用户名: 密码: 验证码:
黄海浒苔绿潮中生源要素的迁移转化及对生态环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了黄海绿潮发生过程中不同海域浒苔体内的元素成分、营养成分和色素含量的变化及与环境营养盐变化的关系;在自然海水中模拟研究了不同生物量下浒苔对海水中碳、氮、磷、硫的消耗作用,转化作用以及释放作用,探讨了浒苔绿潮通过这些作用可能对黄海生态系统造成的影响。主要结果如下:
     通过测定了现场调查不同海域浒苔的组成成分以及在室内实验研究了在不同营养盐水平下浒苔的色素变化。结果发现,在江苏沿岸海域所采集的浒苔中的主要元素成分(C、N、P等)、营养成分(粗蛋白和粗脂肪)以及6种色素(叶绿素a、叶绿素b、叶黄素、β-胡萝卜素、新黄质和紫黄素)含量明显高于山东半岛海域。通过相关性分析得到,与叶绿素呈显著正相关关系的成分有C、N、Fe、Al、K和粗蛋白。无机氮营养盐浓度水平越高,浒苔的色素含量越高并且绿色越深;而无机磷营养盐单独对浒苔的色素和颜色没有明显影响。无机磷和无机氮对浒苔的色素和颜色的影响有协同作用。因此,在绿潮由江苏沿岸海域向山东半岛海域漂移的过程中,浒苔的绿色由深变浅,叶绿素的含量逐渐减少,多种元素成分含量逐渐减少,营养状态逐渐变差。黄海海域浒苔状态的转变与水体环境因子营养盐的分布有密切联系。
     通过研究不同生长阶段的浒苔对生源要素的消耗,发现当成体浒苔生物量为2.5g/L时,海水中DIN的消耗率高达约70%,DIP消耗率约为25%,DIC的消耗率率约为42%,而对海水中硫酸盐的消耗率仅约为1%。漂浮的成体浒苔生长率显著高于固着的成体浒苔,而固着和漂浮的浒苔对无机氮、磷营养盐的吸收没有显著差异(P<0.05)。固着期的浒苔对NH4+和PO43-的消耗要高于萌发期的浒苔。浒苔绿潮对海水氮磷营养盐的消耗会明显降低其在海水中的浓度和含量,但绿潮对无机碳和无机硫的消耗对其海水环境的变化没有明显的影响。
     为了更好地模拟海洋现场情况,在流水体系中研究了浒苔对氮磷营养盐吸收,与非流动水体系进行对比,并研究了浒苔对生源要素的转化作用,得到结果:在海水不流动的实验体系中,2d内浒苔对海水中DIN、 DIP和DOP是有吸收作用的,但对DON有释放作用的。浒苔可将海水中无机氮营养盐转化为有机氮产物。在海水流动的实验体系浒苔对海水中DIN、DIP、DON和DOP都有吸收作用,平均吸收速率分别为10.87μmol·g-1·d-1、2.41μmol·g-1·d-1、0.183μmol·g-1·d-1和0.023μmol·g-1·d-1。浒苔对无机形态的氮、磷、碳和硫转化为自身有机形态的效率分别为:97.33%、99.99%、96.84%和95.31%。爆发的绿潮能将无机形态的生源要素转化为自身有机形态,并将其输送至山东半岛海域。
     在浒苔腐烂分解的模拟实验中,发现浒苔的分解主要以有机态营养盐释放。2.5g/L的浒苔分解水体中总有机碳、总有机氮和总有机磷的增长到最高浓度分别为1.65mmol/L、80.71μmol/L和1.605μmol/L,均远高于海水原始浓度3-9倍,所占。总氮浓度超过了水体富营养化的标准。氨氮的浓度在分解后期高于海水原始浓度,达到2.46μmol/L。总有机硫、无机硫和硫化氢在分解过程中均有小幅度的升高,不足以影响海水环境。2.5g/L的分解的浒苔水体中溶解氧在12d后低于4mg/L,海水呈现低氧状态;pH值在12d以后一直低于7.5。溶氧和pH水平仅符合第四类海水质量标准。绿潮的腐烂分解会造成水体的缺氧和加重水体营养盐水平,对环境有明显的影响效应。
     我们的研究发现,黄海大规模浒苔绿潮的爆发对该海域生源要素的迁移、转化有重要影响,浒苔绿潮盛期的巨大生物量能从海水中吸收固定36万吨的碳、2.3万吨的氮、400吨的磷和1.6万吨的硫,并随绿潮的迁移而发生迁移,将大量的营养物质从江苏沿岸海域输送至山东半岛海域。在富营养化水平较高的江苏沿岸黄海海域,绿潮对营养盐的消耗量占全年江苏省排放氨氮量不到15%,这种消耗不能明显降低该海域的营养盐水平;在营养盐相对较低的山东半岛南部海域,绿潮对氮和磷营养盐的消耗较高(79%/d和36%/d),会显著降低该海域的营养盐水平,以致可能不利于其他初级生产者如浮游植物的生长,但会降低发生赤潮的机会。绿潮在山东半岛近岸海域下沉后的消亡分解在大约80天完成,并将自身的营养物质几乎全部释放到海水中,改变水体原有的氮磷营养盐比例(有机营养盐的百分比例从25%左右升高至90%以上),并且可能引起山东半岛沿岸海域局部水体营养盐水平升高(总氮浓度高于80μmol/L)以及水体处于低氧状态(DO低于4mg/L)。黄海大规模浒苔绿潮对海水中营养盐的吸收、迁移和再释放有可能对该海域营养盐的再分布起到重要作用,并产生相应的生态效应。
Field surveys were conducted to study the chemical composition and pigmentsin U. prolifera from different coastal area in the Yellow Sea, analyse the relationshipbetween this change and the environmental nutrients. Laboratory simulationexperiments in the natural seawater were conducted to research consumption,transformation and release of carbon, nitrogen, phosphorus and sulfur by U.and investigate the influence by these processes in the green tide on the Yellow Seaecosystem.
     The chemical composition and pigments in U. prolifera from different coastalarea in the Yellow Sea were determined and the impact on the color and pigment bynutrients were studied. The results showed that the content of the major chemicalcompositions, such as C, N, P, crude protein and crude fat etc., in thalli sampledfrom Jiangsu coastal area was obviously higher than that in thalli from Shandongpeninsula costal area. The same trend was noted with respect to the content of sixpigments (chlorophyll a, chlorophyll b, lutein, β-Carotene, neoxanthin andviolaxathin). Significant positive correlations (P<0.05) were noted betweenchlorophyll and C、N、Fe、Al、K and crude protein. Experimental results indicatedincreased pigment content (of chlorophyll a, chlorophyll b and lutein) in thalli towhich nitrate and phosphate had been added. It was also noted that, under low nitrateconditions, the addition of phosphate had no impact on the pigment content of thalli.Results also indicated major changes in green color of thalli (from dark to light) andthe content of chemical composition and pigments during the green tide driftingfrom Jiangsu coastal area to Shandong peninsula costal area. A change in nutritionalstatus, from rich to poor, was also noted. The physiological state transition of U.prolifera in the yellow sea was closely related to the distribution of the nutrients inone of environment factors.
     The consumption of biological elements by U. prolifera at different growthstages was researched to show that in the high biomass group (2.5g/L) of adult thalli,the DIN and DIP consumption from seawater in one day was approximately70% and25%, respectively. In the same group, the DIC and DIS consumption fromseawater in one day was approximately42%and1%, respectively. No significantdifference between floating and attached thalli for average DIN and DIPconsumption from seawater was observed (p>0.05). However, a significantdifference between floating and attached adult thalli was noted for daily growth rate(p<0.05). The NH4+and PO43-consumption in the fixation stage was significantlyhigher than that in the germination stage (p<0.05). In the green tide the high DINand DIP consumption by thalli could reduce the concentration of nitrogen andphosphorus nutrients in the seawater. The DIC and DIS consumption by thallicouldn t obviously impact on the seawater environment.
     Experiments were conducted to compare the absorption of nitrogen andphosphorus nutrient by U. prolifera in flowing-water and non-flowing water systemand study the transformation of biological elements by U. prolifera. The resultsshowed that DIN, DIP and DOP in seawater was absorbed by U. prolifera, but DONwas released in2days in the experimental system with the no-flowing water. Thallicould convert DIN to DON. DIN, DIP, DON and DOP in seawater was all absorbedby the thalli in the flowing water experiment. The average absorption rates were10.87μmol·g-1·d-1,2.41μmol·g-1·d-1,0.183μmol·g-1·d-1and0.023μmol·g-1·d-1,respectively. The transformation efficiency of inorganic form into organic form of N,P, C and S were97.33%,99.99%,96.84%and95.31%, respectively. U.prolifera inthe green tide could transform inorganic nutrients into organic nutrients, andtransport them to the Shangdong coastal area.
     In simulation experiments of the U. prolifera decomposition, the results showedthat the decomposed thalli mainly released organic nutrients. The highestconcentrations of organic carbon, organic nitrogen and organic phosphorus nutrientsincreased to1.65mmol/L,80.71μmol/L and1.605μmol/L, which were about3-9times higher than the initial concentrations. The TN concentration was over watereutrophication standards. However, the concentration of ammonia nitrogen (NH4+-N)was higher than the initial, about2.46μmol/L. The concentration of sulphur nutrientsincreased slightly, which couldn t impact on the environment. The dissolved oxygen was lower than4mg/L in the seawater with2.5g/L thalli after17th day, and theseawater with5g/L thalli was in the hypoxia state for a longer period. The pH valuewas less than7.5after12days. The dissolved oxygen and pH was in grade IV after17days. The green tide decomposition had obvious harmful effect on theenvironment.
     From what has been discussed above, the large green tide outbreaks ofU.prolifera had important influence on the migration and transformation ofbiological elements in the Yellow Sea. The total absorbed dose of nitrogen,phosphorus, carbon and sulfur by U. prolifera of huge biomass in the flourishingperiods was estimated to be360thousand tons,23.2thousand tons,400tons and16thousand tons respectively. The amount of biological elements absorbed by U.prolifera in the Jiangsu coastal area was transported to the seawaters of theShandong coastal area following current drift. The nutrients consumption by thegreen tide accounted for fewer than15%of the annual emissions of ammonianitrogen in Jiangsu province, which didn t significantly reduce the nutrients level inthe Jiangsu coastal area with seawater eutrophication. However, the high nutrientsconsumption (79%/d and36%/d) reduced the nutrients level to lower in theShandong peninsula southern seas with low nutrients, which may go against otherprimary producers, such as the growth of phytoplankton and reduce the chance ofred tides. The demise and decomposition time of green tide was about80daysduring the sinking of thalli in the shandong peninsula coastal waters, and releasedalmost all its nutrients into the sea, which may change the original nutrientsproportion in the seawater, for example, the percentage of organic nutrients ratiorised from about25%to more than90%, and cause the nutrients levels higher inShandong peninsula coastal area (TN concentration was higher than80μmol/L) andcause seawater hypoxia (DO less than4mg/L). It may play an important role on thenutrients re-distribution in that sea for nutrients absorption, migration and re-releaseby the large green tide in the Yellow sea, which could also cause the correspondingecological effects.
引文
Ahn O, Petrell R J, Harrison P J.1998. Ammonium and nitrate uptake by Laminaria saccharina andNereocystis luetkeana originating from a salmon sea cage farm. Journal of AppliedPhycology,10(4):333-340.
    Andreae M O.1986. The ocean as a source of atmospheric sulfur compounds, The role of air-seaexchange in geochemical cycling, Springer:331-362.
    Antia N, Berland B, Bonin D.1980. Proposal for an abridged nitrogen turnover cycle in certainmarine planktonic systems involving hypoxanthine-guanine excretion by ciliates and theirreutilization by phytoplankton. Marine Ecology Progress Series,2(2):97-103.
    Bastardo H.1979. Laboratory studies on decomposition of littoral plants. Polskie archiwumhydrobiologii: Polish archives of hydrobiology,1979.
    Berman T.1997. Dissolved organic nitrogen utilization by an Aphanizomenon bloom in LakeKinneret. Journal of Plankton Research,19(5):577-586.
    Blomster J, B ck S, Fewer D P, Kiirikki M, Lehvo A, Maggs C A, Stanhope M J.2002. Novelmorphology in Enteromorpha (Ulvophyceae) forming green tides. American Journal ofBotany,89(11):1756-1763.
    Brinkhuis B H, Li R Z, Wu C Y, Jiang X S.1989. Nitrite uptake transients and consequences forinvivo algal nitrate reductase assays. Journal of Phycology,25(3):539-545.
    Brinson M M, Lugo A E, Brown S.1981. Primary productivity, decomposition and consumer activityin freshwater wetlands. Annual Review of Ecology and Systematics:123-161.
    Carlson C A, Ducklow H W, Michaels A F.1994. Annual flux of dissolved organic carbon from theeuphotic zone in the northwestern Sargasso Sea. Nature,371(6496):405-408.
    Challenger F, Bywood R, Thomas P, Hayward B J.1957. Studies on biological methylation. XVII.The natural occurrence and chemical reactions of some thetins. Archives of Biochemistryand Biophysics,69:514-523.
    Chimney M J, Pietro K C.2006. Decomposition of macrophyte litter in a subtropical constructedwetland in south Florida (USA). Ecological Engineering,27(4):301-321.
    Cowles T, Olson R, Chisholm S.1988. Food selection by copepods: discrimination on the basis offood quality. Marine Biology,100(1):41-49.
    Crawford N M.1995. Nitrate-nutrient and signal for plant-growth. Plant Cell,7(7):859-868.
    Dailer M L, Smith J E, Smith C M.2012. Responses of bloom forming and non-bloom formingmacroalgae to nutrient enrichment in Hawai i, USA. Harmful Algae,17:111-125.
    Ding L P, Fei X G, Lu Q Q, Deng Y Y, Lian S X.2009. The possibility analysis of habitats, origin andreappearance of bloom green alga (Enteromorpha prolifera) on inshore of western YellowSea. Chinese Journal of Oceanology and Limnology,27(3):421-424.
    Dortch Q.1990. The interaction between ammonium and nitrate uptake in phytoplankton. MarineEcology Progress Series,61(1-2):183-201.
    Duan W, Guo L, Sun D, Zhu S, Chen X, Zhu W, Xu T, Chen C.2011. Morphological and molecularcharacterization of free-floating and attached green macroalgae Ulva spp. in the Yellow Seaof China. Journal of Applied Phycology,24(1):97-108.
    Duke C S, Litaker W, Ramus J.1989. Effect of temperature, N supply, and tissue N on ammoniumuptake rates of the Ulva curvata and Codium decorticatum. Journal of Phycology,25(1):113-120.
    Falkowski P G, Owens T G.1980. Light-Shade Adaptation-2Strategies in Marine-Phytoplankton.Plant Physiology,66(4):592-595.
    Fletcher R L.1996. he occurrence of green tides: a review [C]//Schramm W, Nienhuis P H. Marinebenthic vegetation: recent changes and the effects of eutrophication. Berlin: Springer:7-43.
    Fu G, Yao J T, Liu F L, Liu J D, Wang X L, Fu W D, Li D P, Zhou M J, Sun S, Duan D L.2008.Effect of temperature and irradiance on the growth and reproduction of Enteromorphaprolifera J. Ag.(Chlorophycophyta, Chlorophyceae). Chinese Journal of Oceanology andLimnology,26(4):357-362.
    Garcia-Robledo E, Corzo A, Papaspyrou S, Morris E P.2012. Photosynthetic activity and communityshifts of microphytobenthos covered by green macroalgae. Environmental MicrobiologyReports,4(3):316-325.
    Glibert P M, Garside C, Fuhrman J A, Roman M R.1991. Time-dependent coupling of inorganic andorganic nitrogen uptake and regeneration in the plume of the Chesapeake Bay estuary and itsregulation by large heterotrophs. Limnology and Oceanography,36(3):895-909.
    Hallegraeff G M.1993. A review of harmful algal blooms and their apparent global increase.Phycologia,32(2):79-99.
    Hernandez I, Peralta G, PerezLlorens J L, Vergara J J, Niell F X.1997. Biomass and dynamics ofgrowth of Ulva species in Palmones river estuary. Journal of Phycology,33(5):764-772.
    Hernes P J, Benner R, Cowie G L, Go i M A, Bergamaschi B A, Hedges J I.2001. Tannin diagenesisin mangrove leaves from a tropical estuary: a novel molecular approach. Geochimica etCosmochimica Acta,65(18):3109-3122.
    Hodgkiss I J, Lu S H.2004. The effects of nutrients and their ratios on phytoplankton abundance inJunk Bay, Hong Kong. Hydrobiologia,512(1-3):215-229.
    Hu C, Li D, Chen C, Ge J, Muller-Karger F E, Liu J, Yu F, He M-X.2010. On the recurrent Ulvaprolifera blooms in the Yellow Sea and East China Sea. Journal of Geophysical Research,115(C5).
    Invers O, Zimmerman R C, Alberte R S, Perez M, Romero J.2001. Inorganic carbon sources forseagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabitingtemperate waters. Journal of Experimental Marine Biology and Ecology,265(2):203-217.
    James F, Nolte K D, Hanson A D.1995. Purification and Properties of S-Adenosyl-L-Methionine-L-Methionine S-Methyltransferase from Wollastonia-Biflora Leaves. Journal ofBiological Chemistry,270(38):22344-22350.
    Jansson P-E, Berg B.1985. Temporal variation of litter decomposition in relation to simulated soilclimate. Long-term decomposition in a Scots pine forest. V. Canadian Journal of Botany,63(6):1008-1016.
    K chy M, Wilson S D.1997. Litter decomposition and nitrogen dynamics in aspen forest andmixed-grass prairie. Ecology,78(3):732-739.
    Keesing J K, Liu D, Fearns P, Garcia R.2011. Inter-and intra-annual patterns of Ulva prolifera greentides in the Yellow Sea during2007-2009, their origin and relationship to the expansion ofcoastal seaweed aquaculture in China. Marine Pollution Bulletin,62(6):1169-1182.
    Rachel K, Krista K, Peggy F.2004. Nutrient dynamics and macroalgal blooms: A comparison of fivesouthern california estuaries[R]∥Annua1report southern california coastal water researchproject, http:∥www.sccwrp.0rg/view:206219.
    Kim K Y, Choi T S, Kim J H, Han T, Shin H W, Garbary D J.2004. Physiological ecology andseasonality of Ulva pertusa on a temperate rocky shore. Phycologia,43(4):483-492.
    Koch G, Schulze E D, Percival F, Mooney H, Chu C.1988. The nitrogen balance of Raphanus sativusx raphanistrum plants. II. Growth, nitrogen redistribution and photosynthesis under NO3deprivation. Plant, Cell&Environment,11(8):755-767.
    Kong F Z, Yu R C, Zhang Q C, Yan T, Zhou M J.2012. Pigment characterization for the2011bloomin Qinhuangdao implicated brown tide events in China. Chinese Journal of Oceanologyand Limnology,30(3):361-370.
    Kudela R M, Cochlan W P.2000. Nitrogen and carbon uptake kinetics and the influence of irradiancefor a red tide bloom off southern California. Aquatic Microbial Ecology,21(1):31-47.
    Leliaert F, Zhang X W, Ye N H, Malta E, Engelen A H, Mineur F, Verbruggen H, De Clerck O.2009.Identity of the Qingdao algal bloom. Phycological Research,57(2):147-151.
    Leustek T, Martin M N, Bick J A, Davies J P.2000. Pathways and regulation of sulfur metabolismrevealed through molecular and genetic studies. Annual Review of Plant Physiology andPlant Molecular Biology,51:141-165.
    Lin A P, Shen S D, Wang G C, Yi Q Q, Qiao H J, Niu J F, Pan G H.2011. Comparison of chlorophylland photosynthesis parameters of floating and attached Ulva prolifera. Journal of IntegrativePlant Biology,53(1):25-34.
    Liu C, Zhang J, Sun X, Li J, Zhang X, Liu T.2011. Genetic analysis of floating Enteromorphaprolifera in the Yellow Sea with AFLP marker. Journal of Ocean University of China,10(3):263-269.
    Liu D, Keesing J K, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P.2010a. Recurrence of the world'slargest green-tide in2009in Yellow Sea, China: Porphyra yezoensis aquaculture raftsconfirmed as nursery for macroalgal blooms. Mar Pollut Bull,60(9):1423-1432.
    Liu D, Keesing J K, He P, Wang Z, Shi Y, Wang Y.2013a. The world's largest macroalgal bloom inthe Yellow Sea, China: Formation and implications. Estuarine, Coastal and Shelf Science,129:2-10.
    Liu F, Pang S J, Chopin T, Gao S Q, Shan T F, Zhao X B, Li J.2013b. Understanding the recurrentlarge-scale green tide in the Yellow Sea: temporal and spatial correlations between multiplegeographical, aquacultural and biological factors. Marine Environmental Research,83:38-47.
    Liu F, Pang S J, Chopin T, Xu N, Shan T F, Gao S Q, Sun S.2009. The dominant Ulva strain of the2008green algal bloom in the Yellow Sea was not detected in the coastal waters of Qingdaoin the following winter. Journal of Applied Phycology,22(5):531-540.
    Liu F, Pang S J, Xu N, Shan T F, Sun S, Hu X A, Yang J Q.2010b. Ulva diversity in the Yellow Seaduring the large-scale green algal blooms in2008-2009. Phycological Research,58(4):270-279.
    Liu F, Pang S J, Zhao X B, Hu C M.2012. Quantitative, molecular and growth analyses of Ulvamicroscopic propagules in the coastal sediment of Jiangsu province where green tidesinitially occurred. Marine Environmental Research,74:56-63.
    Lohman K, Priscu J C.1992. Physiological indicators of nutrient deficiency in Cladophora(Chlorophyta) in the Clark Fork of the Columbia River, Montana. Journal of Phycology,28(4):443-448.
    Lotze H K, Schramm W, Schories D, Worm B.1999. Control of macroalgal blooms at earlydevelopmental stages: Pilayella littoralis versus Enteromorpha spp.. Oecologia,119(1):46-54.
    Lundberg P, Weich R G, Jensén P, Vogel H J.1989. Phosphorus-31and nitrogen-14NMR studies ofthe uptake of phosphorus and nitrogen compounds in the marine macroalgae Ulva lactuca.Plant Physiology,89(4):1380-1387.
    Luo M B, Liu F, Xu Z L.2012. Growth and nutrient uptake capacity of two co-occurring species,Ulva prolifera and Ulva linza. Aquatic Botany,100:18-24.
    Mariachiara N, Wheeler. P A.1999. Changes in nitrogen pools in Ulva fenestrate (Chlorophyta) andGracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. Journal ofPhycology,35:70-77.
    Michalak I, Chojnacka K.2009. Edible macroalga Ulva prolifera as microelemental feed supplementfor livestock: the fundamental assumptions of the production method. World Journal ofMicrobiology&Biotechnology,25(6):997-1005.
    Michalak I, Chojnacka K, Dobrzanski Z, Gorecki H, Zielinska A, Korczynski M, Opalinski S.2011.Effect of macroalgae enriched with microelements on egg quality parameters and mineralcontent of eggs, eggshell, blood, feathers and droppings. Journal of Animal Physiology andAnimal Nutrition,95(3):374-387.
    Nedergaarda R I, Risgaard-Petersenb N, Finster K.2002. The importance of sulfate reductionassociated with Ulva lactuca thalli during decomposition: a mesocosm experiment. Journalof Experimental Marine Biology and Ecology,275:15-29.
    Palomo L, Clavero V, Izquierdo J J, Aviles A, Becerra J, Niel F X.2004. Influence of macrophytes onsediment phosphorus accumulation in a eutrophic estuary (Palmones River, Southern Spain).Aquatic Botany,80(2):103-113.
    Paraons.T.R.1984. Biological Oceanographic Processes, p.112-118, Oxford:Pergamon Press.
    Perrot T, Menesguen A, Dumas F.2007. Ecological modelling of Ulva mass blooms on the Britannycoasts. Houille Blanche-Revue Internationale De L Eau,(5):49-55.
    Raffaelli D, Raven J, Polle L.1998. Ecological impact of green macroalgal blooms. Oceanographyand Marine Biology,36:97-125.
    Raven J.1997. Putting the C in phycology. European Journal of Phycology,32(4):319-333.
    Redfield A C.1963. The influence of organisms on the composition of sea water. The sea:26-77.
    Saito K.2004. Sulfur assimilatory metabolism: The long and smelling road. Plant Physiology,136(1):2443-2450.
    Schmidt é C, Maraschin M, Bouzon Z L.2010. Effects of UVB radiation on the carragenophyteKappaphycus alvarezii (Rhodophyta, Gigartinales): changes in ultrastructure, growth, andphotosynthetic pigments. Hydrobiologia,649(1):171-182.
    Smayda T J.1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplanktonblooms in the sea. Limnology and Oceanography,42(5):1137-1153.
    Smith S V.1981. Marine Macrophytes as a Global Carbon Sink. Science,211(4484):838-840.
    Song J.2011. Biogeochemical processes of biogenic elements in China marginal seas. Hangzhou:Zhejiang University Press.
    Sun S, Wang F, Li C, Qin S, Zhou M, Ding L, Pang S, Duan D, Wang G, Yin B.2008. Emergingchallenges: Massive green algae blooms in the Yellow Sea. Nature Precedings.
    Tan I H, Blomster J, Hansen G, Leskinen E, Maggs C A, Mann D G, Sluiman H J, Stanhope M J.1999. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling thegross morphology of two common genera of green seaweeds, Ulva and Enteromorpha.Molecular Biology and Evolution,16(8):1011-1018.
    Taylor R.1999. The green tide threat in the UK-a brief overview with particular reference tolangstone harbour, south coast of England and the Ythan estuaty, east coast of Scotland.Botanical Journal of Scotland,51:195-295.
    Taylor R, Fletcher R L, Raven J A.2001. Preliminary studies on the growth of selected 'Green tide'algae in laboratory culture: Effects of irradiance, temperature, salinity and nutrients ongrowth rate. Botanica Marina,44(4):327-336.
    Teichberg M, Fox S E, Olsen Y S, Valiela I, Martinetto P, Iribarne O, Muto E Y, Petti M A V,Corbisier T S N, Soto-Jim‰Nez M N, P Ez-Osuna F, Castro P, Freitas H, Zitelli A,Cardinaletti M, Tagliapietra D.2009. Eutrophication and macroalgal blooms in temperateand tropical coastal waters: nutrient enrichment experiments with Ulva spp. Global ChangeBiology,16(9):2624-2637.
    Tian X.2011. Molecular detection and analysis of green seaweeds from Rudong coasts in JiangsuProvince. Csb,56(4-5):309.
    Tocher C, Ackman R G, McLachlan J.1966. The identification of dimethyl-β-propiothetin in thealgae Syracosphaera carterae and Ulva lactuca. Canadian journal of biochemistry,44(5):519-522.
    Turner S M, Malin G, Liss P S, Harbour D S, Holligan P M.1988. The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnology andOceanography,33(3):364-375.
    Umezawa Y, Herzfeld I, Colgrove C, Smith C M.2009. Potential effects of terrestrial nutrients insubmarine groundwater discharge on macroalgal blooms in a fringing reef ecosystem. FromHeadwaters to the Ocean: Hydrological Changes and Watershed Management:619-624.
    Valiela I, McClelland J, Hauxwell J, Behr P J, Hersh D, Foreman K.1997. Macroalgal blooms inshallow estuaries: controls and ecophysiological and ecosystem consequences. Limnologyand Oceanography,42(5):1105-1118.
    Van Alstyne K L, Nelson A V, Vyvyan J R, Cancilla D A.2006. Dopamine functions as anantiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia,148(2):304-311.
    Voytsekhovich А А, Kashevarov G P.2010. Pigment content of photosynthetic apparatus of greenalgae-the photobionts of lichens. International Journal on Algae12(3):282-292.
    Wang C, Yu R C, Zhou M J.2011. Acute toxicity of live and decomposing green alga Ulva(Enteromorpha) prolifera to abalone Haliotis discus hannai. Chinese Journal of Oceanologyand Limnology,29(3):541-546.
    Wang X, Han X, Shi X, Zhu C, Sun X, Zhang C.2006. Kinetics of nutrient uptake and release byphytoplankton in East China Sea: model and mesocosm experiments. Hydrobiologia,563(1):297-311.
    Watanabe M M, Kawachi M, Hiroki M, Kasai F.2004. NIES-Collection. List of strains. Microalgaeand Protozoa. Microbial Culture Collection. National Institute for Environmental Studies(NIES), Environmen Agency, Japan.
    Weich R G, Granéli E.1989. Extracellular alkaline phosphatase activity in Ulva lactuca L. Journal ofExperimental Marine Biology and Ecology,129(1):33-44.
    Wetzel R G.1992. Uptake of dissolved inorganic and organic phosphorus compounds byphytoplankton and bacterioplankton. Limnol. Oceanogr,37(2):232-243.
    Williams P M, Druffel E R.1987. Radiocarbon in dissolved organic matter in the central NorthPacific Ocean. Nature,330(6145).
    Xu D, Gao Z, Zhang X, Fan X, Wang Y, Li D, Wang W, Zhuang Z, Ye N.2012a. Allelopathicinteractions between the opportunistic species Ulva prolifera and the native macroalgaGracilaria lichvoides. PLoS One,7(4): e33648.
    Xu J F, Fan X, Zhang X W, Xu D, Mou S L, Cao S N, Zheng Z, Miao J L, Ye N H.2012b. Evidenceof Coexistence of C-3and C-4Photosynthetic Pathways in a Green-Tide-Forming Alga,Ulva prolifera. Plos One,7(5).
    Xu Y, Fang J, Wei W.2007. Application of Gracilaria lichenoides (Rhodophyta) for alleviating excessnutrients in aquaculture. Journal of Applied Phycology,20(2):199-203.
    Yabe T, Ishii Y, Amano Y, Koga T, Hayashi S, Nohara S, Tatsumoto H.2009. Green tide formed byfree-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology,10(3):239-245.
    Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T.2004. Metabolic engineering with Dof1transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogenconditions. Proceedings of the National Academy of Sciences of the United States ofAmerica,101(20):7833-7838.
    Zapata M, Rodriguez F, Garrido J L.2000. Separation of chlorophylls and carotenoids from marinephytoplankton: a new HPLC method using a reversed phase C-8column and pyridine-containing mobile phases. Marine Ecology Progress Series,195:29-45.
    Zhang J H, Huo Y Z, Zhang Z L, Yu K F, He Q, Zhang L H, Yang L L, Xu R, He P M.2013a.Variations of morphology and photosynthetic performances of Ulva prolifera during thewhole green tide blooming process in the Yellow Sea. Marine Environmental Research,92:35-42.
    Zhang Y P, Yang G P, Lu X L, Ding H B, Zhang H H.2013b. Distributions of dissolvedmonosaccharides and polysaccharides in the surface microlayer and surface water of theJiaozhou Bay and its adjacent area. Continental Shelf Research,63:85-93.
    Antonio G,张威,苏秀榕,李太武.2010.浒苔和龙须菜营养成分的研究.水产科学,29(6):329-333.
    包杰,田相利,董双林,姜宏波.2008.温度、盐度和光照强度对鼠尾藻氮、磷吸收的影响.中国水产科学,15(2):293-300.
    曹煊,李景喜,余晶晶,于振花,杨黄浩,王小如.2009.浒苔中有毒有害元素及砷化学形态的研究.分析测试学报,28(3):257-261.
    陈静.2010.紫外辐射和低盐胁迫对浒苔生长和细胞结构的影响.苏州:苏州大学.
    陈群芳,何培民,冯子慧,汤文仲.2011.漂浮绿潮藻浒苔孢子/配子的繁殖过程.中国水产科学,18(5):1069-1076.
    丛珊珊.2011.环境因子对浒苔生长、生存状态和营养吸收影响的实验研究.青岛:中国海洋大学.
    邓礼明,黄俊锋,张为朋.2009.超声-酸性铬酸钡分光光度法测定水中硫酸盐.中国热带医学,9(2):363-364.
    丁兰平,栾日孝.2009.浒苔(Enteromorpha prolifera)的分类鉴定、生境习性及分布.海洋与湖沼,40(1):68-71.
    董金一,程晓舫,符泰然,丁金磊,范学良.2008.利用吸收光谱确定叶绿素a和b的颜色.光谱学与光谱分析,28(1):141-144.
    冯子慧,孟阳,陆巍,陈群芳,于克锋,蔡春尔,霍元子,吴维宁,魏华,何培民.2012.绿潮藻浒苔光合固碳与防治海水酸化的作用-光合固碳与海水pH值提高速率研究.海洋学报,34(2):162-168.
    高嵩,石晓勇,王婷.2012.浒苔绿潮与苏北近岸海域营养盐浓度的关系研究.环境科学,33(7):2204-2209.
    国家海洋局北海分局.2012.2012年北海区海洋灾害公报.
    韩晓磊,徐建荣,汪洁华,张涛,杨立恩,穆新武,姚春燕,许璞.2009.不同地区浒苔(Enteromorpha prolifera)群体遗传多样性的ISSR分析.常熟理工学院学报,23(10):57-60.
    杭金欣,孙建璋,宗志新.1983.浙江海藻原色图谱.杭州:浙江科技出版社.
    贺志鹏,宋金明,张乃星,徐亚岩,郑国侠,张蓬.2008.南黄海表层海水重金属的变化特征及影响因素.环境科学,29(5):1153-1162.
    洪刚强,王萍,吴常文.2011.活性磷对浒苔生长和叶绿素含量影响的初步研究.河北渔业,5:16-18.
    黄邦钦,黄世玉.1999.溶解态磷在海洋微藻碱性磷酸酶活力变化中的调控作用.海洋学报,21(1):55-60.
    简敏菲,弓晓峰,游海,冯雅玲,杨旭辉.2004.水生植物对铜,铅,锌等重金属元素富集作用的评价研究.南昌大学学报:工科版,26(1):85-88.
    江海英,罗鹏,于宗赫,彭鹏飞,胡超群.2013.大亚湾浒苔分子鉴定及其对养殖废水中营养盐的吸收特性研究.热带海洋学报,32(5):93-98.
    姜霞,王琦,金相灿,刘冬梅,徐玉慧.2008.光照与通气方式对蓝、绿藻竞争生长和磷的水-沉积物界面过程的影响.环境科学学报,28(131-36).
    金海燕,林以安,陈建芳,金明明.2006.黄海,东海颗粒有机碳的分布特征及其影响因子分析.海洋学报,27(5):46-53.
    孔凡洲,于仁成,张清春,王云峰,颜天,周名江.2012.对桑沟湾海域一次藻华事件原因种的初步分析.海洋环境科学,31(6):824-829.
    李大秋,贺双颜,杨倩,刘俊鹏,于凤,贺明霞,胡传民.2008.青岛海域浒苔来源与外海分布特征研究.环境保护,420:45-46.
    李德萍,杨育强,董海鹰,郭丽娜,刘学忠,马艳.2009.2008年青岛海域浒苔大爆发天气特征及成因分析.中国海洋大学学报(自然科学版),39(6):1165-1170.
    李俭平.2011.浒苔对氮营养盐的响应及其氮营养盐吸收动力学和生理生态研究.青岛:中国科学院海洋研究所.
    李靖,李宁云,敖新宇,雷然,陈玉慧.2012.剑湖湿地水生植物金鱼藻与茭草对环境氮素的响应.贵州农业科学,40(4):143-145.
    李瑞香,吴晓文,韦钦胜,王宗灵,李艳,孙萍.2009.不同营养盐条件下浒苔的生长.海洋科学进展,27(2):211-216.
    李淑文,李迎春,彭玉信.2008.不同草坪草叶绿素含量变化及其与绿度的关系.草原与草坪,2008(6):54-74.
    李文朝,陈开宁,吴庆龙,潘继征.2001.东太湖水生植物生物质腐烂分解实验.湖泊科学,13(4):331-336.
    李新华,刘景双,杨继松.2007.三江平原小叶章湿地枯落物和根分解及其硫元素释放动态.湿地科学,5(1):76-82.
    李学刚,李宁,马清霞,袁华茂,段丽琴,宋金明.2012.沙海蜇(Nemopilema nomurai)模拟消亡过程中氮与磷的释放.海洋与湖沼,43(3):507-512.
    梁丛丛.2013.多胺对赤潮藻生长影响及在浒苔降解中特征的研究.青岛:中国科学院海洋研究所.
    梁宗英,林祥志,马牧,张静,闫晓波,刘涛.2008.浒苔漂流聚集绿潮现象的初步分析.中国海洋大学学报(自然科学版),38(4):601-604.
    林阿朋,王超,乔洪金,潘光华,王广策,宋厉芸,王志远,孙松,周百成.2009.青岛海域漂浮和沉降浒苔的光合作用研究.科学通报,54(3):399-404.
    林英庭,朱风华,徐坤,刘鹏起,贾玉辉.2009.青岛海域浒苔营养成分分析与评价.饲料工业,30(3):46-49.
    林贞贤,宫相忠,李大鹏.2007.光照和营养盐胁迫对龙须菜生长及生化组成的影响.海洋科学,31(11):22-26.
    刘晨临,王秀良,刘胜浩,丛柏林,黄晓航,王宗灵,林学政,臧家业.2011.2008年黄海浒苔绿潮ISSR标记溯源分析.海洋科学进展,29(2):235-240.
    刘峰.2010.黄海绿潮的成因以及绿潮浒苔的生理生态学和分子系统学研究.青岛:中国科学院海洋研究所.
    刘峰,逄少军.2012.黄海浒苔绿潮及其溯源研究进展.海洋科学进展,30(3):441-449.
    刘岩,刘涛,于丹,张静,王绪敏,宫庆礼.2010.常见石莼科绿藻的生物学特征及分子系统学分析.中国海洋大学学报:自然科学版,40(12):71-80.
    刘占飞,彭兴跃.2000.台湾海峡1997年夏季和1998年冬季两航次颗粒有机碳研究.台湾海峡,19(1):95-101.
    刘正一,刘海燕,李楠,赵玉山,秦松.2011.光强对浒苔充气叶状体内氧气浓度的影响.生物学杂志,28(1):37-38.
    马洪瑞,陈聚法,崔毅,赵俊,马绍赛,杨凤.2010.灌河和射阳河水质状况分析及主要污染物入海量估算.渔业科学进展,31(3):92-99.
    毛兴华,朱明远,杨小龙.1993.桑沟湾大型底栖植物的光合作用和生产力的初步研究.生态学报,13(1):25-29.
    孟紫强.2000.环境毒理学.北京:中国环境科学出版社:8.
    潘慧云,徐小花,高士祥.2008.沉水植物衰亡过程中营养盐的释放过程及规律.环境科学研究,21(1):64-68.
    齐雨藻,沈萍萍,王艳.2001.棕囊藻属(Phaeocystis)的分类与生活史热带亚热带植物学报,9(2):174-184.
    秦玉涛,纪焕红,宋晨瑶,徐韧.2011.南黄海绿潮分布区浮游植物的生态特征.海洋环境科学,30(3):394-397.
    史华明.2009.浒苔对氮磷吸收和释放及与中肋骨条藻竞争关系的初步研究.青岛:中国海洋大学.
    宋金明.1990.海洋环境中硫的存在形式.环境化学,9(6):59-64.
    宋金明.2011.中国近海生态系统碳循环与生物固碳.中国水产科学,18(3):703-711.
    宋金明,李鹏程,侯保荣,郭公玉,詹滨秋.1994.黄河口北部海域硫的地球化学特征.海洋科学集刊,35:106-114.
    孙怀文,孙本良.2001.水样中比浊法测定硫酸根方法的改进.理化检验-化学分册,37(4):178-179.
    孙辉,徐文华,雷高鹏,邓婷婷,杨旺贵,刘玉坤,曹毅,白林含.2005.氮_磷_硫对盐生杜氏藻色素积累的影响.四川大学学报(自然科学版),42(2):403-407.
    孙颖颖,李灿,张静,刘鸿君,阎斌伦.2010.浒苔对4种赤潮微藻生长的影响.淮海工学院学报(自然科学版),19(3):75-78.
    唐启生,张晓雯,叶乃好,庄志猛.2010.绿潮研究现状与问题.中国科学基金:1,5-9.
    田慧娟,葛修军,吕海滨.2007.连云港近海海域水质状况调查与评价.环境科学与管理,31(6):164-167.
    田琪琳,任冬梅,穆新武,陆勤勤,胡传明,朱建一,许璞.2011.黄海南部海域绿潮浒苔不同种群繁殖特性比较.江苏农业科学,39(6):606-609.
    田千桃,霍元子,张寒野,李信书,冯子慧,王阳阳,张饮江,何培民.2010.浒苔和条浒苔生长及其氨氮吸收动力学特征研究.上海海洋大学学报,19(2):252-258.
    王保栋,刘峰.1999.南黄海溶解氧的平面分布及其季节变化.海洋学报,21(4):47-53.
    王超.2010.浒苔(Ulva prolifera)绿潮危害效应与机制的基础研究.青岛:中国科学院海洋研究所.
    王超,于仁成,周名江.2011.浒苔提取物对太平洋牡蛎受精卵孵化的抑制效应.中国水产科学,18(1):202207.
    王洪法,李新正,王金宝,李宝泉.2011.青岛近海浒苔暴发期大型底栖动物群落的生态研究.海洋科学,35(5):10-18.
    王建伟,林阿朋,李艳燕,沈颂东,阎斌伦.2006.浒苔(Enteromorpha prolifera)藻体发育的显微观察.生态科学,25(5):400-404.
    王明清,姜鹏,王金锋,杨官品,秦松.2008.2007年夏季青岛石莼科(Ulvaceae)绿藻无机元素含量分析.生物学杂志,25(4):37-38.
    王婷,石晓勇,张传松,温婷婷.2011.2008年黄海浒苔绿潮爆发区营养盐浓度变化及分布特征.海洋通报,30(5):578-582.
    王晓坤,马家海,叶道才,陈孝德.2007.浒苔(Enteromorpha prolifera)生活史的初步研究.海洋通报,26(5):112-116.
    吴洪喜,徐爱光.2000.浒苔实验生态的初步研究.浙江海洋学院学报(自然科学版),19(3):230-234.
    吴婷,赵乐毅,刘浩涤,王婷,韩秀荣,石晓勇.2013.浒苔对营养盐影响的初步研究.海洋环境科学,32(3):347-352.
    吴晓文,李瑞香,徐宗军,韦钦胜,臧家业.2010.营养盐对浒苔生长影响的围隔生态实验.海洋科学进展,28(004):538-544.
    武海涛,吕宪国,杨青,姜明,佟守正.2007.三江平原典型湿地枯落物早期分解过程及影响因素.生态学报,10:4027-4035.
    夏斌,马绍赛,崔毅,陈碧鹃,陈聚法,宋云利,毛玉泽,蒋增杰.2009.黄海绿潮(浒苔)暴发区温盐、溶解氧和营养盐的分布特征及其与绿潮发生的关系.渔业科学进展,30(5):94-101.
    谢瑞芝.2002.玉米基因型的硫效率差异及氮硫互作对产量、品质影响的研究.泰安:山东农业大学.
    忻丁豪,任松,何培民,刘富平,张丽旭,徐韧,程祥圣.2009.黄海海域浒苔属(Enteromorpha)生态特征初探.海洋环境科学,28(2):190-192.
    邢前国,郑向阳,施平,郝佳佳,禹定峰,梁守真,刘东艳,张渊智.2011.基于多源、多时相遥感影像的黄、东海绿潮影响区检测.光谱学与光谱分析,31(6):1644-1647.
    徐大伦,黄晓春,杨文鸽,吴丹,曹卫庆.2003.浒苔营养成分分析.浙江海洋学院学报(自然科学版),22(4):318-320.
    徐涛,许瑾,朱水芳,陈长发.2010.青岛藻华的形态学观察和分子鉴定.植物检疫,24(1):1-5.
    杨佰娟,郑立,陈军辉,臧家业,王小如,黎先春.2009.黄,渤海漂移浒苔(Enteromorphaprolifera)脂肪酸.海洋与湖沼,40(5):627-632.
    杨宇峰,宋金明,林小涛,聂湘平.2005.大型海藻栽培及其在近海环境的生态作用.海洋环境科学,24(3):77-80.
    叶春,王博.2009.沉水植物黑藻早期分解过程及影响因素研究.中国农学通报,25(17):260-264.
    张继红,方建光,唐启升.2005.中国浅海贝藻养殖对海洋碳循环的贡献.地球科学进展,20(3):359-365.
    张菊,邓焕广,王东启,孙钦鑫,韩勇.2011.不同温度条件下徒骇河沉水植物腐烂对上覆水体中营养盐浓度的影响.水资源保护,27(4):22-26.
    张青田,胡桂坤,董双林.2004.尿素对三种海洋微藻生长影响的初步研究.海洋通报,23(5):92-96.
    张苏平,刘应辰,张广泉,管磊.2009.基于遥感资料的2008年黄海绿潮浒苔水文气象条件分析.中国海洋大学学报:自然科学,39(5):870-876.
    张婷,张传松,石晓勇,吴家林,张姗姗.2010.2008年浒苔消亡末期35°N断面颗粒有机物垂直分布情况.海洋环境科学,29(6):804-814.
    张晓红.2011.温度、盐度等环境因子对浒苔(Enteromorpha prolifera)及繁殖体生长的影响.青岛:国家海洋局第一海洋研究所.
    张晓雯,毛玉泽,庄志猛,柳淑芳,王清印,叶乃好.2008.黄海绿潮浒苔的形态学观察及分子鉴定.中国水产科学,15(5):822-829.
    张雪,栾青衫,孙坚强,王俊.2013.绿藻浒苔对浮游植物群落结构影响研究.海洋科学,37(6):24-31.
    张艳,李秋芬,孙雪梅,陈聚法,赵俊.2012.浒苔腐烂过程中水体细菌群落结构变化的PCR-DGGE分析.中国水产科学,19(5):872-880.
    赵海超.2006.不同形态磷在水-沉水植物-沉积物系统中的迁移转化.包头:内蒙古大学.
    赵艳芳,宁劲松,尚德荣,翟毓秀.2010.2008年夏季青岛近海浒苔无机元素含量分析.生物学杂志,27(1):92-93.
    郑长焰.2007.硫对圆叶决明若干生理代谢以及产量和质量的影响.福建农林大学.
    朱小明,沈国英.1996.几种浮游单细胞藻类磷代谢的初步研究.厦门大学学报:自然科学版,35(4):619-624.
    邹迪,肖琳,杨柳燕,万玉秋.2005.不同形态磷源对铜绿微囊藻与附生假单胞菌磷代谢的影响.环境科学,26(3):118-121.
    邹定辉.2001.脱水对浒苔光合作用的影响.湛江海洋大学学报,21(2):30-34.
    邹定辉.2011.大型海藻的营养盐代谢及其与近岸海域富营养化的关系.生态学杂志,30(3):589-595.
    邹定辉,高坤山.2001.大型海藻类光合无机碳利用研究进展.海洋通报,20(5):83-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700