用户名: 密码: 验证码:
TiO_2薄膜的结构调控及其在绝缘子防污闪中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压输电线路绝缘子的污秽闪络问题一直是困扰输变电安全的世纪难题。目前防污闪的措施都不能有效防止污秽的积聚,无法从根本上杜绝线路绝缘子的污秽闪络。半导体光催化技术被认为是一种解决环境污染问题的“绿色”技术,而TiO_2因其诸多优点一直处于光催化研究,特别是实际应用研究中的核心地位。我们试图利用TiO_2薄膜的光自洁性能及其电学特性,并结合对薄膜的结构调控研究,提升高压绝缘子的防污闪性能。本论文研究TiO_2膜的构效关系并拓展其应用至输变电领域,对于光催化技术的发展具有理论和实际的双重意义。
     本论文制备了TiO_2防污闪绝缘子,系统研究了光自洁绝缘子的防污闪作用机理;根据TiO_2薄膜存在的不足,提出调控缺陷以改进薄膜光催化性能的思路,并对缺陷位的作用机理进行较为系统的研究。具体研究内容包括:(1)采用喷涂法将TiO_2溶胶涂覆于陶瓷绝缘子表面,制备光自洁绝型缘子,考察光自洁绝缘子的物化性能和光自清洁能力,并对其电气性能进行比较测试;(2)利用有限元方法模拟仿真绝缘子电场分布,探讨TiO_2半导体膜的存在对绝缘子的电气性能的影响机理;(3)在应用研究的基础上,提出在TiO_2双层膜中引入缺陷进行改性的思路,表征了TiO_2薄膜中缺陷的化学状态,考察了缺陷的存在方式及其位置对薄膜光催化性能的影响,建立了缺陷影响电荷转移的作用模型。
     研究结果表明,(1)利用旋转喷涂法可在绝缘子表面制备均匀的TiO_2薄膜,该薄膜具有良好的光催化性能及活性稳定性。通过各项积污试验表明,相对于普通绝缘子,制得的光自洁绝缘子具有较好的光自清洁能力;(2)只要处理得当,亲水性TiO_2半导体膜的存在,并不会降低绝缘子电气性能,相反,在湿污条件下,绝缘子的闪络电压还得到一定提高,提高幅值约为6%~12%;(3)有限元电场仿真分析表明,TiO_2膜的存在能够改善绝缘子的电场分布,有效抑制局部放电的发生与发展,从而提高光自洁绝缘子的闪络电压;(4)合理结合溶胶镀膜技术与冷等离子体处理技术,可得到带有缺陷的TiO_2双层薄膜,且缺陷可存在于膜层的界面上形成“界面缺陷”;(5)缺陷能够捕获电子,提高TiO_2薄膜光生载流子的分离效率,从而提高薄膜的光致亲水性能及其对RhB染料的光催化氧化能力,而缺陷的位置对RhB染料分子在TiO_2膜上的吸附和降解行为产生极大影响;(6)“界面缺陷”具有与“表面缺陷”类似的促进光催化作用,同时还表现出更高的稳定性,有极大的实际应用价值。
     论文的创新点:(1)首次将TiO_2光催化薄膜应用于高电压输电线路绝缘子的防污闪,不仅为绝缘子防污闪提供了新的思路,同时拓展了光催化技术的应用领域;(2)首次制得含有“界面缺陷”的TiO_2膜,提升了薄膜的光催化活性和光致亲水性,还增强了缺陷的稳定性。同时提出了“界面缺陷”对光生载流子以及光催化性能的具体影响机理。本结果为TiO_2光催化剂的性能改进提供普适性的理论依据和实现途径。
The insulators for outdoor high-voltage insulation usually suffer from thepollution flashover, imperiling the reliability of the high voltage power system. Thoughvarious measures have been carried out, the pollution flashover is still unable to beprevented fundamentally because of the irresistible accumulation of contaminations onthe surface of insulators. Photocatalysis is a “green” technology for the environmentalremediation issues with solar energy. Titanium dioxide (TiO_2), is considered to be oneof the ideal photochemical materials due to its merits, has become the most extensivelystudied photocatalyst in the researches, especially in the application researches ofphotocatalysis. We seek to use the self-cleaning and electrical properties of TiO_2function film for promoting the anti-contamination performance of highvoltageinsulators. In addition, modification research is also carried out to further upgrade thephotocatalytic performance of TiO_2film by modulating the characters of TiO_2structure.It is of great significance to ascertain the structure-activity relationship of the TiO_2filmand broaden its application fields, in both theoretical and practical aspects.
     In this thesis, the TiO_2coated porcelain insulators were prepared successfully, andthe function mechanism of the TiO_2film in promoting the anti-contaminationperformance was investigated systematically. According to the weakness of TiO_2filmin the practical application, a new method of controlling the location of defect sites wasused to improve the photocatalytic performance of TiO_2film. Furthermore, the actionmechanism of these defect sites in photocatalysis was also studied in detail. Theseworks are as follows:(1) The TiO_2sol was coated on the porcelain insulators byspraying method to prepare the photoinduced self-cleaning insulators. Thephysicochemical properties, self-cleaning and electric performances of the as-preparedporcelain insulators have been tested comparetively.(2) Using ANSYS forfinite-element method (FEM) analysis, the electric field distribution of insulator wassimulated by static electric FEM. Based on the study above, the influence mechanismof TiO_2semiconductor film on the electric performance of porcelain insulators was proposed.(3) A distinct modification method by introducing defects into the TiO_2multilayer was presented to improve the photocatalytic performance of TiO_2film. Thechemical states of these defects were characterized in detail. Furthermore, theinfluences of defect sites on the photocatalytic performances were studied, and aninteractive activation model was also proposed to clear the role of defects in theelectron transfer process.
     The research work obtained some new results and insights as follow:(1) Anuniform and compact TiO_2film can be prepared on the porcelain insulators byspin-spraying method. Compared with the uncoated insulators, the TiO_2coatedinsulators exhibits a stronger self-cleaning ability in the heavy pollution environmentdue to the excellent photocatalytic performance of TiO_2films.(2) In our study, theelectric performances of TiO_2coated insulators do not decline for the existence of TiO_2film, which is of semi-conductivity and hydrophilicity. Instead, even higherperformances are observed in the tests of wetting flashover and artificial contaminationflashover. The growths in the flashover voltages of insulators are determined to be6%~12%.(3) Based on the electric field simulation results, the TiO_2film can amelioratethe distribution of electric field along the insulator, subsequently suppress theoccurrence and development of the partial discharge, and promote the flashover voltageof the insulators finally.(4) Defective TiO_2films are successfully prepared by acombination of cold plasma treatment and sol-gel dip-coating technology. Moreover,the defects can exist between two TiO_2layers to form the TiO_2film with “interfacedefects”.(5) These defects, no matter whether they are located at the surface or at theinterface, can improve the photoactivity of the TiO_2film. The defects are considered toact as functional electron traps to reduce the recombination of electrons and holes,resulting in the promoted photocatalytic properties of TiO_2films. However, the locationof defects played an important role in the adsorption and photodegradation behaviors ofthe RhB dye molecules.(6) Moreover, the interface defects are proved to be morestable than the surface defects, indicating that this modification method is value inpractical application.
     The innovations of this thesis are as follows:(1) The TiO_2photocatalytic film isfirstly applied for preventing the high voltage porcelain insulators from pollutionflashover. The study not only provides a new way to deal with the pollution flashoveraccident of insulators, but also broadens the application fields of photocatalysistechnology.(2) The “interface defects” are propounded and successfully prepared forthe first time. Interface defects, which are more stable than the surface defects, can also affect the photoinduced electron-hole recombination process, and promote thephotoactivity and photoinduced hydrophilicity of TiO_2film. Furthermore, the influenceof defects’ location on the photocatalytic reaction behaviors has been discussed in detail.The effect mechanisms of defects on the photocatalysis are also proposed. This studywould be of great benefit to offer a general theoretical guide and a realization way forimproving TiO_2photocatalytic performances.
引文
[1]朱德恒,严璋.高电压绝缘,北京:清华大学出版社,1992.30
    [2]顾乐观,孙才新.电力系统的污秽绝缘,重庆:重庆大学出版社,1990.17
    [3]张仁豫.绝缘污秽放电,北京:水利电力出版社,1994.541
    [4]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平-对我国电网大面积污闪事故的反思,中国电力,2003,36:57-61.
    [5]关志成,王绍武,梁曦东,等.我国电力系统绝缘子污闪事故及其对策,高电压技术,2000,26:37-39.
    [6]杨引虎.大面积污闪事故原因分析与防范对策,中国电力,1998,4:74-75.
    [7] Rizk F A M.Mathematical models for pollution flashover, Electra,1981,78,71-103.
    [8] Jolly D. C. Contamination Flashover Theory and Insulator Design, Journal of Franklin Institute,1972,294:483-500.
    [9] Alston L L, Zoledziowski S. Growth of discharge on pollution insulation, IEE Proceedings ofGeneration Transmission and Distribution,1963,110(7):1260-1266.
    [10]周渠.电力设备外绝缘的防污闪综合措施,绝缘材料,2004,2:41-43.
    [11]俞宜任,杨雪峰.绝缘子耐污伞形设计原则与选用要求,电瓷避雷器,2001,4:16-20.
    [12] Fujimura T. The evolution of porcelain insulator technology in Japan, IEEE Electric andInsulation Magazine,1995,11:26-36,.
    [13] Chang R. J, Shah M, Mazeika L, et al. Design of insulators for severe contamination,5th Int.Conf. Prop. Appl. Dielect. Mater., Seoul, South Korea,1997,778-781.
    [14] Sundararajan R, Sadureddy N R, Gorur R S. Computer-aided design of porcelain insulatorsunder polluted conditions, IEEE Transaction on Dielectric and Electric Insulation,1995,2:121-127.
    [15] Gorur R S, Cherney E, et al. Protective coatings for improving contamination performance ofoutdoor high voltage ceramic insulators, IEEE Transaction on Power Delivery,1995,10:924-933.
    [16] Hall J, Orbeck T. RTV protective coating for porcelain insulators, Transaction of IEEE,1982,PAS-101:4689-4696.
    [17] Gubanski S M. Modern Outdoor Insulation-Concerns and Challenges, IEEE Electric andInsulation Magazine,2005,21:5-11.
    [18] Starr W T. Polymeric Outdoor Insulation, IEEE Transaction on Dielectric and ElectricInsulation,1990,25:125-136.
    [19] Karady G, Schneider H M. Review of CIGRE and IEEE Research into Pollution Perfor-mance of NC Insulators, CIGRE,1994:33-103.
    [20] Goudie J L, Owen M J, Orbeck T. A Review of Possible Degradation Mechanisms of SiliconeElastomers in High Voltage Insulation Applications, IEEE Annual Report–CEIDP,1998,1:120-127.
    [21] Lambeth P J. The use of semiconducting glaze insulators, Electra,1983,86:89-106.
    [22] Ullrich H, Gubanski S M. Surface Characterization of New and Aged Semiconducting Glazes,IEEE Transaction on Dielectric and Electric Insulation,2003,10:375-383.
    [23] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode.Nature,1972,37:238-245
    [24] Matsumura M, Saho Y, Tsubomura H. Photocatalytic hydrogen production from solutions ofsulfite using platinized cadmium sulfide powder. Journal of Physical Chemistry,1983,87(20):3807-3808
    [25] Domen K, Kudo A, Onishi T, et al. Photocatalytic decomposition of water into hydrogen andoxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. Journal of PhysicalChemistry,1986,90:292-295
    [26]上官文峰.太阳能光解水制氢的研究进展.无机化学学报,2001,17(5):619-626
    [27] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB’s in the presence of titaniumdioxide in aqueous suspension, Bull. Environ. Contam. Toxicol.,1976,16:697-701
    [28] FranK S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueoussolutions at titanium dioxide powders. Journal of the American Chemistry Society,1977,99:303-304
    [29] FranK S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite inaqueous solutions at semiconductor powders. Journal of Physical Chemistry,1977,81:1484-1488
    [30] Ollis, D F, Al-Ekabi H. Photocatalytic Purification and Treatment of Water and Air, ElsevierScience Publisher B. V.: Amsterdam,1993.
    [31] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductorPhotocatalysis. Chemical Review,1995,95:69-96
    [32] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J. Photochem. Photobiol.C: Photo Chemical Review,2000,1:1-21
    [33] Herrmann J M, Guillard C, Pichat P. Heterogeneous photocatalysis: an emerging technologyfor water treatment. Catalysis Today,1993,17:7-20
    [34] Fu X Z, Zeltner W A, Anderson M A. Applications in photocatalytic purification of air,Elsevier Science Publisher B. V.,1996,445-461
    [35] Prairie M R, Evans L R, Stange B M, et al. An investigation of TiO2photocatalysis for thetreatment of water contaminated with metals and organic chemicals, Environmental Scienceand Technology,1993,27:1776-1782
    [36] Weetman D F. Volatile organic chemicals in the environment, Indoor Environmet,1994,3(1):55-57
    [37] Molhave T J. Volatile organic compounds, indoor air quality and health, Indoor Air,1991,1(1):357-376
    [38] Molhave L. The sick building and other buildings with in door climate problems,Environment International,1989,15:65-74
    [39]方佑龄,赵文宽,尹少华,等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷.应用化学,1997,14:81-83.
    [40] Alemany L J, Banares M A, Pardo E, et.al. Photodegradation of phenol in water using silicasupported titania catalysts. Applied Catalysis B: Environment,1997,13:289-297.
    [41] Loddo V, Marci G, Martin C, et al. Preparation and characterization of TiO2(anatase)supported on TiO2(rutile) catalysts employed for4-nitrophenol photodegradation in aqueousmedium and comparison with TiO2(anatase) supported on Al2O3. Applied Catalysis B:Environment,1999,20:29-45.
    [42] Iengo P, Aprile G, Serio M D, et al. Preparation and properties of new acid catalysts obtainedby grafting alkoxides and derivatives on the most common supports. Part Ⅲ-graftingtitanium alkoxides and sulphate derivatives on silica. Appl.Catal. A: General,1999,178:97-109.
    [43] Pilkenton S, Hwang S-J, Raftery D. Ethanol Photocatalysis on TiO2-coated Optical Microfiber,Supported Monolayer, and Powdered Catalysts: An in Situ NMR Study. Journal of PhysicalChemistry B,1999,103(50):11152-11160.
    [44] Ohko Y., Fujishima A. Kenetic Analysis of the Photocatalytic Degradation of Gas-Phase2-Propanol under Mass Transport-Limited Condition with a TiO2Film Photocatalyst. Journalof Physical Chemistry B,1998,102:1724-1729.
    [45] Herrmann J-M, Tahiri H, Ait-Ichou Y, et al. Characterization and photocatalytic activity inaqueous medium of TiO2and Ag-TiO2coatings on quartz. Applied Catalysis B: Environment,1997,13:219-228.
    [46] Kato K, Tsuzuki A,Torii Y, et al Morphology of thin anatase coatings prepared from alkoxidesolutions containing organic polymer, affecting the photocatalytic decomposition of aqueousacetic acid. Journal of Material Science,1995,30:837-841.
    [47]刘鸿,成少安,张鉴清,等.泡沫镍载二氧化钛光催化降解磺基水杨酸.中国环境科学,1998,18(6):548-551.
    [48] Sawunyama P, Jiang L, Fujishima A, et al. Photodeposition of a Langmuir-blodgept film ofspearic acid on TiO2film observed by in situ atomic force microscopy and FT-IR. Journal ofPhysical Chemistry B,1997,101:11000-11003.
    [49] Kominami H, Kumamoto H, Kera Y, et al. Immobilization of highly active titanium(Ⅳ) oxideparticles A novel strategy of preparation of transparent photocatalytic coatings. AppliedCatalysis B: Environment,2001,30:329-335.
    [50]冷文华,张莉,成少安,等.负载二氧化钛光催化降解水中对氯苯胺(PCA),环境科学,2000,6:46-50.
    [51] Hofstadler K, Bauer R. New Ractor Design for Photocatalytic Wastewater Treatment withImmobilized on Fused-Silica Glass Fibers: Photomineralization of4-Chlorophenol.Environmental Science and Technology,1994,28:670-674.
    [52] Herrmann J M, Matos J, Disdier J, et.al. Sollar photocalytic degradation of4-chlorophenolusing the synergistic effect between titania and activated carton in aqueous suspension.Catalysis Today,1999,54:131-141.
    [53] Peill N. J., Hoffmann M. R.. Chemical and physical characterization of a TiO2-coated fiberoptic cable reactor. Environmental Science and Technology,1996,30(9):2806-2812.
    [54]颜秀茹,郭伟巍,宋宽秀,等.新型光催化剂TiO2/SiO2的制备和催化性能研究.化学工业与工程,2000,17(6):330-335.
    [55] Takeda N, Ohtani M, Torimoto T, et.al. Evaluation of diffeusibility of absorbent photo-catalyst films from its photodecomposition rate. Journal of Physical Chemistry B,1997,101:2644-2649.
    [56] Takeda N, Iwata N, Torimoto T, et.al. Influence of Carbon Black as an Adsorbent Used inTiO2Photocatalyst Films on Photodegradation Behaviors of Propyzamide. Journal of Catalysis,1998,177:240-246.
    [57] Alberici R M, Canela M C, Eberlin M N, et.al. Catalyst deactivation in the gas phasedestruction of nitrogen-containing organic compounds using TiO2/UV-Vis. Applied CatalysisB: Environment,2001,30:389-397.
    [58]崔鹏,范益群,徐南平,等. TiO2负载膜的制备、表征及光催化性能,催化学报,2000,21(5):494-496.
    [59]吴凤清,阮圣平,李晓平,等.一种新型纳米TiO2涂膜及其光催化性能研究.高等学校化学学报,2000,21(10):1578-1580.
    [60]陶咏,陈爱平,戴智铭,等.新颖玻璃弹簧负载化TiO2光催化剂.中国粉体技术,2001,7(2):23-27.
    [61] Watanabe T, Takizawa T, Honda K. Photocatalysis through excitation of adsorbates.1. highlyefficient N-deethylation of Rhodamine B adsorbed to CdS. Journal of Physical Chemistry,1977,81:1845-1851.
    [62] Khalil L B, Moural W E, Rophael M W. Photocatalytic reduction of environmental pollutantCr(VI) over some semiconductors under UV/visible light illumination. Applied Catalysis B:Environment,1998,17:267-273
    [63] Papp J, Shen H. S, Kershaw R, et al. Titanium(IV) oxide photocatalysts with palladium,Chemisty of Materials,1993,5:284-288
    [64] Serpone N, Borgarello E, Barbeni M, et al. Photochemical reduction of gold (III) onsemiconductor dispersions of TiO2in the presence of CN ions: disposal of CN by treatmentwith hydrogen peroxide, Journal of photochemistry,1987,36:373-388
    [65] Borgarello E, Serpone N, Emo G, et al. Light-induced reduction of rhodium(III) andpalladium(II) on titanium dioxide dispersions and the selective photochemical separation andrecovery of gold(III), platinum(IV), and rhodium(III) in chloride media, Inorganic Chemistry,1986,25:4499-4503
    [66] Ohtani B, Okugawa Y, Nishimoto S, et al. Photocatalytic activity of titania powderssuspended in aqueous silver nitrate solution: correlation with pH-dependent surface structures,Journal of Physical Chemistry,1987,91:3550-3555
    [67]李旦振,郑宜,付贤智,等.微波法制备SO42-/TiO2催化剂及其光催化氧化性能.物理化学学报,2001,17(3):270-272.
    [68]郑宜,李旦振,付贤智. C2H4的微波场助气相光催化氧化.高等学校化学学报,2001,22(3):443-445.
    [69]陈亦琳,李旦振,付贤智.苯在Pt/SO42-/TiO2上的光催化降解见:21世纪太阳能新技术-2003年中国太阳能学会学术年会论文集,上海:上海交通大学,2003:990-991.
    [70]张雯,王绪绪,付贤智. Pt/TiO2催化剂上苯的光催化降解,福州大学学报(自然科学版),2004,32(2):232-234.
    [71]沈杭燕,唐新硕,管敏远,等.负载型TiO2催化剂的制备及光催化丙酮蒸汽的降解性能研究.分子催化,1999,13(6):435-440.
    [72] Sopyan I, Watanabe M, Murasawa S, et. al. A film-type photocatalyst incorporating highlyactive TiO2powder and fluororesin binder: photocatalytic activity and long-term stability. J.Electoanal. Chem.,1996,415:183-186.
    [73] Matsumoto Y, Ishikawa Y. A New Electrochemical Method To Prepare MesoporousTitanium(Ⅳ) oxide Photocatalyst Fixed on Alumite Substrate. Journal of Physical ChemistryB,2000,104:4204-4209.
    [74] Yoneyama H., Torimoto T.. Titanium dioxide/adsorbent hybrid photocatalysts for photo-desruction of organic substances of dilute concentrations. Catalysis Today,2000,58:133-140.
    [75] Takeda N., Torimoto T., Sampath S., et.al. Effect of Inert Spports for Titanium Dioxideloading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde. Journal ofPhysical Chemistry B,1995,99:9986-9991.
    [76]古政荣,陈爱平,戴智铭,等.活性炭-纳米二氧化钛复合光催化空气净化网的研制.华东理工大学学报,2000,26(4):361-371.
    [77] Wang K. H., Tsai H. H., Hsieh Y. H. The kinetics of photocatalytic degradation of tri-chloroethylene in gas phase over TiO2supported on glass bead. Applied Catalysis B:Environment,1998,17:313-320.
    [78]苏文悦,付贤智,魏可镁. SO42-表面修饰对TiO2结构及其光催化性能的影响,物理化学学报,2001,17(1):28-31.
    [79] Masaaki Y, Akinori Y, Isao M. Low-temperature selective catalytic reduction of NOx by metaloxides supported on active carbon fibers. Applied Catalysis A: General1998,173:239-245.
    [80] Canela M. C., Alberici R. M., Jardim W. F. Gas-phase destruction of H2S using TiO2/UV-VIS,Journal of Photochemistry and Photobiology A: Chemstry,1998,112(1):73-80
    [81] Li F B, Li X Z, Ao C H, et al. Photocatalytic conversion of NO using TiO2–NH3catalysts inambient air environment, Applied Catalysis B: Environment,2004,54:275-283
    [82] Haruta M, Tsubota S, Kobayashi T, et al. Low-Temperature Oxidation of CO over GoldSupported on TiO2, α-Fe2O3, and Co3O4, Journal of Catalysis,1993,144:175-192
    [83]唐伟忠.薄膜材料制备原理、技术及应用,北京:冶金工业出版社,1998.23
    [84] Rautenbach R.著,王乐夫译,膜工艺—组件和装置设计基础,北京:化学工业出版社.
    [85] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surface, Nature,1997,388:431-432
    [86] Anpo M. Utilization of TiO2photocatalysts in green chemistry. Pure and Applied Chemistry,2000,72(7):1265-1270.
    [87]黄汉生.日本二氧化钛光催化剂环境净化技术开发动向,现代化工,1998,18(12):39-42.
    [88]付贤智,刘平,戴文新,等.光净化环保涂料的制备与涂覆技术,中国专利,03136596.5
    [89] Hashimoto K., Irie H., Fujishima A., TiO2Photocatalysis: A Historical Overview and FutureProspects, Japenese Journal of Applied Physics,200544:8269-8285.
    [90] Negishi N., Takeuchi K., Ibusuki T. The surface structure of Titanium Dioxide Thin FilmPhotocatalyst, Applied Surface Science,1997,121/122:417-420.
    [91]刘平,林华香,付贤智.掺杂TiO2光催化膜材料的制备及其灭菌机理.催化学报,1999,20(3):325-328.
    [92]黄汉生.日本二氧化钛光催化剂环境净化技术开发动向.现代化工,1998,18(12):39-42.
    [93]藤屿昭.用TiO2光触媒控制化学过敏症和建筑综合征.机能材料,1998,18(9):29-33.
    [94]藤屿昭. TiO2光触媒自清洁材料.电气化学,1996,64(10):1052-1055.
    [95] Sunada K, Hashimoto K, et al. Bactericidal and detoxification effects of TiO2thin filmphotocatalysts. Environmental Science and Technology,1998,32(5):726-728.
    [96] Fujishima A, Hashimoto K, Watanabe T. TiO2photocatalysis: fundamentals and applications,BKC, Inc., Tokyo,1999.
    [97] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO2surface: Principles, mechanismsand selected results. Chemical Review,1995,95(3):735-758.
    [98] Fox M A, Dulay M T. Heterogeneous photocatalysis, Chemical Review,1993,93:341-357.
    [99] Kamat P. V. Photochemistry on nonreactive and reactive (semiconductor) surface. ChemicalReview,1993,93:267-300
    [100] Hagfeldt A, Gratzel M. Light-induced redox reaction in nanocrystalline systems. ChemicalReview,1995,95(1):49-68
    [101]姜燮昌,光催化薄膜的溅射沉积技术,真空,2005,42:1-5.
    [102] Roel van de Korl, Goossens A, et al. Structure and properties of anatase TiO2thin filmsmade by reactive electron beam evaporation, Journal of Vacuum Science and Technology A,2003,21:76-83.
    [103] Dalapati G K, Chatterjee S, Samanta S K. Electrical characterization of low temperaturedeposited TiO2films on stained SiGe layers, Applied Surface Science,2003,210:249-254
    [104] Carraway E R, Hoffmann A J, Hoffmann M R. Photocatalytic Oxidation of Organic Acids onQuantum-Sized Semiconductor Colloids. Environmental Science and Technology,1994,28:786-793.
    [105] Turchi C S, Ollis D F. Mixed reactant photocatalysis: Intermediates and mutual rateinhibition. Journal of Catalysis,1989,119:483-496
    [106] Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack. Journal of Catalysis,1990,122:178-192
    [107] Draper R B, Fox M A. Titanium dioxide photosensitized reactions studied by diffusereflectance flash photolysis in aqueous suspensions of TiO2powder. Langmuir,1990,6:1396-1402.
    [108]浙江大学,武汉建筑材料学院,等.硅酸盐物理化学,北京:中国建筑工业出版社,1987.
    [109]殷好勇,金振声,张顺利,等. TiO2膜的亲水性丧失原因及其光催化再生的研究,2002‘全国光催化会议(NCP-2002),北京:2002, M06:49-50.
    [110] White J M, Szanyi J, and Henderson M A. The Photon-Driven Hydrophilicity of Titania: AModel Study Using TiO2(110) and Adsorbed Trimethyl Acetate, Journal of PhysicalChemistry B,2003,107:9029-9033.
    [111] Wang R, Sakai N, Fujishima A. Studies of Surface Wettability Conversion on TiO2Single-Crystal Surfaces. Journal of Physical Chemistry B,1999,103:2188-2194.
    [112] Miyauchi M, Nakajima A, Fujishima A, et al. Photoinduced Surface Reactions on TiO2andSrTiO3Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity, Chemisty ofMaterials,2000,12:3-5.
    [113] Watanabe T, Fukayama S, Miyauchi M, et al. Photocatalytic Activity and Photo-InducedWettability Conversion of TiO2Thin Film Prepared by Sol-Gel Process on a Soda-LimeGlass, Journal of Sol-gel Science Technology,2000,19:71-76
    [114] Sakai N, Wang R, Fujishima A, et al. Effect of Ultrasonic Treatment on Highly HydrophilicTiO2Surfaces, Journal of Physical Chemistry B,1999,14:5918-5920
    [115] Wang R, Hashimoto Y, Fujishima A, et al. Photogeneration of highly amphiphilic TiO2surfaces, Advance Materials,1998,10:135
    [116] Watanabe T, Nakajima A, Wang R, et al. Photocatalytic activity and photoinducedhydrophilicity of titanium dioxide coated glass, Thin Solid Film,1999,351:260-263.
    [117] Fujishima A, Zhang X T, Tryk D A. TiO2photocatalysis and related surface phenomena,Surface Science Report,2008,63:515-582.
    [118] Shultz A N, Jang W, Hetherington W M, et al. Comparative second harmonic generation andX-ray photoelectron spectroscopy studies of the UV creation and O2healing of Ti3+defectson (110) rutile TiO2surfaces, Surface Science,1995,339:114-124.
    [119] Sakai N, Fujishima A, Watanabe T, et al. Enhancement of the Photoinduced HydrophilicConversion Rate of TiO2Film Electrode Surfaces by Anodic Polarization, Journal ofPhysical Chemistry B,2001,105:3023-3026.
    [120] Bickley I, Gonzalez-Carreno T, Lees J, et al. A Structural Investigation of Titanium DioxidePhotocatalysts. J. Solid State Chem.,1991,92(1):178-190.
    [121] Salvador P, Gonzalez G, Munozet F, et al. Catalytic Role of Lattice Defects in Photo-Assisted Oxidation of Water at (001) n-TiO2Rutile. Journal of Physical Chemistry,1992,96(25):10349-10353.
    [122]于向阳,梁文.提高二氧化钛光催化性能的途径.硅酸盐通报,2000,(1):53-57.
    [123] Wenzel R N. Surface Roughness and Contact Angle, Journal of Physical Chemistry,1949,53:1466-1467
    [124] Wenzel R N. Resistance of solid surfaces to wetting by water, Industrial&EngineeringChemistry Research,1936,28:988
    [125] Miyauchi M, Kieba N, Hishita S. Reversible wettability control of TiO2surface by lightirradiation, Surface Science,2002,511:401-407.
    [126] Liu Q J, Zhang Y, Wu X H, et. al., Key Engineering Materials,2002,224-226
    [127] Kimberly S, Gray K, Kamat P. Photocatalytic Degradation of4-Chlorophenol: The Effects ofVarying TiO2Concentration and Light Wavelength. Journal of Catalysis,1997,167(1):25-32.
    [128] Matthews R., McEvoy S. A Comparison of254nm and350nm Excitation of TiO2in SimplePhotocatalytic Reactors. Journal of Photochemistry and Photobiology A: Chemisty,1992,66(3):355-366.
    [129]林华香. TiO2多功能膜材料的制备及其性能的研究:[福州大学硕士学位论文],福州:化学化工学院,2003.
    [130] Zhao J., Hidaka H., Takamura A., et al. Photodegradation of Surfactants.11. Zeta PotentialMeasurements in the Photocatalytic Oxidation of Surfactants in Aqueous Titania Dispersions.Langmuir,1993,9(7):1646-1650.
    [131] Bahnemann D., Bockelmann D., Goslich R. Mechanistic Studies of Water Detoxification inIlluminated TiO2Suspensions. Solar Energy Material,1991,24(1-4):564-583.
    [132] Cunningham J., Srijaranai S. Sensitized Photo-Oxidations of Dissolved Alcohols inHomogenous and Heterogeneous Systems Part2. TiO2-Sensitized Photodehydrogenations ofBenzylalcohol. Journal of Photochemistry and Photobiology A: Chemisty,1991,58(3):361-371.
    [133] Richard C., Martre A., Boule P. Photocatalytic Transformation of2,5-Furandimethanol inAqueous ZnO Suspensions. Journal of Photochemistry and Photobiology A: Chemisty,1992,66(2):225-234.
    [134] Yu J. C., Ho W., Lin J., et al. Photocatalytic Activity, Antibacterial Effect, and PhotoinducedHydrophilicity of TiO2Films Coated on a Stainless Steel Substrate. Environmental Scienceand Technology,2003,37:2296-2301.
    [135] Dai, W., Wang, X., Liu, P., et al. Effects of Electron Transfer between TiO2Films andConducting Substrates on the Photocatalytic Oxidation of Organic Pollutants, Journal ofPhysical Chemistry B,2006,110:13470-13476.
    [136] Stock N. L., Peller J. M., Vinodgopal K. Combinative Sonolysis and Photocatalysis forTexile Dye Degradation. Environ. Sci. Technol.,2000,34:1747-1750.
    [137] Sakai N., Wang R., Fujishima A., et al. Effect of Ultrasonic Treatment on HighlyHydrophilic TiO2Surfaces, Langmuir,1998,14:5918-5920
    [138] Zhang W., Wang X. X. Fu X. Z. Magnetic field effect on photocatalytic degradation ofbenzene over Pt/TiO2, Chemical Communication,2003,2196-2107.
    [139] Sakai N., Fujishima A., Watanabe T., et al. Highly hydrophilic surface of cathodicallypolarized amorphous TiO2Electrodes, Journal of Electrochemical Society,2001,148:395-397.
    [140] Vogel R., Pohl K., Weller H. Sensitization of Highly Porous, Polycrystalline TiO2Electrodesby Quantum Sized CdS. Chemical Physics Letters,1990,174(3-4):241-246.
    [141] Vinodgopal K., Kamat P. Enhanced Rates of Photocatalytic Degradation of an Azo DyeUsing SnO2/TiO2Coupled Semiconductor Thin Films. Environmental Science andTechnology,1995,29(3):841-845.
    [142]柳清菊,吴兴惠,刘强,等. TiO2薄膜超亲水特性的研究,功能材料与器件学报,2002,8:238~242.
    [143] Machida M, Norimoto K, Watanabe T, et al. The effect of SiO2addition in super-hydrophilicproperty of TiO2photocatalyst, Journal of Material Science,1999,34:2569-2574.
    [144] Ashokkumar M., Maruthamuthu P. Preparation and Characterization of Doped WO3Photocatalyst Powders. Journal of Material Science,1989,24(6):2135-2139.
    [145] Choi W., Termin A., Hoffmann M. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. Journalof Physical Chemistry,1994,98(51):13669-13679.
    [146] Sato S. Photocatalytic Activity of NOx-Doped TiO2in the Visble-Light Region. ChemicalPhysics Letters,1986,123(1-2):126-128.
    [147] Asahi R, Morikawa T, Ohwakl T, et al. Visible-Light Photocatalysis in Nitrogen-DopedTitanium oxides. Science,2001,293(5528):269-271.
    [148] Ohno T, Mitsui T, Matsumura M. Photocatalytic Activity of S-Doped TiO2Photocatalystunder Visible Light, Chemical Letters,2003,32(4):364-365.
    [149] Khan S, Al-Shahry M Ingler W. Efficient Photochemical Water Splitting by a ChemicallyModified n-TiO2. Science,2002,297(5590):2243-2245.
    [150] Chen D, Yang D, Wang Q, et al. Effects of Boron Doping on Photocatalytic Activity andMicrostructure of Titanium Dioxide Nanoparticles. Industrial&Engineering ChemistryResearch,2006,45(12):4110-4116.
    [151] Hong X, Wang Z, Cai W, et al. Visible-Light-Activated Nanoparticle Photocatalyst ofIodine-Doped Titanium Dioxide. Chemisty of Materials,2005,17(6):1548-1552.
    [152] O’regan B, Gratzel M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-SensitizedColloidal TiO2Films. Nature,1991,353:737-740.
    [153] Fu X Z, Zeltner W A, Anderson M A. The Gas-Phase Photocatalytic Mineralization ofBenzene on Porous Titania-Based Catalysts. Applied Catalysis B: Environment,1995,6(3):209-224.
    [154] Nicole J R, Pierre P. Effect of Deposited Pt Particles on the Surface Charge of TiO2AqueousSuspensions by Potentiometry, Electrophoresis, and Labeled Ion Adsorption. Journal ofPhysical Chemistry,1986,90(12):2733-2738.
    [155]吴越,董庆华,查全胜.光电化学反应的催化Ⅰ.大颗粒金岛对n-TiO2电极上光电化学过程的催化作用.化学学报,1987,45(07):651-653.
    [156] Gao Y M. Improvement of Photocatalytic Activity of Titanium (IV) Oxide by Dispersion ofAu on TiO2. Material Research Bullet,1991,26(12):1247-1254.
    [157] Kondo M M, Jardim W F. Photodegradation of Chloroform and Urea Using Ag-LoadedTitanium Dioxide as Catalyst. Water Research,1991,25(7):823-827.
    [158] Anpo M, Takeuchi M. The Design and Development of Highly Reactive Titanium OxidePhotocatalysts Operating under Visible Light Irradiation. Journal of Catalysis,2003,216:505-516.
    [159] Diebold U. The surface Science of titanium dioxide, Surface Science Report,2003,48:53-229.
    [160] Wang L Q, Baer D R, Engelhard M H, et al. The adsorption of liquid and vapor water ofTiO2(110) surface: the role of defects, Surface Science,1995,344:237-250.
    [161] G pel W. Surface defects of TiO2(110): A combined XPS, XAES and ELS study, SurfaceScience,1984,139:333-346.
    [162] Ramamoorthy M, King-Smith R D, Vanderbilt D. Defects on TiO2(110) surface, PhysicalReview B1994,49:7709-7715.
    [163] Chiba Y, Kashiwagi K, Kodai H. Plasma surface treatment effect of TiO2thin film, Vacuum2004,74:643-646.
    [164] Haber J, Witko M. Oxidation catalysis-electronic theory revisited, Journal of Catalysis,2003,216:416-424.
    [165] Torimoto T, Ito S, Kuwabata S, et al. Effects of Adsorbents Used as supports for TitaniumDioxide Loading on Photocatalytic Degradation of Propyzamide. Environmental Scienceand Technology,1996,30:1275-1281.
    [166] Ma Y, Q J B, Cao Y A. Photocatalytic activity of TiO2films grown on different substrates.Chemosphere,2001,44:1087-1092.
    [167]方佑龄,赵文宽,尹少华,等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷.应用化学,1997,14:81-83.
    [168]刘平,王心晨,付贤智.光催化自清洁陶瓷的制备及其特性.无机材料学报,2000,15(1):88-92
    [169]赵青南,余家国,赵健修,等. TiO2薄膜孔结构对其光催化性能的影响.陶瓷学报,1999,20(3):177-180.
    [170] Ding Z, Hu X-J, Yue P L, et.al. Synthesis of anatase TiO2supported on porous solids bychemical vapor deposition. Catalysis Today,2001,68:173-182.
    [171]陈德明,王亭杰,雨山江,等.纳米TiO2的性能、应用及制备方法.材料工程,2002,11:42-47.
    [172] Wang X P, Yu Y, Hu X F, Gao L., Hydrophilicity of TiO2films prepared by liquid phasedeposition. Thin Solid Films,2000,371:148-152.
    [173]黄剑锋.溶胶-凝胶原理与技术,化学工业出版社,2005.
    [174]蒋兴良,陈爱军,张志劲,等.盐密和灰密对110kV复合绝缘子闪络电压的影响.中国电机工程学报,2006,26:150-154.
    [175]张永记,不同盐/灰密下普通绝缘子串交流闪络特性的研究,[工学硕士学位论文],重庆,重庆大学电气工程学院,2006,4.
    [176]王靖勤,沈庆河,刘琨,等.500kV线路自然积污规律的试验研究,中国电力,1995,6:46-50.
    [177] Srivastava K D, Zhou J P. Surface Charging and Flashover of Spacers in SF6under ImpulseVoltages, IEEE Transaction on Electrical Insulation,1991,26:428-442
    [178] Nakao Y., Naruse M., Suzuki Y. Influence of Insulating Barrier on the Creepage Discharge inTransformer Oil, IEEE Transaction on Dielectric and Electric Insulation,1997,4:775-779.
    [179] Miller H.C. High Voltage Vacuum Insulation: Basic Concepts and Technological Practice, Ed.R.V. Latham, Academic Press, London,1995.
    [180] Alston L. L. and Zoledziowski, Growth of Discharges on Polluted Insulation, Proc. IEE,1963,110:1260-1266.
    [181] Farzaneh M. and Kiernicki J. Flashover problems caused by ice build-up on insulators, IEEETransaction on Electrical Insulation Magazine,1995,11:5-17
    [182]余德芬,孙才新,顾乐观,等.酸性湿沉降对绝缘子闪络特性的表征量研究,中国电机工程学报,2001,21:15-19
    [183] Nam S. H., Sudarshan T. S. Observation of three distinct phases leading to pulsed surfaceflashover along silicon without end contact s in vacuum, IEEE Transaction on ElectricalInsulation,1989,24(6):979-983.
    [184] Takata1Y, Hidaka1S, Masuda M, et al. Pool boiling on a superhydrophilic surface,International Journal of Energy Reseach,2003,27:111-119.
    [185] Takata1Y, Hidaka1S, Cao J M, et al. Effect of surface wettability on boiling andevaporation, Energy,2005,30:209-220
    [186] Les Renardieres Group. Research on long air gap discharges at Les Renardieres. Electra,1972, No.23.
    [187] Long Y. Dielectric strength of external insulation at high humidity,1989,6th ISH paper,47.
    [188] Brettschneider H. Improving the high-voltage quality of alumina insulators in vacuum bysurface doping, IEEE Transaction on Electrical Insulation,1988,23:33-36.
    [189]赵文彬,张冠军,严璋,高场强下半导体沿面闪络现象的研究进展,强激光与粒子束,2007,19(3):515-520.
    [190]王勤,大电容绝缘子,实用新型专利,公告号:CN2170563Y,1994.
    [191]李晓峰,李正瀛,陈俊武,等.提高线路绝缘子防污闪及抗泄漏性能的新方法,电网技术,2010,10:69-72.
    [192] Farag A S, Zendan F M, Cheng T C, et al. New DC insulator design for use in the desertenviroment, IEEE Transaction on Electrical Insulation,1990,25:435-448
    [193] Srivastava K D, Zhou J P. Surface Charging and Flashover of Spacers in SF6under ImpulseVoltages, IEEE Transaction on Electrical Insulation,1991,26(3):428-442.
    [194] Miller H C, Furno E J. The effect of Mn/Ti surface treatment on voltage-holdoffperformance of alumina insulators in vacuum, Journal Applied Physics,1978,49(11):5416-5420.
    [195] Goldman M, Sigmond R S. Corona and Insulator, IEEE Transaction on Electrical InsulationMagazine,1982,17(2):90-105.
    [196] Trinh N G. Discharge in Air (Part I: Physical Mechanisms), IEEE Trans. Electr. Insul. Mag.,1995,11(2):23-29.
    [197]四川德阳东方电机厂绝缘组,西安交通大学绝缘专业.大电机定子线圈端部碳化硅防晕结构与工艺研究,西安交通大学学报,1976,1:39-81.
    [198]丁开坤,宁叔帆,赵丽华,等.防晕层厚度和碳化硅含量对其电学性能影响因素的研究,绝缘材料,2005,3:29-32.
    [199]邵方殷,邓辉.超高压绝缘子串电压分布的数值计算,中国电机工程学报,1989,9:68-72.
    [200]黄辉,王毅,ANSYS在“工程电磁场”教学中的应用,电气电子教学学报,2005,4:88-91.
    [201]史锋义,何荣涛,汪枫,等.静电场数值的计算方法与精度分析,沈阳工业大学学报,1999,6:512-515.
    [202]袁小娴,陈俊武,周志成,等.330kV线路复合绝缘子电位和电场分布的有限元计算,电瓷避雷器,2006,4:9-12.
    [203]王飙,王荣琴,张新平,等.油中多层绝缘介质局部放电现象的研究,2000,1:21-24.
    [204]油中固体介质爬电现象的研究,[工学硕士学位论文]
    [205]肖国熙,影响绝缘子油中工频击穿电压因素的探讨,电瓷避雷器,1994,6:29-32.
    [206] Henrich V E, Cox P A. The Surface Science of Metal Oxides, Cambridge University Press,Cambridge, U. K.1994.
    [207] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active Nonmetallic Au and Pt Species onCeria-Based Water-Gas Shift Catalysts, Science,2003,301:935-938.
    [208] Wang J C, Liu P, Fu X Z, et al. Relationship between Oxygen Defects and PhotocatalyticProperty of ZnO Nanocrystals in Nafion Membranes, Langmuir,2009,25:1218-1223.
    [209] Lu G., Linsebigler A., Yates, J. T. Jr. Ti3+Defect Sites on TiO2(110): Production andChemical Detection of Active Sites, Journal of Physical Chemistry B,1994,98:11733-11738.
    [210] Diebold U, Li M, Dulub O, et al. The Relationship Between Bulk and Surface Properties ofRutile TiO2(110), Surface Review Letters,2000,7:613-617.
    [211] Koida T, Chichibu S F, Uedono A, et al. Correlation between the photoluminescence lifetimeand defect density in bulk and epitaxial ZnO, Applied Physics Letters,2003,82:532-534.
    [212]胡建芳,钱露茜,郭淑静,等.低温等离子体对医用胶原膜表面改性的研究.材料研究学报,1994,8(1):82-87.
    [213] Chanunpanich N, Ulman A, Strzhemechny Y M, et al. Grafting polythiophene onpolyethylene surfaces. Polymer International,2003,52:172-178.
    [214]林立中.直流辉光放电冷等离子体在高分子材料表面改性上的应用.物理,1999,7(28):417-422.
    [215]袁超廷,高尚林,牟其伍,等.超高分子量聚乙烯纤维的等离子体表面处理.材料科学进展,1992,6(5):427-434.
    [216]裴晋昌.低温等离子体对高分子材料表面的改性.化学通报,1982,(10):557-581.
    [217] Shultz A N, Jang W, Hetherington W M, et al. Comparative second harmonic generation andX-ray photoelectron spectroscopy studies of the UV creation and O2healing of Ti3+defectson (110) rutile TiO2surfaces, Surface Science,1995,339:114-124.
    [218] Wang L Q, Baer D R, Engelhard M H. Creation of variable concentrations of defects on TiO2(110) using low-density electron beams, Surface Science,1994,320:295-306
    [219] Yu J G, Yu H G, Cheng B, et al. The Effect of Calcination Temperature on the SurfaceMicrostructure and Photocatalytic Activity of TiO2Thin Films Prepared by Liquid PhaseDeposition, Journal of Physical Chemistry B,2003,107:13871-13879.
    [220] Dai W X, Chen X, Zheng X P, et al. Photocatalytic Oxidation of CO on TiO2: Thechemisorptions of O2, CO and H2, ChemPhysChem,2009,10:411-419.
    [221] Martyanov I N, Uma S, Rodrigues S, et al. Structural defects cause TiO2-basedphotocatalysts to be active in visible light, Chemical Communication,2004,2476-2477.
    [222] Takizawa T, Watanabe T, Honda K. Photocatalysis through Excitation of Adsorbates.2. AComparative Study of Rhodamine B and Methylene Blue on Cadmium Sulfide, Journal ofPhysical Chemistry,1978,82:1391-1395
    [223] Horikoshi S, Saitou A, Hidaka H, et al. Environmental remediation by an integratedmicrowave/UV illumination method. V. Thermal and nonthermal effects of microwaveradiation on the photocatalyst and on the photodegradation of Rhodamine B under UV/Visradiation, Environmental Science and Technology,2003,37:5813-5822.
    [224] Zhao J C, Wu T X, Wu K Q, et al. Photoassisted degradation of dye pollutant.3. Degradationof the cationic dye Rhodamine B in aqueous anionic surfactant/TiO2dispersions undervisible light irradiation: evidence for the need of substrate adsorption on TiO2particles,Environmental Science and Technology,1998,32:2394-2400.
    [225] Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutant. V.Self-photosensitized oxidative transformation of Rhodamine B under under visible lightirradiation in TiO2dispersions, Journal of Physical Chemistry B,1998,102:5845-5851.
    [226] Ma Y, Yao J N. Photodegradation of Rhodamine B catalyzed by TiO2thin films, Journal ofPhotochemistry and Photobiology A: Chemstry,1998,116:167-170.
    [227] Ramamoorthy M, King-Smith R D, Vanderbilt D. Defects on TiO2(110) surfaces, PhysicalReview B,1994,49:7709-7715.
    [228] Kamat P V, Das S, Thomas K G, et al. Ultrafast photochemical events associated with thephotosensitization properties of a squaraine dye, Chemical Physics Letters,1991,178:75-79.
    [229] Turchi C S, Ollis D E. Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack, Journal of Catalysis,1990,122:178-192.
    [230]漆新华,王中华,庄源益.有机污染物的光催化降解过程中的分析技术进展.环境污染治理技术与设备,2003,4(1):38-43.
    [231] Hirakawa T, Nosaka Y. Properties of O2·-and·OH formed in TiO2aqueous suspensions byphotocatalytic reaction and influence of H2O2and some ions, Langmuir,2002,18:3247-254.
    [232] Liu G, Zhao J, Hidaka H. ESR Spin-Trapping Detection of Radical Intermediates in theTiO2-Assisted Photo-Oxidation of Sulforhodamine B under Visible Irradiation, Journal ofPhotochemistry and Photobiology A: Chemisty,2000,133:83-88.
    [233] Spanhel L, Weller H, Henglein A. Photochemistry of colloidal semiconductors.20. Surfacemodification and stability of strong luminescing CdS particles, Journal of the AmericanChemistry Society,1987,109:6632-6635.
    [234] Tachikawa T, Tojo S, Kawai K, et al. Photocatalytic Oxidation Reactivity of Holes in theSulfur-and Carbon-Doped TiO2Powders Studied by Time-Resolved Diffuse ReflectanceSpectroscopy, Journal of Physical Chemistry B,2004,108:19299-19306.
    [235] Heller A, Degani Y, Johnson Jr. D W, et al. Controlled suppression or enhancement of thephotoactivity of titanium dioxide (rutile) pigment, Journal of Physical Chemistry,1987,91(23):5987-5991
    [236] Chen Y X, Wei Z B, Chen Y X, et al. Metal-semiconductor catalyst: photocatalytic andelectrochemical behavior of Pt-TiO2for the water-gas shift reaction, Journal of MolecularCatalysis A: Chemical,1983,21(10):275-289.
    [237] Howe R F, Gratzel M. EPR observation of trapped electrons in colloidal titanium dioxide,Journal of Physical Chemistry,1985,89(21):4495-4499.
    [238] Qin D, Chang W, Chen Y, et al. Dynamic ESR Study of Oxygen Chemisorption onTiO2-Based Catalysts, Journal of Catalysis,1993,142(2):719-724.
    [239] Rekoske J E, Barteau M A. Isothermal reduction kinetics of titanium dioxide-based materials,Journal of Physical Chemistry B,1997,101(7):1113-1124
    [240] Liu H, Ma H T, Li X Z, et al. The enhancement of TiO2photocatalytic activity by hydrogenthermal treatment, Chemosphere,2003,50:39-46.
    [241] Jing L Q, Xin B F, Yuan F L, et al. Effects of Surface Oxygen Vacancies on Photophysicaland Photochemical Processes of Zn-Doped TiO2Nanoparticles and Their Relationships,Journal of Physical Chemistry B,2006,102:17860-17865.
    [242] Henrich V E, Dresselhans G, Zeiger H J, et al. Obeservation of Two-dimensional PhasesAssociated with Defect States on the Surface of TiO2, Physical Review Letter,1976,39:1335-1339.
    [243] Kurtz R L, Stockbauer R, Madey T E, et al. Synchrotron radiation studies of wateradsorption on titania (110), Surface Science,1989,218:178-184.
    [244] Tait R H, Kasowski R V, et al. Ultraviolet photoemission and low-energy-electron diffractionstudies of TiO2(rutile)(001)and(110)surfaces, Physical Review B,1979,20:5178-5191.
    [245] Gopel W, Rocker G, Feierabend R. Intrinsic defects of TiO2(110): Interaction withchemisorbed O2, H2, CO, and CO2, Physical Review B,1983,28:3427-3438.
    [246] Gopel W, Anderson J A, Frankel D, et al. Surface defects of TiO2(110): A combined XPS,XAES and ELS study, Surface Science,1984,139:333-346.
    [247] Berger, T.; Sterrer, M.; Diwald, O.; Knozinger, E.; Panayotov, D.; Thompson, T. L.; Yates, J.T., Jr. Light-induced charge separation in anatase TiO2particles, Journal of PhysicalChemistry B,2005,109:6061.
    [248] Yamakata A., Ishibashi T., Onishi H. Kinetics of the photocatalytic water-splitting reactionon TiO2and Pt/TiO2studied by time-resolved infrared absorption spectroscopy, Journal ofMolecule Catalysis A,2003,199:85-94
    [249] Yamakata A., Ishibashi T., Onishi H. Time-resolved infrared absorption spectroscopy ofphotogenerated electrons in platinized TiO2particles, Chemical Physics Letters,2001,333:271-277
    [250] Wang D, Wan L J, Wang C, et al. In Situ STM Evidence for Adsorption of Rhodamine B inSolution, Journal of Physical Chemistry B,2002,106:4223-4226.
    [251] Henderson M A, Epling W S, Perkins C L, Interaction of Molecular Oxygen with theVacuum-Annealed TiO2(110)Surface: Molecular and Dissociative Channels, Journal ofPhysical Chemistry B,1999,103:5328-5337.
    [252]戴文新,王绪绪,付贤智,等.卤素离子对TiO2薄膜光致亲水性的影响,物理化学学报,2005,21:1274-1279.
    [253] Ishibashi K, Fujishima A, Watanabe T, et al. Quantum yields of active oxidative speciesformed on TiO2photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry,2000.134(1-2):139-142.
    [254] Ishibashi K, Fujishima A, Watanabe T. Detection of active oxidative species in TiO2photocatalysis using the fluorescence technique. Electrochemistry Communication,2000,2:207-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700