
    [151]王同敏,朱晶,陈宗宁,等.电场调控下合金凝固过程枝晶形貌演变同步辐射原位成像.中国科学:物理科力学天文学,2011,41:23-28.
    [152]CORIELL S R, MCFADDEN G B, WHEELER A A, et al. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary of a binary alloy II:Joule heating and thermoelectric effects [J]. Journal of Crystal Growth, 1989,94:344-346.
    [153]MULLINS W W, SAKERKA R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. Journal of Applied Physics,1964,35:444-451.
    [154]KURZ W, FISHER D J. Fundamentals of Solidification [M]. Trans Tech Publications Ltd,1992:80-85.
    [155]李建国,胡侨丹.凝固原理[M].北京:高等教育出版社,2010:69-71.
    [156]MELCHER J R, FIREBAUGH M S. Traveling-Wave bulk electroconvection induced across a temperature gradient [J]. Physics of Fluids,1967,10:1178-1185.
    [157]CHANG M H, RUO A C, CHEN F, et al. The effect of Joule-heating-induced buoyancy on the electrohydrodynamic instability in a fluid layer with electrical conductivity gradient [J]. Intertional Journal of Heat Mass Transfer,2011, 54:3837-3845.
    [158]BURDEN M H, HUNT J D. Cellular and dendritic growth II [J]. Journal of Crystal Growth,1974,22:109-116.
    [159]KURZ W K, FISHER D J. Dendrite growth at the limit of stability:Tip radius and spacing [J]. Acta Materialia,1981,29:11-20.
    [160]TRIVEDI R. Theory of dendritic growth during the directional solidification of binary alloys [J]. Journal of Crystal Growth,1980,49:219-232.
    [161]林鑫,黄卫东,潘清跃,等Al-4.5Cu单晶定向凝固一次枝晶间距研究[J].金属学报,1997,33:1140-1146.
    [162]CETIN B, LI D Q. Effect of Joule heating on electrokinetic transport [J]. Electrophoresis,2000,29:994-1005.
    [163]LIAO X L, ZHAI Q J, LUO J, et al. Nucleation and thickening of shear band in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation [J]. Acta Materialia,2007,55:3103-3109.
    [164]LI Y J, TAO W Z, YANG Y S. Grain refinement of Al-Cu alloy in low voltage pulsed magnetic field [J]. Journal of Materials Processing Technology,2012,212:903-909.
    [165]MISRA A K. A novel solidification technique of metals and alloys:Under the influence of applied potenital [J]. Metallurgical and Matrials Transactions A, 1985,16A:1354-1355.
    [166]LI J, MA J H, GAO Y J, et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes [J]. Materials Science and Engineering A,2008,490:452-456.
    [167]MA J H, LI J, GAO Y L, et al. Grain refienment of pure Al with different electric current pulse modes [J]. Materials Letters,2009,63:142-144.
    [168]TANAKA H. New coarsening mechanisms for spinodal decomposition having droplet pattern in binary fluid mixture:collision-induced collisions [J]. Physical Review Letters,1994,72:1702-1705.
    [169]CARLBERG T, FREDRIKSSON H. The influence of microgravity on the solidification of Zn-Bi immiscible alloys [J]. Metallurgical and Materials Transactions A,1980, 11:1665-1676.
    [170]WALTER H U. Prearation of dispersion alloys-component separation during cooling and solidification of dispersions of immiscible alloys [J]. Effect of gravity on solidification of immiscible alloys,1984:47-64.
    [171]ADRINA P S, JOSE E S, AMAURI G. Thermal parameters and microstructure during transient directional solidification of a monotectic Al-Bi alloy [J]. Journal of Alloys and Compounds,2009,475:347-351.
    [172]GRUBER-PRETZLER M, KONOZSY L, MAYER F, et al. Proceeding of the 5th Decennial International Conference on Solidification Processing, Sheffield,2007 [C]. Sheffield,2007.
    [173]贾均,赵九洲,郭景杰,等.难混溶合金及其制备技术[M].哈尔滨:哈尔滨工业大学出版社,2004:77-79.
    [174]赵九洲,贾均,李庆春.偏晶合金液-液相变过程中第二相液滴的碰撞粗化[J].材料研究学报,1995,9(3):241-4.
    [175]SILVA A P, SPINELLI J E, MANGELINCK-NOEL N, et al. Microstructural development during transient directional solidification of hypermonotectic Al-Bi alloys [J]. Materials and Design,2010,31:4584-4591.
    [176]SILVA A P, SPINELLI J E, GARCIA A. Microstructural Evolution During Upward and Downword Transient Directional Solidification of Hypomonotectic and Monotectic Al-Bi Alloys [J]. Journal of Alloys and Compounds,2009,480:485-493.
    [177]ZHAO J Z, RATKE L. A Model Describing the Microstructure Evolution During a Cool ing of Immiscible Alloys in the Miscibility Gap [J]. Scripta Materialia,2004, 50:543-546.
    [178]ZHAO J Z, RATKE L. Repeated Nucleation of Minority Phase Droplets During Cooling Through Miscibility Gap [J]. Scripta Materialia,1998,39:181-188.
    [179]RATKE L, MULLER A. On the Destabilisation of Fibrous Growth in Monotectic Alloys [J]. Scripta Materialia,2006,54:1217-1220.
    [180]LEENOV D, KOLIN A. Theory of electromagnetophoresis I:magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles [J]. The Journal of Chemical Physics,1954,22:683-688.
    [181]TANIGUCHI S J, BRIMACOMBE J K. Application of pinch force to the separation of inclusion particles from liquid steel [J]. ISIJ International,1994,34:722-731.
    [182]WUMH, LUDWIG A, RATKE L. Modelling the solidification of hypermonotectic alloys [J]. Modelling and Simulation in Materials Science and Engineering,2003, 11:755-769.
    [183]KORI S A, MURTY B S, CHAKRABORTY M. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium [J]. Materials Science and Engineering A,2000,283:94-104.
    [184]KORI S A, MURTY B S, CHAKRABORTY M. Development of an efficient grain refiner for Al-7Si alloy [J]. Materials Science and Engineering A,2000,280:58-61.
    [185]MCCARTENY D G. Grain refining of aluminium and its alloys using inoculants [J]. International Materials Reviews,1989,34:247-260.
    [186]MURTY B S, KORI S A, CHAKRABORTY M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying [J]. International Materials Reviews, 2002,47:3-29.
    [187]BIROL Y. An improved practice to manufacture Al-Ti-B alloys by reacting halide salts with molten aluminium [J]. Journal of Alloys and Compounds,2006,420:71-76.
    [188]BIROL Y. Effect of the salt addition practice on the grain refining efficiency of Al-Ti-B master alloys [J]. Journal of Alloys and Compounds,2006,420:207-212.
    [189]BIROL Y. The Effect of holding conditions in the conventional halide salt process on the performance of Al-Ti-B grain refiner alloys [J]. Journal of Alloys and Compounds,2007,427:142-147.
    [190]BIROL Y. Production of Al-Ti-B master alloys from Ti sponge and KBF-, [J]. Journal of Alloys and Compounds,2007,440:108-112.
    [191]BIROL Y. Production of Al-Ti-B grain refining master alloys from B2O3 and K2TiF6 [J]. Journal of Alloys and Compounds,2007,443:94-98.
    [192]BIROL Y. Analysis of the response to thermal exposure of Al/K2TiF6 powder blends [J]. Journal of Alloys and Compounds,2009,478:265-268.
    [193]BIROL Y. Al-Ti-B grain refiners via power metallurgy processing of Al/K2TiF6/KBF4 [J]. Journal of Alloys and Compounds,2009,480:311-314.
    [194]BIROL Y. A novel Al-Ti-B alloy for grain refining Al-Si foundry alloys [J]. Journal of Alloys and Compounds,2009,486:219-222.
    [195]Zongming Chen, Tongmin Wang, Lei Gao, et al. Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al-B master alloy [J]. Materials Science and Engineering A,2012,553:32-36.
    [196]Tongmin Wang, Zongming Chen, Hongwang Fu, et al. Grain refinement mechanism of pure aluminum by inoculation with Al-B master alloys [J]. Materials Science and Engineering A,2012,549:136-143.
    [197]KABAN I, KOHLER M, RATKE L, et al. Interfacial tension, wetting and nucleation in Al-Bi and Al-Pb monotectic alloys [J]. Acta Materialia,2011,59:6880-6889.
    [198]何杰,赵九洲,王晓峰,等.Al基难混溶合金快速定向凝固研究Ⅲ.第三组元的影响[J].金属学报,2007,43:573-577.
    [199]何杰,赵九洲,王晓峰,等.Al基难混溶合金快速定向凝固研究[J].金属学报,2007,43(6):573-577.
    [200]HE J, XING C Y, ZHAO J Z, et al. Microstructure formation in Al-Bi-Co immiscible alloys directionally solidified with different melt superheat temperatrures [J]. Journal of Materials Science and Technology,2010,26:136-140.
    [201]ZHAO J Z, LI H L, LI H Q, et al. Microstrctrure formation in centrifugally cast Al-Bi alloys [J]. Computational Materials Science,2010,49:121-125.
    [202]DAI R, ZHANG S G, LI Y B, et al. Phase separation and formation of core-type microstructure of Al-65.5mass% Biimmiscinle alloys [J]. Journal of Alloys and Compounds,2011,509:2289-2293.
    [203]YANG S, LIU W J. Effects of transverse magnetic field during directional solidification of monotectic Al-6.5wt% Bialloy [J]. Journal fo Materials Science, 2001,36:5351-5355.
    [204]PHANIKUMAR G, DUTTA P, GALUN R, et al. Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al-Bi alloy [J]. Materials Science and Engineering A,2004,371:91-102.
    [205]赵明露,刘炳,高填Al-2.15%Mn合金的组织及摩擦学特性[J].西安交通大学学报,2012,46(9):y1-y6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700