用户名: 密码: 验证码:
水体扰动对藻生长机制与QCS水库富营养化控制的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青草沙(QCS,Qingcaosha)水库作为上海市新水源地,淡水资源充足,供水规模占全市原水供应的50%以上,受益人口超过1000万人,其水质好坏直接关系到人民群众的生命健康。QCS水库一旦发生蓝绿藻暴发,大量的藻毒素等有害物质就可能进入水体,这将给整个上海市的工业用水、居民生活用水带来极大的危害,给各方面带来严重的负面影响。QCS水库位于长江入海口,处于亚热带季风气候区,因此QCS库区水域常年会受到小、中、大等不同等级风力影响,风力的作用会引起库区水体不同程度的波浪,不同强度的“风生浪”对水体产生不同程度的扰动,直接影响着藻类微生物的生长;由于水流的水力作用,在局部范围水体形成紊流,对水体中的浮游植物产生扰动作用,影响水体中藻类微生物的生长。
     为了探讨QCS水库中水体扰动对藻类微生物生长和水体富营养化的影响,本研究以铜绿微囊藻和水华鱼腥藻为目标蓝藻微生物,以月牙藻、蛋白核小球藻和斜生栅藻为目标绿藻微生物,在实验室人工气候箱内进行培养。通过模拟“风生浪”及水流等产生的水体扰动,研究不同强度的扰动对蓝绿藻微生物生长以及光合作用的影响;以水华鱼腥藻和月牙藻为目标蓝藻微生物和绿藻微生物,探讨水体扰动对共培养中的藻属之间的生长与竞争关系;通过研究CO2限制、光限制以及温差等影响藻类微生物生长的机制,分析水循环物理控藻技术在QCS水库的应用;对QCS水库营养化指标与状态进行分析,分析库区藻类微生物影响因素。通过一系列深入的、系统的机制实验研究和QCS水库工程实验研究,可以得出以下研究结论:
     1)在低浓度氮磷和高浓度氮磷两种培养条件下,设计不同扰动强度对代表性蓝绿藻微生物进行纯培养实验。结果表明,扰动可以促进藻类微生物的生长,其影响机理并非单纯地影响营养盐的分布与传输,而是可以直接对藻类微生物的光合作用产生影响,即提高其光合效率和电子传递速率等。水体扰动在一定程度上会促进水体表面CO2和O2的交换,增加藻类微生物的光合活性和光合速率,从而对控制藻类微生物的生长与暴发产生不利影响;
     2)在低浓度氮磷和高浓度氮磷两种培养条件下,设计代表性蓝绿藻微生物在不同扰动强度下共培养与纯培养的对照实验。结果表明,蓝藻微生物和绿藻微生物之间存在明确的生长竞争机制。扰动可以对蓝藻微生物和绿藻微生物的光合作用竞争机制产生影响并对蓝藻微生物的生长形成一定程度的抑制。由于蓝藻微生物是藻毒素的主要生产者,这种竞争性抑制是具有积极意义的;
     3)水循环物理控藻系统通过在一定范围内产生垂向提升和平向扩散的水力扰动,一方面形成较大的CO2受限、光受限以及温差等干扰和抑制藻类微生物的生长;另一方面通过扰动对蓝绿藻微生长竞争机制产生影响从而抑制蓝藻微生物的生长。QCS水库的实证实验也验证了这一结果;
     4)QCS水库位于长江入海口,库区常年受到季风和海陆风的强烈影响,使得库区水体受“风生浪”影响明显,另外水库引水与取水的周期较短的特点,水体的流动性较大,因此“风生浪”、水体流速等产生的扰动对库区藻类微生物的生长产生着复杂和综合的影响。扰动总体上会通过加速藻类微生物的光合作用和水体表面CO2和O2的交换而促进藻类微生物的生长;另一方面,这种扰动也会对蓝绿藻微生物的光合作用竞争机制产生影响从而抑制蓝藻微生物的生长,有利于对藻毒素产生的控制。
The Qingcaosha reservoir (QCS reservoir) is located along the Yangtze Estuary in thenorthern part of Changxing Island in Shanghai, China. QCS reservoir is a new water sourcein Shanghai, and is rich in freshwater resources from the Yangtze River. The water supplycapacity covers50%of the total water supply in Shanghai. More than10million peoplebenefit from it. The water quality of QCS reservoir is directly related to people's lives andhealth. As an important water source, QCS reservoir plays a crucial role in affectingShanghai citizen's health. Like other lakes and reservoirs, the QCS reservoir is also facingthe challenge of environmental deterioration: eutrophication and algae bloom. If algaebloom is excessive in the reservoir, a lot of harmful matters such as algae toxins enter thewater body. The water will pose a serious threat to the industrial water and domestic waterin Shanghai. The QCS reservoir is located in the Yangtze River estuary, which is thesubtropical monsoon climate zone. The water forms different turbulence intensities under“wind generating wave”. Water turbulence may directly affect the algal growth. On theother hand, the water flow may also form water turbulence, which also directly affects thealgal growth.
     In order to further explore how water turbulence affects the algal growth andeutrophication in the QCS reservoir water, the following work was done as shown in thepaper:1) We studied the effect of water turbulence on the growth and photosynthesis ofblue-green algae in the laboratory. The experimental blue algae include Microcystisaeruginosa and Anabaena flos-aquae, the green algae include Selenastrum bibraianum,Chlorella pyrenoidosa and Scenedesmus obliqnus.2) The paper studied the effect of waterturbulence on competition and photosynthetic responses of Anabaena flos-aquae andSelenastrum bibraianum in the laboratory.3) We studied the effect mechanisms which water turbulence affects on growth and photosynthesis of the algae in the laboratory.4) Byanalyzing the mechanisms CO2-limited,light-limited and the temperature differenceaffecting the algal growth, we studied the effect of water circulation algae controltechnology (WCACT) in controlling algal growth and eutrophication in QCS reservoir.5)We analyzed the eutrophication status of the water in QCS reservoir, and analyzed theeffect factors of the algal growth in QCS reservoir water.
     By a series of laboratory and engineering experiments in QCS reservoir, the followingresults were obtained:
     1) Under two culture modes of low nitrogen&phosphorus concentrations media andhigh nitrogen&phosphorus concentration media, the difference in water turbulenceintensity affected growth and photosynthesis of the single-culture blue-green algae. Theresults showed that water turbulence may accelerate algal growth. The effect mechanism isthat water turbulence accelerates algal growth by affecting its photosynthesis (includingphotosynthetic efficiency and electron transport rate), it does not only affects thedistribution and transmission of nutrient in media or water. Water turbulence increasesexchange between CO2and O2in water surface, having adverse effect on controlling thealgal growth and breakouts in water.
     2) Under two culture modes of low nitrogen&phosphorus concentrations media andhigh nitrogen&phosphorus concentration media, the experiment studied the growth of theco-culture blue-green algae. The results showed that there is definite competitionmechanism between the blue algae and the green algae. Water turbulence affectscompetition by affecting blue-green algae photosynthesis, and may inhibit the blue algalgrowth to a certain extent. Because the blue algae is the main producer of algae toxins, thecompetition mechanism may decrease the content of algae toxins in water. Thecompetition mechanism has a positive significance and importance for water quality safetyin QCS reservoir.
     3) The WCACT formed the vertical water flow by vertical ascending and diffusedwater flow by horizontal diffusion in its controlling range. Then the water flow generateswater turbulence. On one hand, CO2-limited,light-limited and the temperature differenceinhibited the algal growth. On the other hand, water turbulence inhibited the blue algalgrowth by the competition mechanism of blue-green algae. The result was verified byengineering experiment in QCS reservoir.
     4) In QCS reservoir, there are many factors that affect the algal growth. Interaction ofthese factors results in complex and comprehensive effects of water turbulence on theblue-green algal growth. On the whole, water turbulence accelerates the algal growth byincreasing algal photosynthesis and exchange between CO2and O2in water surface. On theother hand, water turbulence inhibits the blue algal growth by the photosynthesiscompetition mechanism of blue-green algae, and may decrease the content of algae toxinsin QCS reservoir water.
引文
1. Wu, F. F.; Wang, X., Eutrophication evaluation based on set pair analysis of baiyangdian lake, NorthChina[J]. Procedia Environmental Sciences2012,13,(0),1030-1036.
    2. J rgensen, S. E., State-of-the-art of ecological modelling with emphasis on development of structuraldynamic models[J]. Ecological Modelling1999,120,(2-3),75-96.
    3. Rast, W.; Holland, M., Eutrophication of lakes and reservoirs: A framework for making managementdecisions[J]. Ambio1988,17,(1),2-12.
    4.孙惠民,乌梁素海富营养化及其机制研究[D].内蒙古大学2006.
    5.金相灿;刘洪亮,中国湖泊富营养化(第一版)[M].北京:中国环境科学出版社1990.
    6.饶群,大型水体富营养化数学模拟的研究[D].河海大学2002.
    7.刘春光;金相灿;王雯;邱金泉;丁春丽;孙凌;庄源益,城市景观河流夏季污染状况及营养水平动态分析-以天津市津河为例[J].环境污染与防治2004,26,(4),312-316.
    8.黄清辉,浅水湖泊内源磷释放及其生物有效性-以太湖、巢湖和龙感湖为例[D].中国科学院生态环境研究中心2005.
    9. Bianchan, T. S.; Engelhaupt, E.; Westman, P.; Andren, T.; Rolff, C.; Elmgren, R., Cyanobacterialblooms in the Baltic Sea: Natural or human-induced?[J]. Limnology and Oceanography2000,45,(3),716-726.
    10. Buskey, E. J., How does eutrophication affect the role of grazers in harmful algal bloom dynamics?[J].Harmful Algae2008,8,(1),152-157.
    11. Anzecc, Australian water quality guidelines for fresh and marine waters. Australian&New ZealandEnvironment&Conservation Council, Canberra1992.
    12.蔡庆华,武汉东湖富营养化的综合评价[J].海洋与湖沼1993,24,335-339.
    13. Kim, B.; Park, J. H.; Hwang, G.; Jun, M. S.; Choi, K., Eutrophication of reservoirs in South Korea[J].Limnology2001,2,(3),223-229.
    14.徐祖信;姜雅萍,湖泊营养状态的综合水质标识指数评价及检验[J].同济大学学报(自然科学版)2009,37,(8),1044-1048.
    15. UNEP,水体富营养化[J].世界环境1994,1,23-26.
    16.金相灿;刘树坤;章宗涉,中国湖泊环境(第一册)[M].北京:海洋出版社1995.
    17.孟红明;张振克,我国主要水库富营养化现状评价[J].河南师范大学学报(自然科学版)2007,35,(2),133-137.
    18.王晟;徐祖信,从生态学观点看湖泊藻类控制的技术体系[J].上海环境科学2003,22,(5),332-334.
    19. Jorgensen, S. E., An eutrophication model for a lake[J]. Ecological model1976,2,(1).
    20.朱泮民;李冰冰,水体富营养化的生物学防治[J].天中学刊2004,19,(5),26-28.
    21. UNEP/WHRC, Reactive nitrogen in the environment: Too much or too little of a good thing[M]. Paris2007.
    22. Schindler, D. W., The evolution of phosphorus limitation in lakes[J]. Science1977,195,260-262.
    23. Smith, V. H., Low nitrogen to phosphorus ratios favors dominance by blue-green algae in lakephytoplankton[J]. Science1983,221,669-671.
    24. Jensen, J. P.; Jeppesen, E.; Olrik, K. Y.; Kristensen, P., Impact of nutrients and physical factors on theshift from cyanobacterial to chlorophyte dominance in shallow Danish Lakes[J]. Can. J. Fish. Aquat. Sci.1994,51,1692-1699.
    25.钟成华,三峡库区水体富营养化研究[D].四川大学2004.
    26. Liu, W.; Qiu, R. L., Water eutrophication in China and the combating strategies[J]. Journal Of ChemicalTechnology And Biotechnology2007,82,781-786.
    27. Glibert, P. M.; Seitzinger, S. P.; Heil, C. J.; Burkholder, M., The role of eutrophication in the globalproliferation of harmful algal blooms[J]. New perspectives and new approaches. Oceanography2005,18,198-209.
    28. Chambers, P. A.; Guy, M.; Roberts, E. S.; Charlton, M. N.; Kent, R.; Gagnon, C.; Grove, G.; Foster, N.,Nutrients and their impact on the Canadian environment[M]. Canada: Agriculture and Agri-Food Canada,Environment Canada, Fisheries and Oceans Canada, Health Canada and Natural Resources Canada2001.
    29. Glennie, E. B.; Littlejohn, C.; Gendebien, A.; Hayes, A.; Palfrey, R.; Sivil, D.; Wright, K., Phosphatesand alternative detergent builders-Final report[J]. EU Environment Directorate2002.
    30.王孟;邬红娟;马经安,长江流域大型水库富营养化特征及成因分析[J].长江流域资源与环境2004,13,(5),477-481.
    31. Chu, Z.; Jin, X.; Iwami, N.; Inamori, Y., The effect of temperature on growth characteristics andcompetitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulatorsystem[J]. Hydrobiologia2007,581,217.
    32. Rabalais, N. N.; Turner, R. E.; Wiseman, W. J., Gulf of Mexico hypoxia, aka “the dead zone”[J].Annual Review of Ecology and Systematics2002,33,235-263.
    33.刘树峰;张军, pH值对水库中的藻类生长影响研究[J].科技纵横2011,418-431.
    34.陈丽霞,南湾水库水质与藻类变化关系和不同光强对铜绿微囊藻的影响[D].信阳师范学院2010.
    35.陈德辉,等.,微囊藻栅藻资源竞争的动力学过程[J].环境科学学报2000,20,(5).
    36.沈东升,平原水网水体富营养化的限制因子研究[J].浙江大学学报,农业与生命科学版2002,28,(1),94-97.
    37.刘鸿亮,湖泊富营养化控制[M].北京:中国环境科学出版社2011.
    38.郭怀成;孙延枫,滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展2002,21,(5),500-506.
    39.付春平;钟成华;邓春光,水体富营养化成因分析[J].重庆建筑大学学报2005,27,(1),128-131.
    40.廖平安;胡秀琳,流速对藻类生长影响的试验研究[J].北京水利2005,2,12-15.
    41.焦世珺;钟成华;邓春光,浅谈流速对三峡库区藻类生长的影响[J].微量元素与健康研究2006,23,(2),48-50.
    42.颜润润;逄勇;陈晓峰;赵伟;马俊,不同风等级扰动对贫富营养下铜绿微囊藻生长的影响[J].环境科学2008,29,(10),2749-2753.
    43.王婷婷;朱伟;李林,不同温度下水流对铜绿微囊藻生长的影响模拟[J].湖泊科学2010,22,(4),563-568.
    44.高月香;张毅敏;张永春,流速对太湖铜绿微囊藻生长的影响[J].生态与农村环境学报2007,23,(2),57-60.
    45. Dodds, W. K.; Bouska, W. W.; Eitzmann, J. L.; Pilger, T. J.; Pitts, K. L.; Riley, A. J.; Schloesser, J. T.;Thornbrugh, D. J., Eutrophication of U.S, freshwaters: analysis of potential economic damages[J].Environment Science and Technology2009,43,12-19.
    46. Ashworth, W., The late, great lakes: An environmental history[M]. New York: Wayne State UniversityPress1986.
    47. Garg, J.; Garg, H. K.; Garg, J., Nutrient loading and its consequences in a lake ecosystem[J]. TropicalEcology2002,43,(2),355-358.
    48. Singhal, P. K.; Mahto, S., Role of water hyacinth in the health of a tropical urban lake[J]. Journal ofenvironmental biology/Academy of Environmental Biology, India2004,25,(3),269-277.
    49. Jha, P.; Barat, S., Hydrobiological study of lake Mirik in Darjeeling Himalayas[J]. Journal ofenvironmental biology/Academy of Environmental Biology, India2003,24,(3),339-344.
    50. Chellappa, S.; Camara, M. R.; Chellappa, N. T., Ecology of Cichla monoculus (Osteichthyes: Cichlidae)from a reservoir in the semi-arid region of Brazil[J]. Hydrobiologia2003,504,(1-3),267-273.
    51.涂建峰;郑丰;王国栋,日本霞浦湖水环境修复方法及影响评价[J]..水利水电快报2007,28,(12).
    52.金相灿等,中国湖泊富营养化[M].北京:中国环境科学出版社1990.
    53.黄玉瑶,内陆水域污染生态学原理与应用[M].北京:科学出版社2001.
    54.任晶, UV/H2O2对铜绿微囊藻抑制特性及其对微囊藻毒素降解机理研究[D].复旦大学2011.6.
    55. Foster, H. A.; Ditta, I. B.; Varghese, S.; Steele, A., Photocatalytic disinfection using titanium dioxide:spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology2011,90,(6),1847-1868.
    56. Salih, F. M., Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalyticoxidation[J]. Journal of Applied Microbiology2002,92,(5),920-926.
    57. Bai, M.; Zhang, Z.; Xue, X.; Yang, X.; Hua, L.; Fan, D., Killing effects of hydroxyl radical on algae andbacteria in ship's ballast water and on their cell morphology[J]. Plasma Chem Plasma Process2010,30,(6),831-840.
    58.董文艺;范洁;张金松,微滤膜与活性炭联用工艺去除富营养化水源水中藻类[J].环境污染治理技术与设备2004,5,(3),74-79.
    59. Hung, M. T.; Liu, J. C., Microfiltration for separation of green algae from water[J]. Colloids andSurfaces B: Biointerfaces2006,51,(2),157-164.
    60.赵志伟;李文明;高晗;王云波,气浮工艺强化除藻中试试验研究[J].沈阳大学学报2007,19,(2),62-65.
    61. Zhang, G.; Zhang, P.; Liu, H.; Wang, B., Ultrasonic damages on cyanobacterial photosynthesis[J].Ultrasonics Sonochemistry2006,13,(6),501-505.
    62. Heng, L.; Jun, N.; Wen-jie, H.; Guibai, L., Algae removal by ultrasonic irradiation-coagulation[J].Desalination2009,239,(1-3),191-197.
    63. Miao, H.; Tao, W., The mechanisms of ozonation on cyanobacteria and its toxins removal[J]. Separationand Purification Technology2009,66,(1),187-193.
    64. Yun, Y. S.; Lim, S. R.; Cho, K. K.; Park, J. M., Variations of photosynthetic activity and growth offreshwater algae according to ozone contact time in ozone treatment[J]. Biotechnology Letters1997,19,(9),831-833.
    65. Fang, J.; Ma, J.; Yang, X.; Shang, C., Formation of carbonaceous and nitrogenous disinfectionby-products from the chlorination of Microcystis aeruginosa[J]. Water Research2010,44,(6),1934-1940.
    66. Fang, J.; Yang, X.; Ma, J.; Shang, C.; Zhao, Q., Characterization of algal organic matter and formationof DBPs from chlor (am) ination[J]. Water Research2010,44,(20),5897-5906.
    67. Barrington, D. J.; Ghadouani, A., Application of hydrogen peroxide for the removal of toxiccyanobacteria and other phytoplankton from wastewater[J]. Environmental Science&Technology2008,42,(23),8916-8921.
    68. Sakai, H.; Oguma, K.; Katayama, H.; Ohgaki, S., Effects of low-or medium-pressure ultraviolet lampirradiation on Microcystis aeruginosa and Anabaena variabilis[J]. Water Research2007,41,(1),11-18.
    69. Sakai, H.; Oguma, K.; Katayama, H.; Ohgaki, S., Effects of low or medium-pressure UV irradiation onthe release of intracellular microcystin. Water Research2007,41,(15),3458-3464.
    70. Lee, S.; Kato, J.; Takiguchi, N.; Kuroda, A.; Ikeda, T.; Mitsutani, A.; Ohtake, H., Involvement of anextracellular protease in algicidal activity of the marine bacterium Pseudoalteromonassp. Strain A28[J].Applied and Environmental Microbiology2000,66,(10),4334-4339.
    71. Imamura, N.; Motoike, I.; Shimada, N.; Nishikori, M.; Morisaki, H.; Fukami, H., An efficient screeningapproach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem[J]. Journal ofAntibiotics2001,54,(7),582-587.
    72.袁蓉;刘建武;成旦红,风眼莲对多环芳烃(萘)有机废水的净化[J].上海大学学报(自然科学版)2004,10,(3),272-276.
    73.唐萍;吴国荣;陆长梅,太湖水域几种高等水生植物的克藻效应[J].农村生态环境2001,17,(3),42-44.
    74.李锋民;胡洪营,大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水2004,20,(11),18-21.
    75. Mateus, D. M. R.; Vaz, M. M. N.; Pinho, H. J. O., Fragmented limestone wastes as a constructedwetland substrate for phosphorus removal[J]. Ecological Engineering2012,41,65-69.
    76.毕磊;邱凌峰,污染底泥修复治理技术[J].中国环保产业2010,11,32-35.
    77. Andrieux, L. F.; Aminot, A., Phosphorus Forms Related to Sediment Grain Size and GeochemicalCharacteristics in French Coastal Areas[J]. Estuarine, Coastal and Shelf Science2001,52,(5),617-629.
    78. Jin, X. D.; He, Y. L.; Zhang, B.; Hassan, Y.; George, K., Impact of sulfate and chloride on sedimentphosphorus release in the Yangtze Estuary Reservoir, China[J]. Water Science&Technology2013,67,(8),1748-1756.
    79.张静仪;张思农,淀山湖水量的初步研究[J].湖泊科学1992,4,(4),65-70.
    80.莫丹锋;群,肖.;何金林,上海市淀山湖水环境调查分析[J].水资源与水工程学报2010,21,(4),160-162.
    81.李小平;陈小华;董旭辉;董志;孙敦平,淀山湖百年营养演化历史及营养物基准的建立[J].环境科学2012,33,(10),3301-3307.
    82.张宁红;黎刚;郁建桥;丁铭;徐亮,太湖蓝藻水华暴发主要特征初析[J].中国环境监测2009,25,(1),71-74.
    83.张鼎国;杨再福,淀山湖生态环境的演变与对策[J].水利渔业2006,26,(1),61-63.
    84.陈红;韩青;周宏伟,淀山湖水污染状况分析与综合治理对策研究[J].水资源保护2011,27,(6),36-40.
    85.程曦;李小平,淀山湖氮磷营养物20年变化及其藻类增长响应[J].湖泊科学2008,20,(4),409-419.
    86.范志锋;王丽卿;陈林兴;李燕;彭自然;季高华,水质标识指数法在淀山湖水质评价中的应用[J].上海海洋大学学报2009,18,(3),314-320.
    87.吴阿娜;朱梦杰;汤琳;朱刚;汪琴;张锦平,淀山湖蓝藻水华高发期叶绿素a动态及相关环境因子分析[J].湖泊科学2011,23,(1),67-72.
    88.上海勘测设计研究院,青草沙水库及取输水泵闸工程环境影响报告书[M].上海:上海勘测设计研究院2006.
    89.顾金山;陆晓茹;顾玉亮,上海青草沙水源地原水工程规划[J].给水排水2009,35,(1),50-54.
    90.顾玉亮;乐勤;金迪惠,青草沙-上海百年战略水源地[J].上海建设科技2008,1,66-69.
    91.张宏伟;吴健;车越;李巍;童春富,长江口青草沙水源地开发的生态环境影响[J].华东师范大学学报(自然科学版)2009,3,38-47.
    92.车越;杨凯;吴阿娜;袁雯,上海城市水源战略与水源地保护:格局、问题与展望[J].自然资源学报2005,20,(5),651-659.
    93. Platt, T.; Gallegos, C. L.; Harrison, W. G., Photoinhibition of photosynthesis in natural assemblages ofmarine phytoplankton[J]. Journal of Marine Research1980,38,(4),687-701.
    94.国家环境保护总局,水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社2002.
    95.吴淑岱,湖泊富营养化调查规范[M].北京:中国环境科学出版社1987.
    96. Smith, J. L.; Haney, J. F., Foodweb transfer, accumulation, and depuration of microcystins, acyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus)[J]. Toxicon2006,48,(5),580-589.
    97. Ono, E.; Cuello, J. L., Carbon dioxide mitigation using thermophilic cyanobacteria[J]. BiosystemsEngineering2007,96,(1),129-134.
    98.秦伯强;胡维平;高光;罗敛葱;张金善,太湖沉积物悬浮的动力机制及内源释放的概念模式[J].科学通报2003,48,(17),1822-1831.
    99.张运林;秦伯强;陈伟民;罗潋葱,太湖水体中悬浮物研究[J].长江流域资源与环境2004,13,(3),266-271.
    100.蒋增辉,青草沙水库浮游藻类的调查及控制[J].净水技术2012,31,(5),9-14.
    101. Grobbelaar, J., Turbulence in mass algal cultures and the role of light/dark fluctuations[J]. Journal ofApplied Phycology1994,6,(3),331-335.
    102.李冬梅;高永利;田甜;劉駿豪;殷克东,水体扰动对多种赤潮藻生长的影响[J].热带海洋学报2010,29,(6),65-70.
    103. Zheng, B.; Zheng, Z.; Zhang, J.; Luo, X.; Liu, Q.; Wang, J.; Zhao, Y., The removal of Microcystisaeruginosa in water by gamma-ray irradiation[J]. Separation and Purification Technology2012,85,(0),165-170.
    104. Peng, X.; Luan, Z.; Zhang, H., Montmorillonite-Cu(II)/Fe(III) oxides magnetic material as adsorbent forremoval of humic acid and its thermal regeneration[J]. Chemosphere2006,63,(2),300-306.
    105. Chen, J.-J.; Yeh, H.-H., The mechanisms of potassium permanganate on algae removal[J]. WaterResearch2005,39,(18),4420-4428.
    106. Yan, Q.; Yu, Y.; Feng, W.; Pan, G.; Chen, H.; Chen, J.; Yang, B.; Li, X.; Zhang, X., Plankton communitysuccession in artificial systems subjected to cyanobacterial blooms removal using chitosan-modified soils[J]Microbial Ecology2009,58,(1),47-55.
    107.邹华;潘纲;陈灏,离子强度对粘土和改性粘土絮凝去除水华铜绿微囊藻的影响[J].环境科学2005,26,(2),148-151.
    108.宋秀凯;王蔚;刘云章;赵媛媛;汝少国,理化因子对多变鱼腥藻溶血素活性的影响[J].安全与环境学报2006,6,(6),38-40.
    109. McLarnon-Riches, C. J.; Rolph, C. E.; Greenway, D. L. A.; Robinson, P. K., Effects of environmentalfactors and metals on selenastrum capricornutum lipids[J]. Phytochemistry1998,49,(5),1241-1247.
    110. Fr nzle, O., Trace Metals and other Contaminants in the Environment[J]. Bioindicators andenvironmental stress assessment2003,6,41-84.
    111.张红梅,青草沙水库藻类增殖及其毒素形成研究[D].复旦大学2012.
    112.许秋瑾;秦伯强;陈伟民;陈宇炜;高光,太湖藻类生长模型研究[J].湖泊科学2001,13,(2),149-156.
    113.韩志国;欧阳昊;林娴;雷腊梅;韩博平,蛋白核小球藻光驯化的快速光曲线变化[J].生态科学2006,25,(1),32-33.
    114.吕赟;王应军;冷雪;滕龙,稀土铈对水华鱼腥藻生理特性及藻毒素释放的影响[J].农业环境科学学报2012,31,(9),1677-1683.
    115. Shi, L.; Carmichael, W.; Miller, I., Immuno-gold localization of hepatotoxins in cyanobacterial cells[J].Archives of Microbiology1995,163,(1),7-15.
    116. Shapiro, J., Current beliefs regarding dominance by blue-greens: the case for the importance of CO2and pH[J]. Verh Int Ver Limnol.1990,24,38-54.
    117. Lyck, S., Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrateduring different growth phases of a batch culture experiment with Microcystis aeruginosa[J]. Journal ofPlankton Research2004,26,(7),727-736.
    118. Alldredge, A. L.; Silver, M. W., Characteristics, dynamics and significance of marine snow[J]. ProgressIn Oceanography1988,20,(1),41-82.
    119. Ki rboe, T.; Andersen, K. P.; Dam, H. G., Coagulation efficiency and aggregate formation in marinephytoplankton[J]. Marine Biology1990,107,(2),235-245.
    120.何少苓;彭静,论提高水域纳污与自净能力的水动力潜力[J].中国水利2003,1,71-73.
    121.王丽燕;张永春;蔡金傍,水动力条件对藻华的影响[J].水科学与工程技术2008,61-62.
    122. Marta, E.; Miquel, A.; Celia, M., Effects of turbulence on the composition of phytoplanktonassemblages in marine microcosms[J]. Mar. Ecol. Prog. Ser1987,38,267-281.
    123. Senerpont Domis, L. N.; Mooij, W. M.; Huisman, J., Climate-induced shifts in an experimentalphytoplankton community: a mechanistic approach[J]. Hydrobiologia2007,584,(1),403-413.
    124. Riebesell, U., Effects of CO2enrichment on marine phytoplankton[J]. Journal of Oceanography2004,60,(4),719-729.
    125. Vonshak, A., Spirulina: growth, physiology and biochemistry. In: Vonshak, A.(Ed.) Spirulina platensis(Arthrospira). Physiology, Cell-biology and Biotechnology[M]. London: Taylor&Francis1997,43-65.
    126.马增岭,阳光辐射变化对经济蓝藻螺旋藻形态、光合作用及生长的影响[D].汕头大学2008.
    127.邱保胜;高坤山,蓝藻浓缩二氧化碳的机制[J].植物生理学通讯2001,37,(5),385-392.
    128.夏建荣;高坤山,绿藻CO2浓缩机制的研究进展[J].应用生态学报2002,13,(11),1506-1514.
    129. Moroney, J. V.; Aravind, S., How do algae concentrate CO2to increase the efficiency of photosyntheticcarbon fixation?[J]. Plant Physiology1999,119,9-16.
    130. Talling, J. F., The depletion of carbon dioxide from lake water by phytoplankton[J]. Journal of Ecology1976,64,(1),79-121.
    131. Shapiro, J., Current beliefs regarding dominance by blue-greens: the case for the importance of CO2and pH[J]. Verh Int Verein Limnol1990,24,38-54.
    132.康丽娟;潘晓洁;常锋毅;李敦海;沈银武;刘永定, HCO-3碱度增加对铜绿微囊藻光合活性和超微结构的影响[J].武汉植物学研究2008,26,(1),70-75.
    133. Williams, T. G.; Colman, B., Quantification of the contribution of CO2, HCO-3, and external carbonicanhydrase to photosynthesis at low dissolved inorganic carbon in Chlorella saccharophila[J]. PlantPhysiology1995,107,(1),245-251.
    134. Williams, T. G.; Colman, B., The effects of pH and dissolved inorganic carbon on external carbonicanhydrase activity in Chlorella saccharophila[J]. Plant, Cell&Environment1996,19,(4),485-489.
    135. Turpin, D. H.; Weger, H. G., Steady-state chlorophyll a fluorescence transients during ammoniumassimilation by the N-limited green alga Selenastrum minutum[J]. Plant Physiology1988,88,97-101.
    136. Herrig, R.; Falkowski, P. G., Nitrogen limitation in Isochrysis galbana (Haptophyceae) I. Photosyntheticenergy conversion and growth efficienies[J]. Journal of Phycology1989,25,(3),462-471.
    137. Matsuda, Y.; Bozzo, G. G.; Colman, B., Regulation of dissolved inorganic carbon transport in greenalgae[J]. Can. J. Bot.1998,76,1072-1083.
    138.江善襄,磷酸、磷肥和复混肥料[M].北京:化学工业出版社1999.
    139.韩兴国;李凌浩;黄建辉,生物地球化学概论[M].北京:高等教育出版社1999.
    140.鲍颖,全球碳循环过程的数值模拟与分析[D].中国海洋大学2011.
    141.田国良;倪晓东,用光谱数据估算水体叶绿素浓度[J].环境遥感1988,3,71-79.
    142. Reynolds, C. S., The ecology of the planktonic blue-green algae in the North Shrop shire meres[J].Field Studies1971,3,409-432.
    143.彭俊杰;李传红;黄细花,城市湖泊富营养化成因和特征[J].生态科学2004,23,(4),370-373.
    144.孙扬才;陈雪初;孔海南;梁瑜;吴德意;李春杰,长江口边滩水库藻类增殖潜力的研究[J].中国给水排水2007,23,(9),99-102.
    145. Wetzel, R. G., Limnology: Lake and River Ecosystems[M]. California: Academic Press2001.
    146.潘继征;熊飞;李文朝;李荫玺,云南抚仙湖透明度的时空变化及影响因子分析[J].湖泊科学2008,20,(5),681-685.
    147.张呈;郭劲松;李哲;蒲清平;方芳;龙曼;高旭,三峡小江回水区透明度季节变化及其影响因子分析[J].湖泊科学2010,22,(2),189-194.
    148.秦伯强;胡维平;陈伟民,太湖水环境演化的过程与机理[M].北京:科学出版社2004.
    149.韩新芹;叶麟;徐耀阳;蔡庆华,香溪河库湾春季叶绿素a浓度动态及其影响因子分析[J].水生生物学报2006,30,(1),89-94.
    150.吕唤春;王飞儿;陈英旭;虞左明;方志发;周根娣,千岛湖水体叶绿素a与相关环境因子的多元分析[J].应用生态学报2003,14,(8),1347-1350.
    151. Bock, M. T.; Miller, B. S.; Bowman, A. W., Assessment of eutrophication in the firth of clyde: analysisof coastal water data from1982to1996[J]. Marine Pollution Bulletin1999,38,(3),222-231.
    152. Romo, S.; Van Donk, E.; Gylstra, R.; Gulati, R., A multivariate analysis of phytoplankton and food webchanges in a shallow biomanipulated lake[J]. Freshwater Biology1996,36,(3),683-696.
    153. Wang, X. L.; Lu, Y. L.; He, G. Z.; Han, J. Y.; Wang, T. Y., Multivariate analysis of interactions betweenphytoplankton biomass and environmental variables in Taihu Lake, China[J]. Environmental Monitoring andAssessment2007,133,(1-3),243-253.
    154.黄伟建;陈菊芳;徐宁;江天久;骆育敏;黄贯虹;齐雨藻,鄱阳湖水环境要素与叶绿素-a的灰关联模型{GM(1,n)}[J].水生物学报2001,25,(4),416-419.
    155.葛大兵;吴小玲;朱伟林;周延凯,岳阳南湖叶绿素a及其水质关系分析[J].中国环境监测2005,21,(4),69-71.
    156.阮晓红;石晓丹;赵振华;倪利晓;吴芸;焦涛,苏州平原河网区浅水湖泊叶绿素a与环境因子的相关关系[J].湖泊科学2008,20,(5),556-562.
    157. Shirazi, M. A.; Boersma, L., A unifying quantitative analysis of soil texture[J]. Soil Science Society ofAmerica Journal1984,48,(1),142-147.
    158. John, J. B.; Thomas, B. M.; Douglas, L. K.; Thanh, H. D., Identification of regional soil quality factorsand indicators I. central and southern high plains [J]. Soil Science Society of America Journal2000,64,(6),2115-2124.
    159. Jackson, D. F., Ecological factors governing blue-green algal blooms[J]. Purdue Univ. Extension, Serie1984,117,402-420.
    160. Robarts, R. D.; Zohary, T., Temperature effects on photosynthetic capacity, respiration, and growth ratesof bloom-forming cyanobacteria[J]. New Zealand Journal of Marine and Freshwater Research1987,21,(3),391-399.
    161.丁玲;逄勇;李凌;高光,水动力条件下藻类动态模拟[J].生态学报2005,25,(8),1863-1868.
    162. J rgensen., S. E.; Bendoricchio, G., Fundamentals of ecological modelling[M]. Elsevier Science B. V.,Netherlands1994.
    163.逄勇,太湖地区大气-水环境的综合数值研究[M].北京:气象出版社1998.
    164.许秋瑾;秦伯强;陈伟民;陈宇炜;高光,太湖藻类生长模型研究[J].湖泊科学2001,13,(2),149-157.
    165.李锦绣;杜斌;孙以三,水动力条件对富营养化影响规律探讨[J].水利水电技术2005,36,(5),15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700