用户名: 密码: 验证码:
改性粘土治理藻华对主要营养元素循环及藻毒素的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类活动增多、气候变化等因素影响,近年近岸有害藻华的暴发频率和规模不断增加,其引起的海洋生态问题日益凸显。改性粘土治理有害藻华是国际上推荐的野外应急治理方法之一。本论文通过室内实验,开展改性粘土治理不同藻华生物的长期环境化学效应的研究,针对有害甲藻藻华、硅藻藻华自然消亡过程中营养盐循环特性及改性粘土絮凝后所引起水质营养环境的差异特征以及改性粘土治理有毒藻华过程中对水和沉积物环境因子、藻毒素的影响研究,结合分析大量粘土絮凝有害藻华机理、元素生物地球化学循环、粘土材料结构特性等研究文献,获得以下几方面的阶段性成果:
     (1)改性粘土治理方法能够高效絮凝去除高密度有害藻华生物P. micans、P.donghaiense、S. costatum、A. tamarense,由于硅藻细胞外壳含有大量硅元素,与粘土中铝元素易发生离子置换,外加硅藻细胞的自沉降特性,所以改性粘土对硅藻去除效率更为显著,改性粘土通过“互荫”效应、改变营养结构和胶体缓冲体系等方式影响有害藻华生物的微生境,显著影响其细胞代谢合成不同的荧光物质,单位藻细胞有机氮和磷短期内显著升高,改性粘土治理方法有效抑制了有害藻华生物二次增殖。
     (2)自然消亡过程中藻源有机物在降解过程中会释放大量营养物质,这些营养物质可为二次藻华暴发提供物质基础,改性粘土治理方法在除藻的同时有效地改善了水质环境,水体中TN、TP大幅降低,且未出现二次释放。实验末期海洋原甲藻P. micans改性粘土絮凝后TP约去除39.28%~42.47%,TN约去除26.22%~29.93%;东海原甲藻P. donghaiense改性粘土絮凝后TP约去除51.39%,TN约去除17.24%;中肋骨条藻S. costatum改性粘土絮凝后TP约去除93.36%%~93.60%,TN约去除53.75%~71.95%;塔玛亚历山大藻A. tamarense改性粘土絮凝后TP约去除42.86%~56.30%,TN约去除20.72%~35.53%。
     (3)改性粘土改变了水体中营养元素的浓度、形态比例以及元素循环过程,磷酸盐和硅酸盐以直接吸附影响为主,而溶解态无机氮以时间累加的间接效应为主,有效地降低了水体营养程度,由于不同营养元素的去除机理和速率有所不同(无机营养元素转化速率依次为v(NO3--N)100),形成极度磷限制环境从而破坏了藻细胞二次增殖所需的适宜营养条件。
     (4)改性土治理方法形成的藻土有机粘土复合体聚合富集沉降大量有机氮和有机磷物质进入沉积物表层,通过沉积物颗粒、改性粘土颗粒与上覆水环境的离子交换作用、金属有机物螯合作用、沉积物压实作用等机制促使营养物质在月尺度上无法快速解吸或释放,同时改性粘土具有一定的抗微生物活性特征,减缓了有机氮、磷的降解,在月尺度上无机营养盐浓度未发生改变,使得这部分有机物如化石埋赋一样保存于沉积物中;另一方面,粘土颗粒表面为某些有机物质的聚合反应提供反应位置和催化中心,改性粘土自身的表面富集和选择催化特性促使叶绿素a和藻毒素PSTs等活性有机物质转化加速,沉积物中高毒性GTX1和GTX4向较低毒性GTX2和dcGTX3转化,尤其是沉积物-海水环境中,pH值和氧化环境在PSTs降解转化过程中起重要作用,毒素由高毒性向低毒性甚至无毒物质转化速率显著加快。
     改性粘土治理方法形成的絮体与“海洋雪”具有一定的相似性,但絮体来源、组成、形成状态有所不同。由于改性粘土添加是人为突发过程,对于自然水体而言这一过程如海底火山喷发般能突然改变区域微生物活性和元素地球化学循环过程。所以,针对特定水体条件和藻种,在筛选改性粘土用量和去除时应深入研究生态效应信息,在大规模施行前需要进行长时间尺度生态效应研究以保证安全使用这一治理方法。尽管本课题组针对改性粘土治理方法野外应用积累了大量经验,但是我们依然建议应该对其造成的环境影响需要慎重评估。研究改性粘土治理有害藻华后期营养元素的生物地球化学规律,对于正确认识海洋中的有害藻华消亡及有害藻华治理的后期生态效应都有重要意义。
Harmful algal blooms (HABs) are one of the most serious and complex globalphenomena affecting aquatic environmental systems. The outbreak of HABs has beenaccelerating in frequency, scale, and duration over the past several decades. WhenHABs occur, they negatively affect not only water qualities and the habitats of marineorganisms but also aquaculture industries and local tourism, mostly because of thehigh biomass of cells. Among various options of mitigation strategies for harmfulalgal blooms (HABs), flocculation of algal cells by modified clay (MC) has beenproven to be an effective, low-cost, and environmentally benign method and is theonly technique that has been widely applied in the field, particularly in Japan, Korea,North America and China. Because of the enormous amounts of clay that may beapplied for a single event of HABs, however, it is of critical importance to examinethe long-term environmental effects of this treatment on sensitive aquatic systems.
     The study report here the investigation on the major nutrient variations and waterquality changes by comparing the natural decaying of different harmful algae withbloom levels of cell density to the flocculation of algae by modified clay application.The thesis concluded all results to summarize the following points.
     (1) The low dosage of modified clay could efficiently remove and control the algalcells of Prorocentrum micans (60%~89.5%removal), Prorocentrum donghaiense(>56%), Skeletonema costatum (>90%), and Alexandrium tamarense (>95%)with high cell density, particularly in diatom control. Modified clay particlesimpact the metabolism of harmful algae and inhibit the re-blooming of HABsthrough the combining effects of the “shading” effects of suspended particles,changing the chemical stoichiometry and buffer capacity in seawater. No cells were found to escape from the algae-clay aggregates and release into seawaterduring the one-month incubation period.
     (2) Modified clay particles also effectively eliminated the nutrients from seawaterand adsorbed both inorganic and organic phosphorus with39.28%~42.47%of TPand26.22%~29.93%of TN removal in Prorocentrum micans,51.39%of TP and17.24%of TN removal in Prorocentrum donghaiense,93.36%%~93.60%of TPand53.75%~71.95%of TN removal in Skeletonema costatum,42.86%~56.30%of TP and20.72%~35.53%of TN removal in Alexandrium tamarense.
     (3) The concentration, proportion and cycling of nutrient were alternated by modifiedclay flocculation. Phosphate and silicate were mainly removed by the direct effectof physical adsorption of modified clay. Dissolved inorganic nitrogen was mainlyeliminated by the indirect effect of chemical adsorption and time cumulativeeffects from modified clay suspended. The conversion rates of dissolvedinorganic macronutrients exhibited that v(NO3--N)100in seawater), which was significantlydeviated from the required nutritional stoichiometry for HABs re-blooming.
     (4) The mechanisms underlying the effects elicited by MC on algal organicnitrogen/phosphorus are also discussed in the study. This study demonstrated thatMC particles could accumulate the algal matters to coagulate the polymericalgae-organic clay complexes settling into the surface sediment. The complexesblocked the nutrients and delayed the degradation and decomposition of algalorganic matter by preserving the recycling velocity of inorganic nutrients withoutsecondary pollution, exerting an antimicrobial activity effect of PACl in MC,organometallic chelation, and consolidation of particles, particularly within thewater-sediment environment, as the result, this part of the organic materials asfossil stored in burial sediments. On the other hand, the surface catalyticproperties of the modified clay particles provided reaction sites for the conversionof chlorophyll-a and algal toxins (PSTs) or other active organic matters.Moreover, the higher toxicity (GTX1and GTX4) changed into the low toxicity (GTX2and dcGTX3). The oxidation potential and high pH in seawater playedthe most important role in the degradation process of PSTs.
     The process of MC treatment forms aggregates, similar to the “marine snow” butdifferent sources, formation states and composition of aggregates. The integration andassociation of the whole interactions must be considered as well as the acute impact ofthe artificial addition process. Innovative synthesis studies investigating the long-termenvironmental effects of MC treatment should be conducted prior to the large-scaleapplication of the MC method. Although our group has had extensive experience inHABs on the Chinese coasts (in the Changjiang Estuary of Shanghai City, SouthChina Sea coast of Shenzhen City, Yellow Sea coast of Qingdao City, and the BohaiBay coast of Qinhuangdao City, among other locations), our findings suggest that areevaluation is necessary to determine the way in which algal detritus is representedin ocean biogeochemical models, and new field applications and observations arerequired to further clarify these processes. Further studies will be related to differentalgal scales, species, nutrient biogeochemical cycles, and how PSTs re-enter the foodchain to ensure the temporal environmental safety of the MC strategy.
引文
1.曹西华,宋秀贤,俞志明.改性粘土去除赤潮生物及其对养殖生物的影响[J].环境科学.2004,25(5):148-152.
    2.曹西华,宋秀贤,俞志明,等.有机改性粘土去除赤潮生物的机制研究[J].环境科学.2006,27(8):1522-1530.
    3.曹西华,俞志明.有机絮凝剂在赤潮治理中的应用展望[J].海洋科学.2001,25(5):12-14.
    4.曹西华.有机改性粘土去除赤潮生物的机制与方法研究[D].中国科学院研究生院(中国科学院海洋研究所)博士学位,2004.
    5.陈慈美,苏泽彤.蒙脱石—Ca(OH)2对河口区赤潮的抑制效应及其机制的实验室模拟研究[J].海洋通报.1989(2):75-85.
    6.陈建华.我国典型贝类增养殖海域藻毒素组成、分布状况及贝类染毒特征分析[D].中国科学院研究生院(海洋研究所)硕士学位,2013.
    7.陈敏.真光层的颗粒动力学—234Th/238U不平衡的应用[D].厦门大学博士学位,
    1996.
    8.代田昭彦著.刘世英,雍文岳译.水产饵料生物学[M].北京:农业出版社.1989,495pp.
    9.董林林.沉水植物与沉积物作用对富营养化湖泊磷循环的影响[D].天津大学硕士学位,2007.
    10.付梅.磷化氢对海洋微藻的影响及作用机制研究[D].中国科学院研究生院(中国科学院海洋研究所)博士学位,2013.
    11.高咏卉.改性粘土治理有害赤潮对生态环境的影响初探[D].中国科学院研究生院(中国科学院海洋研究所)硕士学位,2006.
    12.龚骏,张晓黎.微生物在近海氮循环过程的贡献与驱动机制[J].微生物学通报.2013(01):44-58.
    13.龚良玉,李雁宾,王修林,等.生物表面活性剂对东海原甲藻生长的影响[J].中国环境科学.2004(06):53-57.
    14.龚良玉,李雁宾,祝陈坚,等.生物法治理赤潮的研究进展[J].海洋环境科学.2010(01):152-158.
    15.龚良玉,王修林,李雁宾,等.鼠李糖脂对硅藻生长的影响及其选择性抑藻作用[J].中国环境科学.2006(01):96-100.
    16.古中博.赤潮灾害及其综合防治的生态、经济与管理研究[D].中国海洋大学博士学位,2010.
    17.国家海洋局海洋发展战略研究所课题组编著.中国海洋发展报告(2013)[M],北京:海洋出版社.2013,403pp.
    18.郭锦宝.化学海洋学[M].厦门:厦门大学出版社.1997,398pp.
    19.贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报.2009(01):406-415.
    20.洪华生,戴民汉,黄邦钦,等.厦门港浮游植物对磷酸盐吸收速率的研究[J].海洋与湖沼.1994(01):54-59.
    21.洪华生,戴民汉,郑效成.海水中碱性磷酸酶活力的测定及其在磷的循环中的作用初探[J].海洋与湖沼.1992(04):415-420.
    22.洪爱华,尹平河,赵玲,等.新洁而灭对海洋原甲藻赤潮生物的灭杀与抑制[J].海洋环境科学.2003,22(2):64-67.
    23.洪义国,李猛,顾继东.海洋氮循环中细菌的厌氧氨氧化[J].微生物学报.2009(03):281-286.
    24.侯秀富,郭沛涌,张华想,等.水体悬浮颗粒物对斜生栅藻生理生化及光合活性的影响[J].环境科学学报.2013,33(5):1446-1457.
    25.胡安辉.高效短程硝化/厌氧氨氧化富集培养物的研究[D].浙江大学博士学位,
    2010.
    26.胡春华,濮培民.太湖五里湖沉降通量及其有机质分解率研究[J].海洋与湖沼.2000(03):327-333.
    27.胡俊.滇池的内源磷及其与蓝藻水华的关系研究[D].中国科学院研究生院(水生生物研究所)博士学位,2005.
    28.黄邦钦,黄世玉,翁妍,等.溶解态磷在海洋微藻碱性磷酸酶活力变化中的调控作用[J].海洋学报(中文版).1999(01):55-60.
    29.黄娟,刘洁生,谭绍早,等.季铵阳离子改性黏土对两种赤潮藻的去除作用[J].暨南大学学报(自然科学与医学版).2009(03):339-342.
    30.焦念志,李德尚.悬浮沉积物对磷酸盐的吸附与释放及藻类对吸附磷的利用[J].青岛海洋大学学报.1989(S2):27-35.
    31.金红,王修林,张力军,等.海洋固体颗粒主要无机组份表面羟基形态分布特征[J].海洋湖沼通报.1996(04):28-34.
    32.李冰.中国古代赤潮记录的发现与辨析[J].中国社会经济史研究.2010,2:94-99.
    33.林勇新.形态特征及藻源有机质对改性粘土絮凝有害藻华生物效率的影响[D].中国科学院大学(中国科学院海洋研究所)博士学位,2013.
    34.刘晋勇.富营养化人工湖底泥磷的形态及迁移转化规律研究[D].清华大学硕士学位,2008.
    35.陆田生,纪明侯.胶州湾海水中溶解氨基酸的研究[J].海洋与湖沼.1996,2:117-124.
    36.梅卓华,张哲海,赵春霞,等.南京玄武湖蓝藻水华治理后水质和浮游植物的动态变化[J].湖泊科学.2010(01):44-48.
    37.齐雨藻,邹景忠,松梁,等.中国沿海赤潮[M].北京:科学出版社.2003.348pp.
    38.邵亮.长江口及其毗邻海区颗粒态氨基酸的分布[D].华东师范大学硕士,2010.
    39.沈国英,施并章.海洋生态学[M].北京:科学出版社.2002.446pp.
    40.石晓勇,史致丽.黄河口磷酸盐缓冲机制的探讨Ⅲ.磷酸盐交叉缓冲图及“稳定pH范围”[J].海洋与湖沼.2000(04):441-447.
    41.史荣君,黄洪辉,齐占会,等.一株溶藻细菌对海洋原甲藻的溶藻效应[J].生态学报.2012,32(16):4993-5001.
    42.宋金明,李鹏程,詹滨秋.热带西太平洋定点海域(4°S156°E)营养盐变化规律及降水对海水营养物质影响的研究[J].海洋科学集刊.1997(01):133-141.
    43.宋金明,罗延馨,李鹏程.渤海沉积物-海水界面附近磷与硅的生物地球化学循环模式[J].海洋科学.2000(12):30-32.
    44.宋秀贤,俞志明,高咏卉.一种有效去除赤潮生物的粘土复合体系[J].应用生态学报.2003,14(7):1165-1168.
    45.宋秀贤.我国典型海域营养盐特征对赤潮形成的影响及赤潮防治方法研究[D].中国科学院研究生院(中国科学院海洋研究所)博士学位,2003.
    46.孙松,于志刚,李超伦,等.黄,东海水母暴发机理及其生态环境效应研究进展[J].海洋与湖沼.2012,43(3).
    47.孙晓霞.粘土矿物及无机絮凝剂对有害赤潮的治理研究[D].中国科学院研究生院(中国科学院海洋研究所)博士学位,2001.
    48.汤鸿,李少菁,王桂忠.谷氨酸脱氢酶(GDH)活力测定及其在海洋生态系统中的应用[J].海洋通报.1997(02):87-92.
    49.王晨绯.中国科学院地质与地球物理研究所——吴亚生虞功亮等揭开2.5亿年前赤潮化石之谜[N].中国科学报,北京,2014-2-10(6).http://news.sciencenet.cn/dz/dznews_photo.aspx?id=19554
    50.王行信,王国力,蔡进功,等.有机粘土复合体与油气生成[M].北京:石油工业出版社.2006.179pp.
    51.王洪亮.颗粒物对藻华生物的絮凝作用及其分形数值模拟研究[D].中国科学院研究生院(中国科学院海洋研究所)博士学位,2010.
    52.王立军,季宏兵,丁淮剑,等.硅的生物地球化学循环研究进展[J].矿物岩石地球化学通报.2008,27(2):188-194.
    53.王丕波.海洋表层沉积物再悬浮对N、P循环以及对颗粒物垂直输运的影响[D].中国科学院研究生院(中国科学院海洋研究所)硕士学位,2005.
    54.王晓蓉,华兆哲,徐菱,等.环境条件变化对太湖沉积物磷释放的影响[J].环境化学.1996(01):15-19.
    55.王修林,张正斌,刘莲生,等.海洋固体颗粒主要无机组份的红外光谱研究[J].青岛海洋大学学报.1993(04):33-39.
    56.尾田方. Gymnodinium Mikimotoi MIYAKE et KOMINAMI n.sp.(MS.)の赤潮と硫酸銅の効果[J]. Doubutsugaku zasshi.1935,47(555):35-48.
    57.吴平霄.无机插层蒙脱石功能材料的微结构变化研究[J].现代化工.2003(07):34-36+40.
    58.吴萍.新型表面活性剂改性粘土治理赤潮研究[D].中国海洋大学博士学位,2005.
    59.徐徽,张路,商景阁,等.太湖梅梁湾水土界面反硝化和厌氧氨氧化[J].湖泊科学.2009(06):775-781.
    60.徐继荣,王友绍,孙松.海岸带地区的固氮、氨化、硝化与反硝化特征[J].生态学报.2004(12):2907-2914.
    61.徐年军,唐军,张泽伟,等.大米草对赤潮藻的抑制作用及其抑藻物质的分离鉴定[J].应用生态学报.2009,20(10):2563-2568.
    62.杨东方,高振会,王培刚,等.营养盐Si和水温影响浮游植物的机制[J].海洋环境科学.2006(01):1-6.
    63.俞志明, D. V. Subba Rao.粘土矿物对尖刺拟菱形藻多列型生长和藻毒素产生的影响[J].海洋与湖沼.1998,29(1):47-52.
    64.俞志明,马锡年,谢阳.粘土矿物对海水中主要营养盐的吸附研究[J].海洋与湖沼.1995,26(2):208-214.
    65.俞志明,宋秀贤.粘土表面改性及对赤潮生物絮凝作用研究[J].科学通报,1999,44(3):308-311.
    66.俞志明,邹景忠,马锡年,等.治理赤潮的化学方法[J].海洋与湖沼.1993(03):314-318.
    67.俞志明,邹景忠,马锡年.一种提高粘土矿物去除赤潮生物能力的新方法[J].海洋与湖沼.1994,3(2):226-232.
    68.张海平.深海粘土沉积物组份环境矿物学属性的初步研究[D].中国科学院研究生院(中国科学院海洋研究所)博士学位,2007.
    69.张青田.中国海域赤潮发生趋势的年际变化[J].中国环境监测.2013(05):98-102.
    70.张善东,俞志明,宋秀贤,等.大型海藻龙须菜与东海原甲藻间的营养竞争[J].生态学报,2005,25(10):2676-2680.
    71.张善东,宋秀贤,曹西华,等.龙须菜对锥状斯氏藻抑制作用的机制[J].环境科学,2008,29(8):2291-2295.
    72.张永刚,蔡进功,许卫平,等.泥质烃源岩中有机质富集机制[M].北京:石油工业出版社.2007,176pp.
    73.张正斌,刘效兰.海水中铜离子对氨基酸—粘土体系液—固界面作用的影响[J].青岛海洋大学学报(自然科学版).1999(02):157-163.
    74.赵以军,刘永定.有害藻类及其微生物防治的基础──藻菌关系的研究动态[J].水生生物学报.1996(02):173-181.
    75.郑平,胡宝兰,徐向阳.厌氧氨氧化菌好氧代谢特性的研究[J].浙江大学学报(农业与生命科学版).2000(05):60-65.
    76.周凡.赤潮的成因、危害及治理[J].生物学教学.2004(01):1-3.
    77.周名江,于仁成.有害赤潮的形成机制、危害效应与防治对策[J].自然杂志.2007(02):72-77+125-126.
    78.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学.2001(02):54-59+53.
    79.周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展[J].地球科学进展.2006(07):673-679+764-765.
    80.邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J].环境科学.2004(06):40-43.
    81.邹华,潘纲,阮文权.壳聚糖改性粘土絮凝除藻的机理探讨[J].环境科学与技术.2007(05):8-9+13+115.
    82.邹景忠,曾呈奎.赤潮生物与赤潮灾害研究[J].中国海洋科学研究与开发(曾呈奎主编).青岛:青岛出版社.1992:284-287.
    83.邹迎麟,朱明远, Sherwood H.两种亚历山大藻产毒过程和毒素特征研究[J].黄渤海海洋.2001(03):65-70.
    84. Alldredge A L, Silver M W. Characteristics, Dynamics and Significance of MarineSnow[J]. Progress in Oceanography.1988,20(1):41-82.
    85. Allen J T, Brown L, Sanders R, et al. Diatom carbon export enhanced by silicateupwelling in the northeast Atlantic[J]. Nature.2005,437(7059):728-732.
    86. Anderson D M. Turning back the harmful red tide-Commentary[J]. Nature.1997,388(6642):513-514.
    87. Anderson D M. Approaches to monitoring, control and management of harmful algalblooms (HABs)[J]. Ocean&Coastal Management.2009,52(7):342-347.
    88. Anderson D M, Burkholder J M, Cochlan W P, et al. Harmful algal blooms andeutrophication: Examining linkages from selected coastal regions of the United States[J].Harmful Algae.2008,8(1):39-53.
    89. Anderson D M, Cembella A D, Hallegraeff G M. Progress in Understanding HarmfulAlgal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, andManagement[J]. Annual Review of Marine Science,2012,4:143-176.
    90. Anderson D M, Couture D A, Kleindinst J L, et al. Understanding interannual, decadallevel variability in paralytic shellfish poisoning toxicity in the Gulf of Maine: The HABIndex[J]. Deep Sea Research Part II: Topical Studies in Oceanography. In Press,Available online2013,9.
    91. Anderson D M, Glibert P M, Burkholder J M. Harmful algal blooms and eutrophication:Nutrient sources, composition, and consequences[J]. Estuaries.2002,25(4B):704-726.
    92. Anderson D M, Kulis D M, Keafer B A, et al. Detection of the toxic dinoflagellateAlexandrium fundyense (Dinophyceae) with oligonucleotide and antibody probes:Variability in labeling intensity with physiological condition[J]. Journal of Phycology.1999,35(4):870-883.
    93. Archambault M C, Bricelj V M, Grant J, et al. Effects of suspended and sedimented clayson juvenile hard clams, Mercenaria mercenaria, within the context of harmful algalbloom mitigation[J]. Marine Biology.2004,144(3):553-565.
    94. Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbonfluxes in the ocean based on the quantitative association of POC with ballast minerals[J].Deep-Sea Research Part Ii-Topical Studies in Oceanography.2002,49(1-3):219-236.
    95. Armstrong R A, Peterson M L, Lee C, et al. Settling velocity spectra and the ballast ratiohypothesis[J]. Deep Sea Research Part II: Topical Studies in Oceanography.2009,56(18):1470-1478.
    96. Ayyasamy P M, Shanthi K, Lakshmanaperumalsamy P, et al. Two-stage removal ofnitrate from groundwater using biological and chemical treatments[J]. Journal ofBioscience and Bioengineering.2007,104(2):129-134.
    97. Balzano S, Pancost R D, Lloyd J R, et al. Changes in fatty acid composition in degradingalgal aggregates[J]. Marine Chemistry.2011,124(1):2-13.
    98. Baturin G. Phosphorus cycle in the ocean[J]. Lithology and Mineral Resources.2003,38(2):101-119.
    99. Beaulieu S E, Sengco M R, Anderson D M. Using clay to control harmful algal blooms:deposition and resuspension of clay/algal flocs[J]. Harmful Algae.2005,4(1):123-138.
    100. Berges J A, Falkowski P G. Physiological stress and cell death in marine phytoplankton:Induction of proteases in response to nitrogen or light limitation[J]. Limnology andOceanography.1998,43(1):129-135.
    101. Bidle K D, Falkowski P G. Cell death in planktonic, photosynthetic microorganisms[J].Nature Reviews Microbiology.2004,2(8):643-655.
    102. Blanchemain A, Grizeau D. Eicosapentaenoic acid content of Skeletonema costatum as afunction of growth and irradiance; relation with chlorophyll a content and photosyntheticcapacity[J]. Journal of Experimental Marine Biology and Ecology.1996,196(1):177-188.
    103. Bogus K A, Zonneveld K A F, Fischer D, et al. The effect of meter-scale lateral oxygengradients at the sediment-water interface on selected organic matter based alteration,productivity and temperature proxies[J]. Biogeosciences.2012,9(4):1553-1570.
    104. Bostr m B, Pettersson K. Different patterns of phosphorus release from lake sedimentsin laboratory experiments[J]. Hydrobiologia.1982,91:415-429.
    105. Bouchard J N, Purdie D A. Effect of Elevated Temperature, Darkness, and HydrogenPeroxide Treatment on Oxidative Stress and Cell Death in the Bloom-Forming ToxicCyanobacterium Microcystis Aeruginosa[J]. Journal of Phycology.2011,47(6):1316-1325.
    106. Brandes J A, Devol A H. A global marine-fixed nitrogen isotopic budget: Implications forHolocene nitrogen cycling[J]. Global Biogeochemical Cycles.2002,16(4):67-1-67-14.
    107. Brandes J A, Devol A H, Deutsch C. New developments in the marine nitrogen cycle[J].Chemical Reviews.2007,107(2):577-589.
    108. Burkholder J M, Noga E J, Hobbs C H, et al. New'phantom'dinoflagellate is the causativeagent of major estuarine fish kills[J]. Nature.1992,358(6385):407-410.
    109. Burns J M, Hall S, Ferry J L. The adsorption of saxitoxin to clays and sediments in freshand saline waters[J]. Water Research.2009,43(7):1899-1904.
    110. Capellacci S, Battocchi C, Casabianca S, et al. Bioavailability of different chemicalforms of dissolved silica can affect marine diatom growth[J]. Marine Ecology.2013,34(1):103-111.
    111. Cappenberg T E. Interrelations between sulfate-reducing and methane-producing bacteriain bottom deposits of a fresh-water lake. II. Inhibition experiments[J]. Antonie vanLeeuwenhoek.1974,40(2):297-306.
    112. Certner R, Cho H, Gallo N, et al.(Team BREATHE (Bay Revitalization Efforts Againstthe Hypoxic Environment)). Using sediment flocculation to reduce the impacts ofChesapeake Bay Microcystis aeruginosa harmful algal blooms[R]. Thesis submitted inpartial fulfillment of the requirements of the Gemstone Program University of Maryland,College Park,2011, p55-107.
    113. Chang S C, Li C H, Lin J J, et al. Effective removal of Microcystis aeruginosa andmicrocystin-LR using nanosilicate platelets[J]. Chemosphere.2014,99:49-55.
    114. Chen J, Pan G. Harmful algal blooms mitigation using clay/soil/sand modified withxanthan and calcium hydroxide[J]. Journal of Applied Phycology.2012,24(5):1183-1189.
    115. Chen J-H, Yu R-C, Gao Y, et al. Tracing the origin of paralytic shellfish toxins in scallopPatinopecten yessoensis in the northern Yellow Sea[J]. Food Additives&Contaminants:Part A.2013,30(11):1933-1945.
    116. Cho B C, Azam F. Major Role of Bacteria in Biogeochemical Fluxes in the OceansInterior[J]. Nature.1988,332(6163):441-443.
    117. Churro C, Fernandes A S, Alverca E, et al. Effects of tryptamine on growth, ultrastructure,and oxidative stress of cyanobacteria and microalgae cultures[J]. Hydrobiologia.2010,649(1):195-206.
    118. Conley D J, Johnstone R W. Biogeochemistry of N, P and Si in Baltic Sea Sediments-Response to a Simulated Deposition of a Spring Diatom Bloom[J]. Marine EcologyProgress Series.1995,122(1-3):265-276.
    119. Curl H, Mcleod G C. The Physiological Ecology of a Marine Diatom,Skeletonema-Costatum (Grev) Cleve[J]. Journal of Marine Research.1961,19(2):70-88.
    120. De La Rocha C L, Bickle M J. Sensitivity of silicon isotopes to whole-ocean changes inthe silica cycle[J]. Marine Geology.2005,217(3-4):267-282.
    121. DeGrasse S L, DeGrasse J A, Reuter K. Solid core column technology applied toHPLC-FD of paralytic shellfish toxins[J]. Toxicon.2011,57(1):179-182.
    122. DeGrasse S L, van de Riet J, Hatfield R, et al. Pre-versus post-column oxidation liquidchromatography fluorescence detection of paralytic shellfish toxins[J]. Toxicon.2011,57(4):619-624.
    123. Delaney M. Phosphorus accumulation in marine sediments and the oceanic phosphoruscycle[J]. Global Biogeochemical Cycles.1998,12(4):563-572.
    124. Demaster D J. The Supply and Accumulation of Silica in the Marine-Environment[J].Geochimica Et Cosmochimica Acta.1981,45(10):1715-1732.
    125. DeMaster D J. The accumulation and cycling of biogenic silica in the Southern Ocean:revisiting the marine silica budget[J]. Deep-Sea Research Part Ii-Topical Studies inOceanography.2002,49(16):3155-3167.
    126. Desai S R, Verlecar X N, Ansari Z A, et al. Evaluation of genotoxic responses ofChaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction ofpetroleum hydrocarbons as biomarker of exposure[J]. Water Research.2010,44(7):2235-2244.
    127. Dingman J E, Lawrence J E. Heat-stress-induced programmed cell death in Heterosigmaakashiwo (Raphidophyceae)[J]. Harmful Algae.2012,16:108-116.
    128. Donovan C J, Ku J C, Quilliam M A, et al. Bacterial degradation of paralytic shellfishtoxins[J]. Toxicon.2008,52(1):91-100.
    129. Drabkova M, Admiraal W, Marsalek B. Combined exposure to hydrogen peroxide andlight-Selective effects on cyanobacteria, green algae, and diatoms[J]. EnvironmentalScience&Technology.2007,41(1):309-314.
    130. Dugdale R C, Goering J J. Uptake of New and Regenerated Forms of Nitrogen inPrimary Productivity[J]. Limnology and Oceanography.1967,12(2):196-206.
    131. Dyhrman S T, Ammerman J W, Van Mooy B A S. Microbes and the Marine PhosphorusCycle[J]. Oceanography.2007,20(2):110-116.
    132. Ehrenhauss S, Witte U, Janssen F, et al. Decomposition of diatoms and nutrient dynamicsin permeable North Sea sediments[J]. Continental Shelf Research.2004,24(6):721-737.
    133. Engstrom-Ost J, Repka S, Brutemark A, et al. Clay-and algae-induced effects onbiomass, cell size and toxin concentration of a brackish-water cyanobacterium[J].Hydrobiologia.2013,714(1):85-92.
    134. Faber S. Saxitoxin and the induction of paralytic shellfish poisoning[J]. Journal of YoungInvestigators.2012,23(1):1-7.
    135. Field I A. Bulletin of the Bureau of fisheries, US: The food value of sea mussels[M]. USGovernment Printing Office.1909, p123.
    136. Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogencycle: the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. The ISMEjournal.2007,1(1):19-27.
    137. Gachter R, Mares A. Does Settling Seston Release Soluble Reactive Phosphorus in theHypolimnion of Lakes[J]. Limnology and Oceanography.1985,30(2):364-371.
    138. Gao B Y, Yue Q Y, Wang Y. Coagulation performance of polyaluminum silicate chloride(PASiC) for water and wastewater treatment[J]. Separation and Purification Technology.2007,56(2):225-230.
    139. Glibert P M, Anderson D M, Gentien P, et al. The global, complex phenomena of harmfulalgal blooms[J]. Oceanography.2005,18(2):130-141.
    140. Glibert P M, Burkholder J M. Harmful algal blooms and eutrophication:"strategies" fornutrient uptake and growth outside the Redfield comfort zone[J]. Chinese Journal ofOceanology and Limnology.2011,29(4):724-738.
    141. Glibert P M, Burkholder J M, Kana T M. Recent insights about relationships betweennutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, andfood web effects of pelagic and benthic Prorocentrum species[J]. Harmful Algae.2012,14:231-259.
    142. Glibert P M, Dennett M R, Caron D A. Nitrogen Uptake and NH+4Regeneration byPelagic Microplankton and Marine Snow from the North-Atlantic[J]. Journal of MarineResearch.1988,46(4):837-852.
    143. Glindemann D, Stottmeister U, Bergmann A. Free phosphine from the anaerobicbiosphere[J]. Environmental Science and Pollution Research.1996,3(1):17-19.
    144. Golterman H L. The chemistry of phosphate and nitrogen compounds in sediments[M].Dordrecht: Kluwer academic.2004, p57-59.
    145. Griffith P, Shiah F K, Gloersen K, et al. Activity and Distribution of Attached Bacteria inChesapeake Bay[J]. Marine Ecology Progress Series.1994,108(1-2):1-10.
    146. Guillard R R, Kilham P, Jackson T A. Kinetics of Silicon-Limited Growth in MarineDiatom Thalassiosira-Pseudonana Hasle and Heimdal=Cyclotella-Nana Hustedt[J].Journal of Phycology.1973,9(3):233-237.
    147. Guillard R R, Ryther J H. Studies of Marine Planktonic Diatoms.1. Cyclotella NanaHustedt, and Detonula Confervacea (Cleve) Gran[J]. Canadian Journal of Microbiology.1962,8(2):229-239.
    148. Guisande C, Frangópulos M, Carotenuto Y, et al. Fate of paralytic shellfish poisoningtoxins ingested by the copepod Acartia clausi[J]. Marine ecology. Progress series.2002,240:105-115.
    149. Hagstrom J A, Graneli E. Removal of Prymnesium parvum (Haptophyceae) cells underdifferent nutrient conditions by clay[J]. Harmful Algae.2005,4(2):249-260.
    150. Hagstrom J A, Sengco M R, Villareal T A. Potential Methods for Managing PrymnesiumParvum Blooms and Toxicity, with Emphasis on Clay and Barley Straw: A Review[J].Journal of the American Water Resources Association.2010,46(1):187-198.
    151. Hall S, Strichartz G, Moczydlowski E, et al. The Saxitoxins-Sources, Chemistry, andPharmacology[M]. In: Hall S, Strichartz G (eds). Marine Toxins: Origin, Structure, andMolecular Pharmacology. ARMY MEDICAL RESEARCH INST OF INFECTIOUSDISEASES FORT DETRICK MD.1990, p29-65.
    152. Hamm C. Interactive aggregation and sedimentation of diatoms and clay-sized lithogenicmaterial[J]. Limnology and Oceanography.2002,47(6):1790-1795.
    153. Heisler J, Glibert P M, Burkholder J M, et al. Eutrophication and harmful algal blooms:A scientific consensus[J]. Harmful Algae.2008,8(1):3-13.
    154. Holtan H, Kamp-Nielsen L, Stuanes A. Phosphorus in soil, water and sediment: anoverview[M]. In: Phosphorus in Freshwater Ecosystems. Springer Netherlands,1988,p19-34.
    155. Hu Z X, Mulholland M R, Duan S S, et al. Effects of nitrogen supply and its compositionon the growth of Prorocentrum donghaiense[J]. Harmful Algae.2012,13:72-82.
    156. Ilyash L V, Matorin D N. Features of the spatial distribution of phytoplankton inNhatrang Bay of the South China Sea during the rainy season[J]. Oceanology.2007,47(6):788-796.
    157. Imai I, Yamaguchi M, Hori Y. Eutrophication and occurrences of harmful algal blooms inthe Seto Inland Sea, Japan[J]. Plankton Benthos Res.2006,1(2):71-84.
    158. Ingalls A E, Lee C, Wakeham S G, et al. The role of biominerals in the sinking flux andpreservation of amino acids in the Southern Ocean along170°W[J]. Deep-Sea ResearchPart II-Topical Studies in Oceanography.2003,50(3-4):713-738.
    159. Ingalls A E, Liu Z F, Lee C. Seasonal trends in the pigment and amino acid compositionsof sinking particles in biogenic CaCO3and SiO2dominated regions of the Pacific sectorof the Southern Ocean along170°W[J]. Deep-Sea Research Part I-OceanographicResearch Papers.2006,53(5):836-859.
    160. Inskeep W P, Bloom P R. Extinction Coefficients of Chlorophyll-a and Chlorophyll-B inN,N-Dimethylformamide and80%Acetone[J]. Plant Physiology.1985,77(2):483-485.
    161. Iversen M H, Ploug H. Ballast minerals and the sinking carbon flux in the ocean:carbon-specific respiration rates and sinking velocity of marine snow aggregates[J].Biogeosciences.2010,7(9):2613-2624.
    162. Iversen M H, Ploug H. Temperature effects on carbon-specific respiration rate andsinking velocity of diatom aggregates-potential implications for deep ocean exportprocesses[J]. Biogeosciences.2013,10(6):4073-4085.
    163. Jardine P M, Weber N L, Mccarthy J F. Mechanisms of Dissolved Organic-CarbonAdsorption on Soil[J]. Soil Science Society of America Journal.1989,53(5):1378-1385.
    164. Jeppesen E, Jensen J P, S ndergaard M, et al. Top-down control in freshwater lakes: therole of nutrient state, submerged macrophytes and water depth[M]. In: Shallow Lakes’95.Springer Netherlands,1997, p151-164.
    165. Jewell W J, McCarty P L. Aerobic decomposition of algae[J]. Environmental Science&Technology.1971,5(10):1023-1031.
    166. Ji X, Han X, Zheng L, et al. Allelopathic interactions between Prorocentrum micans andSkeletonema costatum or Karenia mikimotoi in laboratory cultures[J]. Chinese Journal ofOceanology and Limnology.2011,29(4):840-848.
    167. Jiang J Q, Kim C. Comparison of Algal Removal by Coagulation with Clays andAl‐based Coagulants[J]. Separation Science and Technology.2008,43(7):1677-1686.
    168. Jiang T, Xu Y, Li Y, et al. Seasonal dynamics of Alexandrium tamarense and occurrenceof paralytic shellfish poisoning toxins in bivalves in Nanji Islands, East China Sea[J].Marine and Freshwater Research.2014,65:350-358.
    169. Jin Q, Dong S, Wang C. Allelopathic growth inhibition of Prorocentrummicans(Dinophyta) byUlva pertusaandUlva linza(Chlorophyta) in laboratory cultures[J].European Journal of Phycology.2005,40(1):31-37.
    170. Kamatani A, Oku O. Measuring biogenic silica in marine sediments[J]. MarineChemistry.2000,68(3):219-229.
    171. Kamatani A, Takano M. The Behavior of Dissolved Silica during the Mixing of Riverand Sea Waters in Tokyo Bay[J]. Estuarine Coastal and Shelf Science.1984,19(5):505-512.
    172. Kayal N, Newcombe G, Ho L. Investigating the fate of saxitoxins in biologically activewater treatment plant filters[J]. Environmental toxicology.2008,23(6):751-755.
    173. Kemp A E, Villareal T A. High diatom production and export in stratified waters-apotential negative feedback to global warming[J]. Progress in Oceanography.2013,119:4-23.
    174. Kim D I, Matsuyama Y, Nagasoe S, et al. Effects of temperature, salinity and irradianceon the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoidesMargalef (Dinophyceae)[J]. Journal of Plankton Research.2004,26(1):61-66.
    175. Kim H. Mitigation and controls of HABs[M]. In: Ecology of harmful algae. SpringerBerlin Heidelberg.2006, p327-338.
    176. Kim M C, Yoshinaga I, Imai I, et al. A close relationship between algicidal bacteria andtermination of Heterosigma akashiwo (Raphidophyceae) blooms in Hiroshima Bay,Japan[J]. Marine Ecology Progress Series.1998,170:25-32.
    177. Kim S, Park M G, Yih W, et al. Infection of the bloom-forming thecate dinoflagellatesAlexandrium affine and Gonyaulax spinifera by two strains of Amoebophrya(Dinophyta)[J]. Journal of Phycology.2004,40(5):815-822.
    178. Kimura K, Tomaru Y, Nagasaki K. Ultrastructural observation of natural fieldphytoplankton cells by using rapid freezing and freeze substitution[J]. Plankton andBenthos Research.2012,7(3):126-134.
    179. Kooistra W H C F, Sarno D, Balzano S, et al. Global diversity and biogeography ofSkeletonema species (Bacillariophyta)[J]. Protist.2008,159(2):177-193.
    180. Krause J W, Nelson D M, Brzezinski M A. Biogenic silica production and the diatomcontribution to primary production and nitrate uptake in the eastern equatorial PacificOcean[J]. Deep-Sea Research Part II-Topical Studies in Oceanography.2011,58(3-4):434-448.
    181. Lage O M, Parente A M, Soares H M V M, et al. Some effects of copper on thedinoflagellates Amphidinium carterae and Prorocentrum micans in batch culture[J].European Journal of Phycology.1994,29(4):253-260.
    182. Lai J X, Yu Z M, Song X X, et al. Responses of the growth and biochemical compositionof Prorocentrum donghaiense to different nitrogen and phosphorus concentrations[J].Journal of Experimental Marine Biology and Ecology.2011,405(1-2):6-17.
    183. Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sedimentspromoted by iron[J]. Nature.2012,483(7388):198-200.
    184. Larraza I, Peinado C, Abrusci C, et al. Hyperbranched polymers as clay surfacemodifiers for UV-cured nanocomposites with antimicrobial activity[J]. Journal ofPhotochemistry and Photobiology A: Chemistry.2011,224(1):46-54.
    185. Lebedeva E V, Fogden A. Nano-scale structure of crude oil deposits on water-wetsubstrates: Dependence on aqueous phase and organic solvents[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects.2011,380(1-3):280-291.
    186. Lebedeva E V, Fogden A. Wettability alteration of kaolinite exposed to crude oil in saltsolutions[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects.2011,377(1-3):115-122.
    187. Lee C K, Park T G, Park Y T, et al. Monitoring and trends in harmful algal blooms andred tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides[J].Harmful Algae.2013,30: S3-S14.
    188. Lee Y J, Choi J K, Kim E K, et al. Field experiments on mitigation of harmful algalblooms using a Sophorolipid-Yellow clay mixture and effects on marine plankton[J].Harmful Algae.2008,7(2):154-162.
    189. Lewis M A, Dantin D D, Walker C C, et al. Toxicity of clay flocculation of the toxicdinoflagellate, Karenia brevis, to estuarine invertebrates and fish[J]. Harmful Algae.2003,2(4):235-246.
    190. Li Y, LüS, Jiang T, et al. Environmental factors and seasonal dynamics of Prorocentrumpopulations in Nanji Islands National Nature Reserve, East China Sea[J]. Harmful Algae.2011,10(5):426-432.
    191. Liao M. Effects of organic acids on adsorption of cadmium onto kaolinite, goethite, andbayerite[J]. Pedosphere.2006,16(2):185-191.
    192. Lin Y X, Cao X H, Song X X, et al. Mechanisms and factors affecting the adsorption ofsodium alginate onto modified clays[J]. Chinese Journal of Oceanology and Limnology.2013,31(4):867-875.
    193. Liu C G, Wang J L, Feng J F, et al. Effects of suspended particles on the growth of twodominant phytoplankton species of Bohai Bay, China[J]. Marine Pollution Bulletin.2013,74(1):220-224.
    194. Liu H, Hu C, Zhao H, et al. Coagulation of humic acid by PACl with high content ofAl13: The role of aluminum speciation[J]. Separation and Purification Technology.2009,70(2):225-230.
    195. Loucaides S, Van Cappellen P, Roubeix V, et al. Controls on the Recycling andPreservation of Biogenic Silica from Biomineralization to Burial[J]. Silicon.2012,4(1):7-22.
    196. Lu D D, Goebel J, Qi Y Z, et al. Morphological and genetic study of Prorocentrumdonghaiense Lu from the East China Sea, and comparison with some relatedProrocentrum species[J]. Harmful Algae.2005,4(3):493-505.
    197. Lu H, Xie H, Gong Y, et al. Secondary metabolites from the seaweed Gracilarialemaneiformis and their allelopathic effects on Skeletonema costatum[J]. BiochemicalSystematics and Ecology,2011,39(4):397-400.
    198. Lürling M, Faassen E J. Controlling toxic cyanobacteria: Effects of dredging andphosphorus-binding clay on cyanobacteria and microcystins[J]. Water Research.2012,46(5):1447-1459.
    199. Lürling M, Oosterhout F. Controlling eutrophication by combined bloom precipitationand sediment phosphorus inactivation[J]. Water Research.2013,47(17):6527-6537.
    200. Lürling M, Tolman Y. Effects of lanthanum and lanthanum-modified clay on growth,survival and reproduction of Daphnia magna[J]. Water Research.2010,44(1):309-319.
    201. Maggi F. Biological flocculation of suspended particles in nutrient-rich aqueousecosystems[J]. Journal of Hydrology.2009,376(1-2):116-125.
    202. Markiewicz M, Mrozik W, Rezwan K, et al. Changes in zeta potential of imidazoliumionic liquids modified minerals–Implications for determining mechanism ofadsorption[J]. Chemosphere.2013,90:706-712.
    203. Maruyama S, Kim E. A modern descendant of early green algal phagotrophs[J]. CurrentBiology.2013,23(12):1081-1084.
    204. Matilainen A, Sillanpaa M. Removal of natural organic matter from drinking water byadvanced oxidation processes[J]. Chemosphere.2010,80(4):351-365.
    205. Matilainen A, Vepsalainen M, Sillanpaa M. Natural organic matter removal bycoagulation during drinking water treatment: A review[J]. Advances in Colloid andInterface Science.2010,159(2):189-197.
    206. Mena-Duran C J, Kou M R S, Lopez T, et al. Nitrate removal using natural claysmodified by acid thermoactivation[J]. Applied Surface Science.2007,253(13):5762-5766.
    207. Middelboe M, Sondergaard M, Letarte Y, et al. Attached and Free-Living Bacteria-Production and Polymer Hydrolysis during a Diatom Bloom[J]. Microbial Ecology.1995,29(3):231-248.
    208. Miller M J, Critchley M M, Hutson J, et al. The adsorption of cyanobacterialhepatotoxins from water onto soil during batch experiments[J]. Water Research.2001,35(6):1461-1468.
    209. Moriceau B, Garvey M, Ragueneau O, et al. Evidence for reduced biogenic silicadissolution rates in diatom aggregates[J]. Marine Ecology Progress Series.2007,333:129-142.
    210. Moriceau B, Goutx M, Guigue C, et al. Si-C interactions during degradation of thediatom Skeletonema marinoi[J]. Deep-Sea Research Part Ii-Topical Studies inOceanography.2009,56(18):1381-1395.
    211. Morris R J, Williams D E, Luu H A, et al. The adsorption of microcystin-LR by naturalclay particles[J]. Toxicon.2000,38(2):303-308.
    212. Mort H P, Slomp C P, Gustafsson B G, et al. Phosphorus recycling and burial in BalticSea sediments with contrasting redox conditions[J]. Geochimica Et Cosmochimica Acta.2010,74(4):1350-1362.
    213. Nagasoe S, Kim D I, Shimasaki Y, et al. Effects of temperature, salinity and irradiance onthe growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee[J].Harmful Algae.2006,5(1):20-25.
    214. Nelson D M, Treguer P, Brzezinski M A, et al. Production and Dissolution of BiogenicSilica in the Ocean-Revised Global Estimates, Comparison with Regional Data andRelationship to Biogenic Sedimentation[J]. Global Biogeochemical Cycles.1995,9(3):359-372.
    215. Nicholson B C, Shaw G R, Morrall J, et al. Chlorination for degrading saxitoxins(paralytic shellfish poisons) in water[J]. Environmental technology.2003,24(11):1341-1348.
    216. Nimer N A, Brownlee C, Merrett M J. Extracellular carbonic anhydrase facilitates carbondioxide availability for photosynthesis in the marine dinoflagellate Prorocentrummicans[J]. Plant Physiology.1999,120(1):105-111.
    217. Officer C B, Ryther J H. The Possible Importance of Silicon in Marine Eutrophication[J].Marine Ecology Progress Series.1980,3(1):83-91.
    218. Orizar I S, Rivera P P L, San Diego-McGlone M L, et al. Harmful Algal Bloom (HAB)mitigation using ball clay: Effect on non-target organisms[J]. Journal of EnvironmentalScience and Management.2013, Special Issue NO.1:36-43.
    219. Overnell J, Edwards A, Grantham B E, et al. Sediment-Water Column Coupling and theFate of the Spring Phytoplankton Bloom in Loch Linnhe, a Scottish Fjordic Sea-Loch-Sediment Processes and Sediment-Water Fluxes[J]. Estuarine Coastal and Shelf Science.1995,41(1):1-19.
    220. Paerl H W, Huisman J. Climate change: a catalyst for global expansion of harmfulcyanobacterial blooms[J]. Environmental Microbiology Reports.2009,1(1):27-37.
    221. Pan G, Chen J, Anderson D M. Modified local sands for the mitigation of harmful algalblooms[J]. Harmful Algae.2011,10(4):381-387.
    222. Pan G, Dai L C, Li L, et al. Reducing the Recruitment of Sedimented Algae and NutrientRelease into the Overlying Water Using Modified Soil/Sand Flocculation-Capping inEutrophic Lakes[J]. Environmental Science&Technology.2012,46(9):5077-5084.
    223. Pan G, Zou H, Chen H, et al. Removal of harmful cyanobacterial blooms in Taihu Lakeusing local soils. III. Factors affecting the removal efficiency and an in situ fieldexperiment using chitosan-modified local soils[J]. Environmental Pollution.2006,141(2):206-212.
    224. Park S C, Lee J K, Kim S W, et al. Selective Algicidal Action of Peptides againstHarmful Algal Bloom Species[J]. PLoS ONE.2011,6(10): e26733.
    225. Paytan A, McLaughlin K. The oceanic phosphorus cycle[J]. Chemical Reviews.2007,107(2):563-576.
    226. Pierce R H, Henry M S, Higham C J, et al. Removal of harmful algal cells (Kareniabrevis) and toxins from seawater culture by clay flocculation[J]. Harmful Algae.2004,3(2):141-148.
    227. Pleasance S, Ayer S W, Laycock M V, et al. Ionspray Mass-Spectrometry of MarineToxins.3. Analysis of Paralytic Shellfish Poisoning Toxins by Flow-Injection Analysis,Liquid-Chromatography Mass-Spectrometry and Capillary ElectrophoresisMass-Spectrometry[J]. Rapid Communications in Mass Spectrometry.1992,6(1):14-24.
    228. Ploug H, Iversen M H, Koski M, et al. Production, oxygen respiration rates, and sinkingvelocity of copepod fecal pellets: Direct measurements of ballasting by opal andcalcite[J]. Limnology and Oceanography.2008,53(2):469-476.
    229. Puskaric S, Mortain-Bertrand A. Physiology of diatom Skeletonema costatum Grev Clevephytosynthetic extracellular release evidence for a novel coupling between marinebacteria and phytoplankton[J]. Journal of Plankton Research.2003,25(10):1227-1235.
    230. Qin H J, Li S S, Li D H. An improved method for determining phytoplankton chlorophylla concentration without filtration[J]. Hydrobiologia.2013,707(1):81-95.
    231. Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modem ocean:recent progress and missing gaps in the application of biogenic opal as apaleoproductivity proxy[J]. Global and Planetary Change.2000,26(4):317-365.
    232. Rao F, Ramirez-Acosta F J, Sanchez-Leija R J, et al. Stability of kaolinite dispersions inthe presence of sodium and aluminum ions[J]. Applied clay science.2011,51(1):38-42.
    233. Reddy G B, Forbes D A, Hunt P G, et al. Effect of polyaluminium chloride onphosphorus removal in constructed wetlands treated with swine wastewater[J]. WaterScience and Technology.2011,63(12):2938-2943.
    234. Redfield A C. The biological control of chemical factors in the environment[J]. AmericanScientist.1958,46(3):205-221.
    235. Rochford D. Studies in Australian Estuarine Hydrology. I. Introdutory and ComparativeFeatures[J]. Marine and Freshwater Research.1951,2(2):1-116.
    236. Rositano J, Nicholson B, Pieronne P. Destruction of cyanobacterial toxins by ozone[J].Ozone: Science&Engineering: The Journal of the International.1998,20(3):223-238.
    237. Ross C, Santiago-Vazquez L, Paul V. Toxin release in response to oxidative stress andprogrammed cell death in the cyanobacterium Microcystis aeruginosa[J]. AquaticToxicology.2006,78(1):66-73.
    238. Rounsefell G A, Evans J E. Large-scale Experimental Test of Copper Sulfate as a Controlfor the Florida Red Tide[M]. U.S. Department of the Interior, Fish and Wildlife Service,Sci. Rep.1958,270pp.
    239. Salter I, B ttjer D, Christaki U. The effect of inorganic particle concentration onbacteria–virus–nanoflagellate dynamics[J]. Environmental Microbiology.2011,13(10):2768-2777.
    240. Sa udo-Wilhelmy S A, Tovar-Sanchez A, Fu F-X, et al. The impact of surface-adsorbedphosphorus on phytoplankton Redfield stoichiometry[J]. Nature.2004,432(7019):897-901.
    241. Sayfritz S J, Aasen J A B, Aune T. Determination of paralytic shellfish poisoning toxinsin Norwegian shellfish by liquid chromatography with fluorescence and tandem massspectrometry detection[J]. Toxicon.2008,52(2):330-340.
    242. Schantz E J, Mold J D, Stanger D W, et al. Paralytic Shellfish Poison.4. A Procedure forthe Isolation and Purification of the Poison from Toxic Clam and Mussel Tissues[J].Journal of the American Chemical Society.1957,79(19):5230-5235.
    243. Schroth B K, Sposito G. Effect of landfill leachate organic acids on trace metaladsorption by kaolinite[J]. Environmental Science&Technology.1998,32(10):1404-1408.
    244. Schuett W, Rapoport H. Saxitoxin, Paralytic Shellfish Poison-Degradation to aPyrrolopyrimidine[J]. Journal of the American Chemical Society.1962,84(11):2266-2267.
    245. Seitzinger S P. Denitrification in Fresh-Water and Coastal Marine Ecosystems-Ecological and Geochemical Significance[J]. Limnology and Oceanography.1988,33(4):702-724.
    246. Sekula-Wood E, Schnetzer A, Benitez-Nelson C R, et al. Rapid downward transport ofthe neurotoxin domoic acid in coastal waters[J]. Nature Geoscience.2009,2(4):272-275.
    247. Sengco M R, Anderson D M. Controlling harmful algal blooms through clayFlocculation[J]. Journal of Eukaryotic Microbiology.2004,51(2):169-172.
    248. Sengco M R, Hagstrom J A, Graneli E, et al. Removal of Prymnesium parvum(Haptophyceae) and its toxins using clay minerals[J]. Harmful Algae.2005,4(2):261-274.
    249. Sheng Y P, Lick W. The transport and resuspension of sediments in a shallow lake[J].Journal of Geophysical Research: Oceans (1978–2012).1979,84(C4):1809-1826.
    250. Siipola V, Mantyniemi S, Lehtimaki M, et al. Separating Biogenic and Adsorbed Pools ofSilicon in Sediments Using Bayesian Inference[J]. Silicon.2013,5(1):53-65.
    251. Smayda T J. Harmful algal blooms: Their ecophysiology and general relevance tophytoplankton blooms in the sea[J]. Limnology and Oceanography.1997,42(5):1137-1153.
    252. Smayda T J. What is a bloom? A commentary[J]. Limnology and Oceanography.1997,42(5):1132-1136.
    253. Sommer H, Monnier R P, Riegel B, et al. Paralytic Shellfish Poison.1. Occurrence andConcentration by Ion Exchange[J]. Journal of the American Chemical Society.1948,70(3):1015-1018.
    254. Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils andlandscapes-a review[J]. Journal of Plant Nutrition and Soil Science.2006,169(3):310-329.
    255. S ndergaard M, Jensen J P, Jeppesen E. Internal phosphorus loading in shallow Danishlakes[J]. Hydrobiologia.1999,408/409:145-152.
    256. S ndergaard M, Windolf J, Jeppesen E. Phosphorus fractions and profiles in the sedimentof shallow Danish lakes as related to phosphorus load, sediment composition and lakechemistry[J]. Water Research.1996,30(4):992-1002.
    257. Spilling K, Lindstr m M. Phytoplankton life cycle transformations lead tospecies-specific effects on sediment processes in the Baltic Sea[J]. Continental ShelfResearch.2008,28(17):2488-2495.
    258. Stedmon C A, Markager S. Tracing the production and degradation of autochthonousfractions of dissolved organic matter by fluorescence analysis[J]. Limnology andOceanography.2005,50(5):1415-1426.
    259. Sun X X, Choi J K, Kim E K. A preliminary study on the mechanism of harmful algalbloom mitigation by use of sophorolipid treatment[J]. Journal of Experimental MarineBiology and Ecology.2004,304(1):35-49.
    260. Sun X X, Lee Y J, Choi J K, et al. Synergistic effect of sophorolipid and loesscombination in harmful algal blooms mitigation[J]. Marine Pollution Bulletin.2004,48(9-10):863-872.
    261. Sundby B, Gobeil C, Silverberg N, et al. The Phosphorus Cycle in CoastalMarine-Sediments[J]. Limnology and Oceanography.1992,37(6):1129-1145.
    262. Suzumura M, Kamatani A. Mineralization of inositol hexaphosphate in aerobic andanaerobic marine sediments: implications for the phosphorus cycle[J]. Geochimica EtCosmochimica Acta.1995,59(5):1021-1026.
    263. Swartzen-Allen S L, Matijevic E. Surface and colloid chemistry of clays[J]. ChemicalReview.1974,74(3):385-400.
    264. Takano Y, Matsuoka K. A comparative study between Prorocentrum shikokuense and P.donghaiense (Prorocentrales, Dinophyceae) based on morphology and DNAsequences[J]. Plankton and Benthos Research.2011,6(4):179-186.
    265. Tallberg P, Lehtoranta J, Hietanen S. Silicate Release from Sand-Manipulated SedimentCores: Biogenic or Adsorbed Si?[J]. Silicon.2013,5(1):67-74.
    266. Tallberg P, Raike A, Lukkari K, et al. Horizontal and vertical distribution of biogenicsilica in coastal and profundal sediments of the Gulf of Finland (northeastern BalticSea)[J]. Boreal Environment Research.2012,17(5):347-362.
    267. Tamburini C, Garcin J, Gregori G, et al. Pressure effects on surface Mediterraneanprokaryotes and biogenic silica dissolution during a diatom sinking experiment[J].Aquatic Microbial Ecology.2006,43(3):267-276.
    268. Tang D L, Di B P, Wei G F, et al. Spatial, seasonal and species variations of harmful algalblooms in the South Yellow Sea and East China Sea[J]. Hydrobiologia.2006,568:245-253.
    269. Tang Y, Zhang H, Liu X A, et al. Flocculation of harmful algal blooms by modifiedattapulgite and its safety evaluation[J]. Water Research.2011,45(9):2855-2862.
    270. Tang Y Z, Gobler C J. The green macroalga, Ulva lactuca, inhibits the growth of sevencommon harmful algal bloom species via allelopathy[J]. Harmful Algae.2011,10(5):480-488.
    271. Tian B G, Pan G, Luan Z K. Chemical characteristics of enhanced flocculation removalof organic pollutants by cationic polyelectrolytes[J]. Progress in Chemistry.2007a,19(2-3):207-213.
    272. Tian B H, Ge X P, Pan G, et al. Effect of nitrate or sulfate on flocculation properties ofcationic polymer flocculants[J]. Desalination.2007b,208(1-3):134-145.
    273. Tian S, Jiang P, Ning P, et al. Enhanced adsorption removal of phosphate from water bymixed lanthanum aluminum pillared meontmorilonite[J]. Chemical Engineering Journal.2009,151:141-148.
    274. Tréguer P, Nelson D M, Vanbennekom A J, et al. The Silica Balance in the World Ocean-a Reestimate[J]. Science.1995,268(5209):375-379.
    275. Tréguer P J, De La Rocha C L. The World Ocean Silica Cycle[J]. Annual Review ofMarine Science.2013,5:477-501.
    276. Turley C M, Mackie P J. Biogeochemical Significance of Attached and Free-LivingBacteria and the Flux of Particles in the Ne Atlantic-Ocean[J]. Marine Ecology ProgressSeries.1994,115(1-2):191-203.
    277. Turner A D, Lewis A M, Hatfield R G, et al. A feasibility study into the production of afreeze-dried oyster reference material for paralytic shellfish poisoning toxins[J].Analytical and Bioanalytical Chemistry.2013a,405(26):8621-8632.
    278. Turner A D, Lewis A M, O'Neil A, et al. Transformation of paralytic shellfish poisoningtoxins in UK surf clams (Spisula solida) for targeted production of reference materials[J].Toxicon.2013b,65:41-58.
    279. Turner J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms[J].Aquatic Microbial Ecology.2002,27(1):57-102.
    280. Unuabonah E I, Olu-Owolabi B I, Oladoja A N, et al. Pb/Ca ion exchange on kaoliniteclay modified with phosphates[J]. Journal of Soils and Sediments.2010,10(6):1103-1114.
    281. van de Riet J M, Gibbs R S, Chou F W, et al. Liquid Chromatographic Post-ColumnOxidation Method for Analysis of Paralytic Shellfish Toxins in Mussels, Clams, Scallops,and Oysters: Single-Laboratory Validation[J]. Journal of Aoac International.2009,92(6):1690-1704.
    282. Van de Waal D B, Tillmann U, Zhu M M, et al. Nutrient pulse induces dynamic changesin cellular C:N:P, amino acids, and paralytic shellfish poisoning toxins in Alexandriumtamarense[J]. Marine Ecology Progress Series.2013,493:57-69.
    283. van Oosterhout F, Lürling M. Effects of the novel ‘Flock&Lock’lake restorationtechnique on Daphnia in Lake Rauwbraken (The Netherlands)[J]. Journal of PlanktonResearch.2011,33(2):255-263.
    284. van Oosterhout F, Lürling M. The effect of phosphorus binding clay (Phoslock) inmitigating cyanobacterial nuisance: a laboratory study on the effects on water qualityvariables and plankton[J]. Hydrobiologia.2013,710(1):265-277.
    285. Vardi A, Berman-Frank I, Rozenberg T, et al. Programmed cell death of thedinoflagellate Peridinium gatunense is mediated by CO2limitation and oxidativestress[J]. Current Biology.1999,9(18):1061-1064.
    286. Vardi A, Van Mooy B A S, Fredricks H F, et al. Viral Glycosphingolipids Induce LyticInfection and Cell Death in Marine Phytoplankton[J]. Science.2009,326(5954):861-865.
    287. Veldhuis M J W, Kraay G W, Timmermans K R. Cell death in phytoplankton: correlationbetween changes in membrane permeability, photosynthetic activity, pigmentation andgrowth[J]. European Journal of Phycology.2001,36(2):167-177.
    288. Verdugo P, Alldredge A L, Azam F, et al. The oceanic gel phase: a bridge in theDOM-POM continuum[J]. Marine Chemistry.2004,92(1-4):67-85.
    289. Vidoudez C, Pohnert G. Comparative metabolomics of the diatom Skeletonema marinoiin different growth phases[J]. Metabolomics.2012,8(4):654-669.
    290. Villacorte L O, Ekowati Y, Winters H, et al. Characterisation of transparent exopolymerparticles (TEP)produced during algal bloom: a membrane treatment perspective[J].Desalination and Water Treatment.2013,51:1021-1033.
    291. Wang D F, Li H Y, Wang L Y, et al. Effects of chitosan-RE3+-bentonite on growth ofChlorella vulgaris[J]. Journal of Rare Earths.2010,28:149-153.
    292. Wang D Z, Zhang S G, Gu H F, et al. Paralytic shellfish toxin profiles and toxinvariability of the genus Alexandrium (Dinophyceae) isolated from the Southeast ChinaSea[J]. Toxicon.2006,48(2):138-151.
    293. Wang Zheng-fang, Zhang Qin, Gong Min. The effects of nitrogen, phosphorus, vitaminsand trace metals on the growth of the red tide organism Prorocentrum micans [J].Chinese Journal of Oceanology and Limnology.1995,13(4):338-342.
    294. Wang W B, Yang C Y, Tang D S, et al. Effects of sand burial on biomass, chlorophyllfluorescence and extracellular polysaccharides of man-made cyanobacterial crusts underexperimental conditions[J]. Science in China Series C-Life Sciences.2007,50(4):530-534.
    295. Wang Y, Tang X. Interactions between Prorocentrum donghaiense Lu and Scrippsiellatrochoidea (Stein) Loeblich III under laboratory culture[J]. Harmful Algae.2008,7(1):65-75.
    296. Wang Z C, Li D H, Qin H J, et al. An integrated method for removal of harmfulcyanobacterial blooms in eutrophic lakes[J]. Environmental Pollution.2012,160:34-41.
    297. Wang Z-h, Liang Y, Kang W. Utilization of dissolved organic phosphorus by differentgroups of phytoplankton taxa[J]. Harmful Algae.2011,12:113-118.
    298. Wu C D, Xu X J, Liang J L, et al. Enhanced coagulation for treating slightly pollutedalgae-containing surface water combining polyaluminum chloride (PAC) withdiatomite[J]. Desalination.2011a,279(1-3):140-145.
    299. Wu T, Yan X Y, Cai X A, et al. Removal of Chattonella marina with clay mineralsmodified with a gemini surfactant[J]. Applied clay science.2010,50(4):604-607.
    300. Wu X Q, Xiao B D, Li R H, et al. Mechanisms and Factors Affecting Sorption ofMicrocystins onto Natural Sediments[J]. Environmental Science&Technology.2011b,45(7):2641-2647.
    301. Xu N, Duan S S, Li A F, et al. Effects of temperature, salinity and irradiance on thegrowth of the harmful dinoflagellate Prorocentrum donghaiense Lu[J]. Harmful Algae.2010,9(1):13-17.
    302. Yaghi N, Hartikainen H. Enhancement of phosphorus sorption onto light expanded clayaggregates by means of aluminum and iron oxide coatings[J]. Chemosphere.2013,93(9):1879-1886.
    303. Yamamoto T, Inokuchi Y, Sugiyama T. Biogeochemical cycles during the speciessuccession from Skeletonema costatum to Alexandrium tamarense in northern HiroshimaBay[J]. Journal of Marine Systems.2004,52(1-4):15-32.
    304. Yang G, Liu Y, Li B. Death of Prorocentrum donghaiense may be a programmedautolysis[J]. Journal of Ocean University of China (English Edition).2008,7(3):276-280.
    305. Yu Z M, Sengco M R, Anderson D M. Flocculation and removal of the brown tideorganism, Aureococcus anophagefferens (Chrysophyceae), using clays[J]. Journal ofApplied Phycology.2004,16(2):101-110.
    306. Yu Z M, Sun X X, Song X X, et al. Clay surface modification and its coagulation of redtide organisms[J]. Chinese Science Bulletin.1999,44(7):617-620.
    307. Yu Z M, Zou J Z, Ma X N. Application of clays to removal of red tide organisms III. Thecoagulation of kaolin on red tide organisms[J]. Chinese Journal of Oceanology andLimnology.1995,13(1):62-70.
    308. Zarchi I, Friedler E, Rebhun M. Polyaluminium chloride as an alternative to alum for thedirect filtration of drinking water[J]. Environmental Technology.2013,34(9):1199-1209.
    309. Zehr J P, Turner P J. Nitrogen fixation: Nitrogenase genes and gene expression[J].Methods in Microbiology.2001,30:271-286.
    310. Zehr J P, Ward B B. Nitrogen cycling in the ocean: New perspectives on processes andparadigms[J]. Applied and Environmental Microbiology.2002,68(3):1015-1024.
    311. Zhang T X, Wang X R, Jin X C. Variations of alkaline phosphatase activity and Pfractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu)[J].Environmental Pollution.2007,150(2):288-294.
    312. Zhang X, Yang G, Liu Y, et al. Induction of programmed cell death in agingProrocentrum donghaiense cells as was evidenced preliminarily by the identification ofassociated transcripts[J]. Acta Biologica Hungarica.2006,57(4):473-483.
    313. Zhao W H, Wang J T, Chen M M. Three-dimensional fluorescence characteristics ofdissolved organic matter produced by Prorocentrum donghaiense Lu[J]. Chinese Journalof Oceanology and Limnology.2009,27(3):564-569.
    314. Zhou L H, Zheng T L, Wang X, et al. Effect of five chinese traditional medicines on thebiological activity of a red-tide causing alga-Alexandrium tamarense[J]. Harmful Algae.2007,6(3):354-360.
    315. Zhu M Y, Xu Z J, Li R X, et al. Interspecies competition for nutrients betweenProrocentrum donghaiense Lu and Skeletonema costatum (Grev.) Cleve in mesocosmexperiments[J]. Acta Oceanologica Sinica.2009,28(1):72-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700