用户名: 密码: 验证码:
改性粘土治理藻华对典型底栖生物的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为有害藻华的一种防治方法,改性粘土絮凝法的有效性已在中国、日本、韩国和澳大利亚等多个国家和地区被实践证明。本文中,作者在实验室内以仿刺参(Apostichopus japonicas Selenka)稚参、虾夷扇贝(Patinopecten yessoensis)稚贝和锥状斯氏藻(Scrippsiella trochoidea)为实验对象,研究了改性粘土治理藻华对三种典型底栖生物的影响,结果如下:
     1改性粘土治理藻华对仿刺参稚参的影响研究。96h急性毒性试验发现,改性粘土对仿刺参稚参的半致死浓度(LC50)为6.01g/L;安全浓度为0.601g/L,高于现场使用浓度(0.1g/L);慢性毒性试验显示改性粘土对仿刺参稚参成活率和体重增长率无显著影响,不同浓度的改性粘土添加组中,发现仿刺参稚参的体壁组份(包括水分、灰分、总糖、总脂和粗蛋白)含量变化不大,改性粘土的加入对减少仿刺参稚参的种内竞争有一定积极作用。另外,针对仿刺参稚参食用包括改性粘土在内的底层颗粒物的现象,考察了不同实验组仿刺参稚参体壁中铝的含量,分析结果显示各实验组与对照组没有显著差异。在此基础上,考察了改性粘土有效去除有害藻华的过程仿刺参稚参的影响,发现与对照组相比,改性粘土不仅有效的去除了有害藻华,还明显降低了仿刺参稚参的死亡率。因此,适量的改性粘土是一种有效治理仿刺参养殖水体有害藻华、对仿刺参无负面影响的藻华治理技术。
     2改性粘土治理藻华对虾夷扇贝稚贝的影响研究。96h急性毒性试验发现,改性粘土对虾夷扇贝稚贝的半致死浓度(LC50)为2.3g/L,安全浓度为0.23g/L,高于其通常的现场使用浓度0.1g/L。慢性毒性试验显示,0.1到1.0g/L的改性粘土对虾夷扇贝稚贝的存活率、壳长和壳高略有影响,但是影响不显著。对稚贝滤食率的研究发现,加入改性粘土会影响其摄食,并且随着改性粘土浓度的增高影响越明显。模拟养殖水体爆发藻华后喷洒改性粘土的实验表明,改性粘土在有效去除有害藻华营养细胞,改善水体环境的同时,还能使虾夷扇贝稚贝的存活率从22%提高到38%。另外,如采用先用改性粘土治理,再向养殖水体投放稚贝的策略,稚贝的存活率会大大提高,约是对照组的3倍。本文的实验结果说明采取适当的策略和适当用量的改性粘土既可以效去除有害藻华,也可以对虾夷扇贝稚贝无害甚至有益,是一种极具应用前景的藻华治理技术方法。
     3改性粘土对锥状斯氏藻孢囊的影响研究。锥状斯氏藻在改良的f/2培养基中培养到对数生长期的中期(第10天)后,分别加入浓度为0,0.1,0.5和1.0g/L的改性粘土。实验发现:改性粘土对锥状斯氏藻去除效果明显,加入改性粘土24h后,随着改性粘土浓度的增加,营养细胞的去除率从69.1%增加到97.7%。而在改性粘土组中,孢囊的形成率也较高,最高的形成率出现在第四组,为24.6%。这说明改性粘土的加入,能够促使部分营养细胞停止增殖,形成孢囊沉积到水底,孢囊的形成有助于有害藻华的消亡。另外,作者发现在实验中形成的孢囊有两种主要形态:具刺孢囊和无刺孢囊。两种孢囊在对照组和粘土组中所占的比例有巨大差异,从对照组到改性粘土组,具刺孢囊所占比例分别为76.9%,46.6%,39.7%和24.1%。这种现象的原因可能是:改性粘土吸附水体中的Ca2+沉降到水底,使得孢囊形成时水体中没有足够的钙元素形成钙质刺。通过萌发实验发现,相对于具刺孢囊,无刺孢囊的萌发周期长,萌发率低。由于添加改性粘土后更易于形成无刺孢囊,这使得改性粘土组中形成的孢囊的萌发率远比对照组中的孢囊低,各组中孢囊的萌发率分别为82.1%,71.3%,47.5%和45.0%。在进行萌发实验前,为了让孢囊度过强制性休眠期,在低温黑暗中储存了3个月,发现改性粘土组孢囊数量降低,这说明在实验开始时改性粘土组形成的孢囊中,有部分是因为粘土的加入造成环境的突变而形成的暂时性孢囊,这部分孢囊只能短暂抵抗不利环境,长时间的低温保存使得孢囊细胞破裂死亡。总体来说,改性粘土对锥状斯氏藻有较好的去除效率,能够促使营养细胞转变成孢囊,从而促进藻华的消亡,粘土组中更容易形成萌发率低的无刺孢囊和暂时性孢囊,从最终结果来看,改性粘土使用不会为下次藻华的爆发留下比对照组多的种源。该研究为有害藻华的防治提供了重要的参考依据。
     另外,为了解释改性粘土对锥状斯氏藻孢囊的影响结果,作者研究了NO3-N和NH4-N对锥状斯氏藻生长和孢囊形成的影响。锥状斯氏藻培养在缺少氮和硅的f/2培养基中,将培养液分为两组,经过3天的饥饿培养后,第一组以硝酸盐作为氮源,第二组用铵盐作为氮源,浓度梯度均设置为0、10、30、60和90μM。最终的结果显示NO3--N能够促进藻细胞的生长,但是浓度越高越不利于孢囊的形成。而NH4-N则能同时促进藻细胞的生长和孢囊的形成。在相同浓度下,NH4-N不如NO3-N利于藻细胞的生长,但是其能明显提高孢囊的形成率。这说明NH4-N浓度是调控孢囊形成的一个重要因子。我们认为NH4-N对孢囊的诱导作用是生态系统的一种自我调节能力,具有非常重要的生态学意义。
Modified clay is considered an effective protective measure against harmful algalbloom (HAB) and has been applied successfully in China, Japan, South Korea, andAustralia.We present results on the effect of modified clay on marine benthos inHABs’ controlling. We choose3marine benthos as experiment subject: Apostichopusjaponicas Selenka, Patinopecten yessoensis, Scrippsiella trochoidea.The main resultsare shown follow:
     1Effects of modified clay on the infant of Apostichopus japonicas.The halflethal concentration(LC50)of modified clay on the infant of A.japonicas was6.01g/Lin the96h acute test. In chronic toxicity tests, the growth rates and survival rates inmodified clays were almost as same as control groups. When less than1.0g/Lmodified clay added, the moisture, ash, sugar, fatty acid and protein contents of thetissues had no significant changes. After60days incubation experiments with theconcentration of1.0g/L modified caly, there was no significant effect on thealuminum content of the tissues. Meanwhile, the study studied the removing ofharmful algal Prorocentrum donghaiense, and the efficiency concentration ofmodified clay was0.1g/L and0.5g/L, which could simutaneously reduce the mortalityof the juvenile A.japonicas. Thus, there were no negative impacts of the modified clayflocculation on the benthic A.japonicas, and the modified clay treatment was aneffective and reliable strategy to mitigate the harmful algaes.
     2Effects of modified clay on the infant of Patinopecten yessoensis.The half lethalconcentration(LC50)of modified clay on the infant of P. yessoensis was2.3g/L, andthe safe concentration was0.23g/L, which was more than two times higher than thefield application concentration(0.1g/L)in96h acute toxicity test. The chronic toxicity test showed the influence of modified clay on the survival rate, shell length and heightwas insignificant when the concentration of clay increased from0.1to1.0g/L. Andthe feeding of P. yessoensis infant was effected by modified clay, with highermodified clay concentration leading to greater influence. We also studied the effectsof P. yessoensis infant when harmful algae(Prorocentrum donghaiense)bloom wascontrolled by modified clay. Compared with the control, the addition of modified clayimproved the survival rate of P. yessoensis from22%to38%. Meanwhile, it improved3times than control group, when we picked out the P. yessoensis before the additionof clay and then put P. yessoensis into the culture. To sum up, the addition of modifiedclay not only controlled HABs effectively, but also improved the survival of P.yessoensis infant. It was a meaningful technology to mitigate HABs.
     3Effects of modified clay on cysts of Scrippsiella trochoidea. Concentrationsof modified clay(0,0.1,0.5, and1.0g/L)were added to cultures, and observationswere made oncysts of S.trochoidea under controlled laboratory conditions. Resultsindicate that the removal rate of algal cells reached97.7%at the clay concentrationof1.0g/L. The cyst formation rate increased from4.6%to24.6%when theconcentration of clay was increased from0to1.0g/L. Two cyst metamorphs wereobserved: spinal calcareous cysts and smooth noncalcareous ones. The proportion ofthe spinal cysts decreased from76.9%to24.1%when clay concentration increasedfrom0to1.0g/L. In addition, modified clay affected cyst germination. Thegermination rate decreased with the increases in the clay concentrations.Non-calcareous cysts had a lower germination rate and a longer germination time. Weconclude that modified clay could depress algal cell multiplication and promoteformation of temporal cysts of S. trochoidea, which may help in controlling HABoutbreaks.
     In addition, the author also investigated the effects of nitrate and ammonium onthe growth and encystment of S. trochoidea. We incubated S. trochoidea in modifiedf/2media without nitrogen and silicate in flasks. The flasks were divided into twogroups. Nitrate was added as a nitrogen source in the first group, and ammonium was added in the second group. The concentrations of the nitrogen compounds were0,10,30,60, and90μM. The duration of the experiment was14days. The results indicatethat NO3-N favors cell growth, and cultures with a higher concentration of NO3-Nwere ineffective at forming cysts. In contrast, NH4-N promoted cell growth and cystformation. At similar concentrations as NO3-N, NH4-N had a toxic effect on cellgrowth and increased the cyst formation rate. Thus, the NH4-N concentration is animportant factor for controlling encystment. We believe that the impact of ammonia ininducing cyst formation may be a useful feedback mechanism in ecological systems.
引文
1. Agbeti M D, Smol J P. Chrysophyte population and encystment patterns in twoCanadian lakes. Journal of Phycology,1995,31:70-78.
    2. Anderson D M, Andersen P, Bricelj V M, Cullen J J, Rensel J J. Monitoring andmanagement strategies for harmful algal blooms in coastal waters. Unesco.2001.
    3. Anderson D M, Chisholm S W, Watras C J. Importance of life cycle events in thepopulation dynamics Goyaulax tamarense. Marine Biology,1983,76:179-189.
    4. Anderson D M, Glibert P M, Burkholder J M. Harmful algal blooms andeutrophication: nutrient sources, composition, and consequences. Estuaries andCoasts.2002,25(4):704-726.
    5. Anderson D M, Keafer B A. An endogenous annual clock in the toxic marinedinoflagellate Goyaulax tamarense. Nature,1987,325:616-617.
    6. Anderson D M. Approaches to monitoring, control and management of harmfulalgal blooms (HABs). Ocean and Coastal Management.2009,52(7):342-347.
    7. Anderson D M. Effects of temperature conditioning on development andgermination of Goyaulax tamarense (Dinophyceae) hyponozygotes. Journal ofPhycology,1980,16:166-172.
    8. Anderson DM, Kulis DM, Binder BJ. Sexuality and cyst formation in thedinoflagellate Gonyaulax tamarensis: cyst yield in batch cultures. Journal ofPhycology,1984,20:418–425.
    9. Anderson DM, Wall D. Potential importance of benthic cysts of Gonyaulaxtamarensis and G. excavate in initiating toxic dinoflagellate blooms. Journal ofPhycology,1978,20:224–234.
    10. Anderson DM. Turning back the harmful red tide.Nature,1997,388:513~514.
    11. Archambault MC, Bricelj VM, Grant J, Anderson DM. Effects on juvenile hardclams, Mercenaria mercenaria, from the application of phosphatic clays tomitigate harmful algal blooms. Marine Biology,2004,144:553–565.
    12. Atkins R, Rose T, Brown RS, Robb M. The Microcystis cyanobacteria bloom inthe Swan River--February2000. Water Science Technology,2001,43:107–114.
    13. Beaulieu S E, Sengco M R, Anderson D M. Using clay to control harmful algalblooms: deposition and resuspension of clay/algal flocs. Harmful Algae.2005,4(1):123-138.
    14. Benjamin Genovesi, Mohamed Laabir, Estelle Masseret et al. Dormancy andgermination featuresin resting cysts of Alexandrium tamarensespecies complex(Dinophyceae) canfacilitate bloom formation in a shallowlagoon (Thau,southern France). Journal of Plankton Research,2009,31(10):1209-1224.
    15. Binder B J, Anderson D M. Physiological and environmental control ofgermination in Scrippsiella trochoidea (Dinophyceae) resting cysts. Journal ofPhycology,1987,23:99-107.
    16. Blackburn S, Parker N. Microalgal life cycles: Encystment and excystment. In:Andersen RA, editor. Algal Culturing Techniques: A book for all phycologists.Amsterdam: Elsevier,2005, pp.399–417.
    17. Cain J R, Trainor F R. Regulation of gametogenesis in Scenedesmus obliquus(Chlorophyceae). Journal of Phycology,1976,12:383-390.
    18. Chai C, Yu Z M, Song X X and Cao X H. The status and characteristics ofeutrophication in the Yangtze River(Changjiang)estuary and the adjacent EastChina Sea, China. Hydrobiologia,2006,563:313-328.
    19. Chapman A. D, L. A. Pfiester. The effect of temperature, irradiance, and nitrogenon encystment and growth of the freshwater dinoflagelates Peridinium cinclum andP. willei in culture (Dinophyceae). Journal of Phycology,1995,31:355-359.
    20. Chen J, Pan G. Harmful algal blooms mitigation using clay/soil/sand modifiedwith xanthan and calcium hydroxide. Journal of Applied Phycology.2012,24(5):1183-1189.
    21. Cho HJ, Matsuoka K. Distribution of dinoflagellate cysts in surface sedimentsfrom the Yellow Sea and East China Sea. Marine Micropaleontology,2001,42:103–123.
    22. Choi HG, Kim PJ, Lee WC, Yun SJ, Kim HG, et al. Removal efficiency ofCochlodinium polykrikoides by yellow loess. Journal of Korean Fish Societies,1998,31:109–113.
    23. Corrales R A, Reyes M, Matin M. Notes on the encystment and excystment ofpyrodinium bahamense var, compressum in vitro. In Lassus P et al. Eds, HarmfulMarine Algal Blooms. Technique et Documentation-Lavoisier Intercept Ltd,1995,573-578.
    24. Dale B. Dinoflagellate resting cysts:‘benthic plankton.’ In: Fryxell GA, editor.Survival strategies of the algae. Cambridge University Press.1983, pp.69–136.
    25. Doucette GJ, Cembella AD, Boyer GL. Cyst formation in the red tidedinoflagellate Alexandrium tamarense (Dinophyceae): effects of iron stress.Journal of Phycology,1989,25:721-731
    26. Durr G. Electric microscope studies on the theca of dinoflagellates. III. The cystof Peridinium cinctum. Archiv für Protistenkunde,1979,122:121–139.
    27. Elbrachter M. Dinoflagellate reproduction: progress and conflicts. Journal ofPhycology,2003,39:629–632.
    28. Evitt W R. Observations on the morphology of fossil dinoflagellates.Micropaleonotology,1961,7:385.
    29. Figueroa R I, Bravo I, Garcés E, Ramilo I. Nuclear features and effect of nutrienton Gymnodinium catenatum(Dinophyceae) sexual stages. Journal of Phycology,2006,42:67-77.
    30. Figueroa RI, Rengefors K, Bravo I, Bensch S. From homothally to heterothally:Mating preferences and genetic variation within clones of the dinoflagellateGymnodinium catenatum. Deep-Sea Res. II,2010,57:190–198.
    31. Fistarol G O, Legrand C, Rengefors K, Granéli E. Temporary cyst formation inphytoplankton: a response to allelopathic competitors? EnvironmentMicrobiology,2004,6:791-798.
    32. Fukuyo Y. Cysts of naked dinoflagellates. In Okaichi T Eds, Fundamental studieson the effects of the marine environment on the outbreaks of red tides. Reports ofEnvironmental Science, Monbusho,1982,205-214.
    33. Furnas M. Measuring the growth rates of phytoplankton in natural populations. In:Subba Rao DV, editor. Pelagic ecology methodology. Tokyo: A.A. BalkemaPublishers,2002,221–249.
    34. Glibert P M, Anderson D M, Gentien P, Graneli E, Sellner K G. The global,complex phenomena of harmful algal blooms. Oceanography.2005,18(2):136-147.
    35. Glibert P, Burkholder J. The complex relationships between increases infertilization of the earth, coastal eutrophication and proliferation of harmful algalblooms. Ecology of Harmful Algae.2006:341-354.
    36. Granéli E, Weberg M, Salomon P S. Harmful algal blooms of allelopathicmicroalgal species: The role of eutrophication. Harmful Algae.2008,8(1):94-102.
    37. Green J C, Hibberd D J, Pienaar R N. The taxonomy of Prymnesium(Prymnesiophyceae) including a description of a new cosmopolitan species, P.patillifera sp. nov., and further observations on P. parvum N. carter. British Jornalof Pharmacology,1982,17:363-382.
    38. Grzebyk D, Berland B. Influences of temperature, salinity and irradiance ongrowth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea.Journalof Plankton Research,1996,18:1837-1849.
    39. Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In:Smith WL, Chanley MH, editors. Culture of marine invertebrate animals. NewYork: Plenum Press,1975,26-60.
    40. Hallegraeff G M. A review of harmful algal blooms and their apparent globalincrease. Phycologia.1993,32(2):79-99.
    41. Hardeland R. Induction of cyst formation by low temperature in the dinoflagellateGonyaulax polyedra Stein: dependence on circadian phase and requirement oflight. Experientia,1994,50:60-62.
    42. Head MJ. Modern dinoflagellate cysts and their biological affinities. In:Jansonius J, McGregor DC, editors. Palynology: principles and applications, vol.
    3. College Station, TX: American Association of Stratigraphic PalynologistsFoundation.1996,1197–1248.
    43. Heisler J, Glibert P, Burkholder J M, Anderson D, Cochlan W, Dennison W,Dortch Q, Gobler C, Heil C, Humphries E. Eutrophication and harmful algalblooms: A scientific consensus. Harmful Algae.2008,8(1):3-13.
    44. Hillel D. Fundamentals of soil physics. London:Academic Press, Inc.Ltd.1980:1-78.
    45. Horne A, Goldman C R. Suppression of nitrogen fixation by blue-green algae inan eutrophic lake with trace additions of copper. Science,1974,183:409-411.
    46. Ibrahim J, Squires L, Mitwalli H and Taha M. Chlorine as an algicide in aconventinal water treatment plant. International Journal of Enviromental Studies,1982,20(1):41-46.
    47. Ichimi K, Yamasaki M, Okumura Y, Suzuki T. The growth and cyst formation of atoxic dinoflagellate, Alexandrium tamarense, at low water temperatures innortheastern Japan. Journalof Experimental Marine Biologyand Ecology,2001,261:17–29.
    48. Imai I, Kim M C, Nagasaki K. Relationships between dynamics of red tidecausing raphidophycean flagellates and algicidal microorganisms in the coastalsea of Japan. Phycological Research,1998,46(2):139-146.
    49. Imai I. Cyst formation of the noxious red tide flagellate Chattonella marina(Raphidophyceae)in culture. Marine Biology,1989,103:235-239.
    50. Ishikawa A, Taniguchi A. Contribution of benthic cysts to the populationdynamics of Scrippsiella spp.(Dinophyceae) in Onagawa Bay, northeast Japan.Marine Ecology-Progress Seriesm,1996,140:169–178.
    51. István Grigorszky, Kevi T. Kiss, Viktória Béres et al.The effect of temperature,nitrogen, and phosphorus on the encystment of Peridinium cinctum, Stein(Dinophyta). Hydrobiologia,2006,563:527-535.
    52. Jensen M, Moestrup. Autoecology of the toxic dinoflagellate Alexandriumostenfeldii: life history and growth at different temperatures and salinities.European Journal Phycology,1997,32:9-18
    53. Jiang J, Kim C. Comparison of Algal Removal by Coagulation with Clays and Al‐based Coagulants. Separation Science and Technology.2008,43(7):1677-1686.
    54. Joyce L B, Pitcher G C, Randta A du et al. Dinoflagellate cysts from surfacesediments of Saldanha Bay, South Africa: an indication of the potential risk ofharmful algal blooms. Harmful Algae,2005,4:309-318.
    55. Joyce L B, Pitcher G C. Encystment of Zygabikodium lenticulatum (Dinophyceae)during a summer bloom of dinoflagellates in the southern Benguela upwellingsystem. Estuarine Coastal and Shelf Science,2004,59:1-11.
    56. Kim H. Mitigation and controls of HABs. Ecology of Harmful Algae.2006, inEdna Granéli and Jefferson T Turner. Ecological Studies,189:327-338.
    57. Kim Y O, Han M S. Seasonal relationship between cyst germination andvegetative population of Scrippsiella trochoidea (Dinophyceae). Marine EcologyProgress Series,2000,204:111-118.
    58. Kita T, Fukuyo Y, Tokuda H et al. Sexual reproduction of Alexandrium hiranoi(Dinophyceae). Bulletin of Plankton Society of Japan,1993,39:79-85.
    59. Kremp A, Heiskanen S. Sexuality and cyst formation of the spring-bloomdinoflagellate Scrppsiella hangoeiin the coastal northern Baltic Sea. MarineBiology,1999,134:771-777.
    60. Kremp A, Parrow M W. Evidence for asexual resting cysts in the life cycle of themarine Peridinoid dinoflagellate, Scrppsiella hangoeiin. Journal of Phycology,2006,42:400-409.
    61. Kremp A. Distribution, dynamics and in situ seeding potential of Scrippsiellahangoei (Dinophyceae) cyst populations from the Baltic Sea. Journal of PlanktonResearch,2000,22(11):2155-2169.
    62. Kremp A. Effects of cyst resuspension on germination and seeding of twobloom-forming dinoflagellates in the Baltic Sea. Marine Ecology Progress Series,2000,216:57-66.
    63. Landsberg JH. The effects of harmful algal blooms on aquatic organisms.Reviews in Fisheris Science,2002,10(2):113-390.
    64. LassusP, ArzulG, Erardle-DennE, GentienPetal. Harmfulmarine algal blooms.LavoisierParis,1995,513-517.
    65. Lee YJ, Choi JK, Kim EK, Youn SH, Yang EJ. Field experiments on mitigation ofharmful algal blooms using a Sophorolipid—Yellow clay mixture and effects onmarine plankton. Harmful Algae,2008,7:154–162.
    66. Leston S, Lilleb A, Pardal M. The response of primary producer assemblages tomitigation measures to reduce eutrophication in a temperate estuary. Estuarine,Coastal and Shelf Science.2008,77(4):688-696.
    67. Lewis MA, Dantin DD, Walker CC, Kurtz JC, Greene RM. Toxicity of clayflocculation of the toxic dinoflagellate, Karenia brevis to estuarine invertebratesand fish. Harmful Algae,2003,2:235–246.
    68. Li R, Watanabe M, Watanabe M M. Akinete formation in planktonic Anabaenaspp.(Cyanobacteria) by treatment with low temperature. Journal of Phycology,1997,33:576-584.
    69. Lundgren, Granéli.Influence of altered light conditions and grazers on Scrippsiellatrochoidea (Dinophyceae) cyst formation. Aquatic microbial ecology,2011,63:231-243.
    70. Macdonald BA, Bacon G S, Ward J E. Physiological response of infernal(Myaarenaria)and epifauna(lPlacopectenmagellanicus)bivalves to variationsin the concentration and quality of suspended particles II Absorption efficiencyand scope of growth. Journal of Experimental Marine Biology and Ecology,1998,219:127-141.
    71. Mario R S, Johannes A H, Edna G, et al, Removal of Prymnesium parvum(Haptophyceae) and its toxins using clay minerals. Harmful Algae,2005,4(4):261-274.
    72. Matrai P, Thompson B, Keller M. Circannual excystment of resting cysts ofAlexandrium spp. from eastern Gulf of Marine populations. Deep-Sea ResearchⅡ,2005,52:2560-2568.
    73. Matsuoka K, Fukuyo Y. Technical guide for modern dinoflagellate cyst study;WESTPAC-HAB/WESTPAC/IOC. Tokyo: WESTPAC-HAB, University ofTokyo,2000,29p.
    74. Matsuoka K, Fukuyo Y. Taxonomy of cysts. In: Hallegraeff GM, Anderson DM,Cembella AD, editors. Manual on harmful marine microalgae. Manual andGuides IOC. Paris: UNESCO.2003, pp.563–592.
    75. Matsuoka K, Takeuchi T. Productivity of vegetative cells, planozygates andresting cysts ot dinoflagelate Alexandrium catenella (Whedon el Kofoid) Bulechbased on the field observation. Fossils,1995,59:3l–46.
    76. Michael A L, Darrin D D, Calvin C W, et al. Toxicity of clay flocculation of thetoxic dinoflagellate, Karenia brevis, to estuarine invertebrates and fish. HarmfulAlgae,2003,2:235-246.
    77. Molnar J L, Gamboa R L, Revenga C, Spalding M D. Assessing the global threatof invasive species to marine biodiversity. Frontiers in Ecology and theEnvironment.2008,6(9):485-492.
    78. Montresor M, Nuzzo L, Mazzocchi MG. Viability of dinoflagellate cysts after thepassage through the copepod gut. Journal of Experimental Marine Biology andEcology,2003,287:209–221.
    79. Murata H, Sakai T, Endo M. Chattonella marine red tide plankton chemicalremoval study. Effect of free radicals from hydrogen peroxide and polysaturatedfatty acids. Nipp on Suisan Gakkaishi,1980,55(6):1075-1082
    80. Na G, Choi W, Chun Y. A study on red tide control with loess suspension. Journalof Aquaculture,1996,9:239–245.
    81. Nakamura Y, Umemori T, Watanabe M et al. Encystment of Chattonella antiquain laboratory cultures. Journal of Oceanography Society Japan,1990,46:35-43.
    82. Nuzzo L, Montresor M. Different encystment patterns in two calcareouscyst-producing species of the dinoflagellate genus Scrippsiella. Journal PlanktonResearch,1999,21:2009–2018.
    83. Olli K, Anderson D M. High encystment success of the dinoflagellate Scrippsiellacf. lachrymose in culture experiment. Journal of Phycology,2002,38:145-156.
    84. Olli K. Resting cyst formation of Eutreptiella gymnastica (Euglenophyceae) inthe northern coastal Baltic Sea.
    85. Pan G, Zhang M, Chen H, Zou H, Yan H. Removal of cyanobacterial blooms inTaihu Lake using local soils. I. Equilibrium and kinetic screening on theflocculation of Microcystis aeruginosa using commercially available clays andminerals. Environment Pollution,2006,141:195–200.
    86. Park H and H Hayashi. Life cycle of Peridinium bipes f. occulatum(Dinophyceae)isolated from Lake Kizaki. Journal of Faculty of Science Shinshu University,1992,27:87-104.
    87. Park H and H Hayashi. Role of encystment and excystment of Peridinium bipes f.occulatum(Dinophyceae)in freshwater red tides in Lake Kizaki, Japan. Journal ofPhycology,1993,29:435-441.
    88. Park Y T, Park J B, Chung S Y. Isolation of marine bacteria killing red tidemicroalgae1: Isolation and algicidal properties of Micrococcus sp. L G21possessing killing activity for harmful dinoflagellate Coclodinium polykrikoides.Journal of the Korean Fisheries Society,1998,31(5):767-773.
    89. Perez C C, Roy S, Levasseur M et al. Control of germination of Alexandriumtamarense(Dinophyceae)cysts from the lower St. Lawrence estuary(Canada).Journal of Phycology,1998,34:242-249.
    90. Pfiester L A, Anderson D M. Dinoflagellate reproduction. In Taylor F J R Eds,The biology of dinoflagellates, Vol21. Oxford: Blackwell Scientific Publications,1987,611-648.
    91. Pfiester L A. Sexual reproduction of Peridinium gatunense (Dinophyceae).Journal of Phycology,1977,13:234-238.
    92. Pfiester L.. Sexual reproduction of Peridinium willei (Dinophyceae). Journal ofPhycology,1976,12:234-238.
    93. Pholpunthin P, Fukuyo Y, Matsuoka K et al. Life history of a marinedinoflagellate Pyrophacus steinii (Schiller) Wall et Dale. Botanica Marina,1999,42:189-197.
    94. Pierce R H, Henry M S, Higham C J, Blum P, Sengco M R, Anderson D M.Removal of harmful algal cells (Karenia brevis)and toxins from seawaterculture by clay flocculation. Harmful Algae.2004,3(2):141-148.
    95. Qi F, Dongzhao L, Haifeng G, Chao L. Preliminary study on dinoflagellateresting cysts in surface sediments from Minjiang estuary. Marine ScienceBulletin,2004,23:21–25.
    96. Qi Y Z, Hong Y, Zheng L, Anderson D.M. Dinoflagellate cysts from resent marinesediments of the South and East China Seas. Asian Marine Biology,1996,13:87–103.
    97. Richardson B A. The impact of forest road construction on the benthicinvertebrate fauna of coastal stream in southern New South Wales. Bulletin ofAustralian Society of Limnology,1985,10:65-88.
    98. Rintala JM, Spilling K, Blomster J. Temporary cyst enables long-term darksurvival of Scrippsiella hangoei. Marine Biology,2007,152:57-62.
    99. Sagehashi M, Sakoda A, Suzuki M. Predictive model of longterm stability afterbiomanipulation of shallow lakes. Water Research,2000,34(16):4014-4028.
    100.Sako Y, T Ishida, H Kata. Excystment in the freshwater dinoflagellatePeridiniopsis penardii. Bulletin of the Japanese Socity of Sciences Fisheries,1985,51:267-272.
    101.Samir El-Manharawya, Azza Hafezb. Study of seawater alkalization as apromising RO pretreatment method. Desalination,2002,153:109-120.
    102.Sarjeant WAS, Lacalli T, Gaines G. The cysts and skeletal elements ofdinoflagellates: speculations on the ecological causes for their morphology anddevelopment. Micropaleontology,1987,33:1-36.
    103.Schofield O, Grzymski J, Bissett W P, Kirkpatrick G J, Millie D F, Moline M,Roesler C S. Optical monitoring and forecasting systems for harmful algalblooms: possibility or pipe dream? Journal of Phycology.2002,35(6):1477-1496.
    104.Sellner K G, Doucette G J, Kirkpatrick G J. Harmful algal blooms: causes,impacts and detection. Journal of Industrial Microbiology andBiotechnology.2003,30(7):383-406.
    105.Sengco M R, Hagstr m J A, Granéli E et al. Removal of Prymnesium parvum(Haptophyceae)and its toxins using clay minerals. HarmfulAlgae,2005,4(4):261-274.
    106.Sengco MR, Li A, Tugend K, Kulis D, Anderson DM. Removal of red-andbrown-tide cells using clay flocculation. I. Laboratory culture experiment withGymnodinium breve and Aureococcus anophagefferens. Mar. Ecol. Prog. Ser.,2001,210:41–53.
    107.Sergio O L. Effects of different nitrogen sources on the growth and biochemicalprofile of10marine microalgae in batch culture: An evaluation for aquaculture.Phycologia,2002,42(2):158-168.
    108.Sgrosso S, Esposito F, Montresor M. Temperature and day length regulateencystment in calcareous cyst-forming dinoflagellates. Marine Ecology ProgessSeries,2001,211:77-87.
    109.Shin P S, Yau F N, et al. Responses of the green-lipped mussel Pernaviridis (L.)tosuspended solids. Marine Pollution Bulletin,2002,45:157-162.
    110.Shirota A. Red tide problem and countermeasures. International Journal ofAquatic Fish Technology,1989,11:195-223.
    111.Shumway SE. A review of the effects of algalbloomsonshellfish andaquaculture.Journalofthe World Aquaculture Society,1990,21(2):65-104.
    112.Shumway SE, SM Allen and PDee Boersma. Marine birds and harmful algalblooms: sporadic victims or under reported events? Harmful algae,2003,2:1-17.
    113.Sloan, N A. Echinoderm fisheries of the world: A Review. In: Echinodermata, A.A. Balkema Publishers, Rotterdam. Netherlands,1984,109-124.
    114.Smayda T. Harmful algal blooms: their ecophysiology and general relevance tophytoplankton blooms in the sea. Limnology and Oceanography,1997,42:1137-1153.
    115.Stéphane L H, Christian M, Pierre L C. Nitrogen Uptake in PermanentlyWell-mixed Temperate Coastal Waters. Estuarine,Coastal and Shelf Science,1996,42:803-818.
    116.Steynberg M C, Pieterse A J H, Geldenhuys J C. Improved coagulation andfiltration of algae as a result of morphological and behavioural changes due topre-oxidation. Water Supply Research Technology,1996,45(6):292-298.
    117.Subba Rao DV, Stewart JE.2011. A preliminary study of the formation of a thirdcategory of cysts dinoflagellate, Alexandrium fundyense in response to elevatedconcentrations of ammonium chloride. Harmful Algae,10:512–520
    118.Subba Rao DV, Stewart JE. A preliminary study of the formation of a thirdcategory of cysts dinoflagellate, Alexandrium fundyense in response to elevatedconcentrations of ammonium chloride. Harmful Algae,2011,10:512–52.
    119.Sun X X, Choi JK. Recovery and fate of three species of marine dinoflagellatesafter yellow clay flocculation. Hydrobiologia,2004,519:153–165.
    120.Sun X X, Z B, Yu Z M. Toxicity study of Anti-HABs agents on Penaeuschinensis. Mar. sci. bull.,2001,3(1):51-54.
    121.Suzuki T, Ichimi K, Oshima Y, et al. Paralytic shellfish poisoning(PSP)toxinprofiles and short-term detoxification kinetics in mussels Mytilusgalloprovincialis fed with the toxic dinoflagellate Alexandrium tamarense.Harmful Algae,2003,2(3):201-206.
    122.Tang Y Z, Gobler C J. The toxic dinoflagellate Cochlodinium Polykrikoides(Dinophyceae) produces resting cysts. Harmful Algae,2012,20:71-80.
    123.Teichert B.M.A., Gussone N. and Torres M. E. Controls on calcium isotopefractionation in sedimentary porewaters. Earth PlanetScience Letter,2009,279:373-382.
    124.Tillmann U, Hansen PJ. Allelopathic effects of Alexandrium tamarense on otheralgae: evidence from mixed growth experiments. Aquatic Microbial Ecology,2009,57:101-112.
    125.Tillmann U, John U, Cembella A. On the allelochemical potency of the marinedinoflagellate Alexandrium ostenfeldii against heterotrophic protists. Journal ofPlankton Research,2007,29:527-543.
    126.Tomoyuki Shikata, Sou Nagasoe etal. Encystment and Excystment of Gyrodiniuminstriatum Fredudenthal et Lee. Journal of Oceanography,2008,64:355-365.
    127.USEPA. Quality Criteria for Water EPA-440/5-86-001. US EnvironmentalProtection Agency, Office of Water, Washington, DC.1986.
    128.Vink A, Zonneveld KAF, Willems H. Distributions of calcareous dinoflagellatecysts in surface sediments of the western equatorial Atlantic Ocean, and theirpotential use in palae oceanography. Marine Micropaleontol,2000,38:149-180.
    129.Von Stosch H. A. Observations on vegetative reproduction and sexual life cycles oftwo freshwater dinoflagellates, Gymnodinium pseudopalustre Schiller andWoloszynskia apiculata sp. nov. British Phycological Journal,1973,8:105-134
    130.Wall D, Dale B. A reconsideration of living and fossil Pyrophacus Stein,1883(Dinophyceae). Journal of Phycology,1971,7:221-235.
    131.Wang Z H, Matsuoka K, Qi Y, Chen J, Lu S. Dinoflagellate cyst records in recentsediments from Daya Bay, South China sea. Phycology Research,2004,52:396–407
    132.Wang Z H, QI Y Z, Yang Y F. Cyst formation: an important mechanism for thetermination of Scrippsiella trochoidea (Dinophyceae) bloom. Journal of PlanktonResearch,2007,29(2):209–218.
    133.Yoshimatsu S. Life history studies on two species of Alexandrium (Dinophyceae)and three species of Raphidophyceae in Seto Inland Sea. Bulletin of theAkashiwo Research Insitute of Kagawa Prefecture,1992, No.4:1-90.
    134.Yu Z M, Zou J Z, Ma X N. Application of clays to removal of red tide organisms.III. The coagulation of kaolin on red tide organisms. Chinese Journal ofOceanology and Limnology,1995,13:62–70
    135.Yu Z M, Zou JZ, Ma X. Application of clays to removal of red tide organisms. II.Coagulation of different species of red tide organisms with montmorillonite andeffect of clay pretreatment. Chinese Journal of Oceanology and Limnology,1994b,13:62–70
    136.Yu Z M, Zou JZ, Ma X. Application of clays to removal of red tide organisms. III.The coagulation of kaolin on red tide organisms. Chinese Journal of Oceanologyand Limnology,1994c,12:193–200
    137.Yu Z M, Zou JZ, Ma X. Application of clays in removal of red tide organisms. I.Coagulation of red tide organisms with clays. Chinese Journal of Oceanology andLimnology,1994a,12:193–200.
    138.Zhou M J, Shen Z L, Yu R C. Responses of a coastal phytoplankton communityto increased nutrient input from the Changjiang(Yangtze)River. ContinentalShelf Research,2008,28(12):1483-1489.
    139.Zonneveld KAF, Brune A, Willems H. Spatial distribution of calcareousdinoflagellate cysts in surface sediments of the Atlantic Ocean between13°Nand36°S. Rev Palaebot Palynol,2000,111:197-223.
    140.Zonneveld KAF, Susek E. Effects of temperature, light and salinity on cystproduction and morphology fo Tuberculodinium vancampoae(the resting cyst ofPyrophacus steinii). Review of palaeobotany and palynology,2007,145:77-88.
    141.安振华.温度及其周期性波动对刺参Apostichopus japonicus(Selenka)生长和能量收支的影响[博士学位论文].青岛:中国海洋大学,2008.
    142.曹西华,宋秀贤,俞志明,王奎.有机改性粘土去除赤潮生物的机制研究.环境科学.2006,27(8):1522-1530.
    143.曹西华,宋秀贤,俞志明.改性粘土去除赤潮生物及其对养殖生物的影响.环境科学,2004,25(5):148-152.
    144.曹西华,俞志明.季铵盐类化合物灭杀赤潮异弯藻的实验研究.海洋与湖沼.2003a,34(2):201-207.
    145.曹西华,俞志明.有机改性粘土去除有害赤潮藻的研究.应用生态学报.2003b,14(7):1169-1172.
    146.常亚青,丁君,宋坚等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004,1-30.
    147.常亚青.贝类养殖学.北京:中国农业出版社,2007:161-228
    148.陈京华.海湾扇贝亲贝、幼虫和稚贝对二氧化氯耐受性的研究.中国农学通报,2009,25(07):279-283.
    149.邓光,李夜光,胡鸿钧等.温度、光照和pH值对锥状斯氏藻和塔玛亚历山大藻光合作用的影响及光暗周期对其生长速率和生物量的影响.武汉植物学研究,2004,22:129-135.
    150.丁暘,浦跃朴,尹立红,邱潇潇,李云晖,吴巍.超声除藻的参数优化及其在太湖除藻中的应用.东南大学学报(自然科学版),2009,39(2):354-358.
    151.高咏卉,俞志明,宋秀贤,曹西华.有机改性粘土对海水中营养盐及主要水质因子的影响.海洋科学,2007a,31(8):30-37.
    152.高咏卉,俞志明,宋秀贤,曹西华.改性粘土絮凝法对太平洋牡蛎(Crassostrea gigas)稚贝的影响.海洋通报,2007b,06:53-60.
    153.国家海洋局,中国海洋灾害公告,2001-2005.
    154.胡勇有,高健.微生物絮凝剂的研究与应用进展.环境科学进展,1999,7:24-28.
    155.黄民生,孙萍.微生物絮凝剂的研制及其絮凝条件.环境科学,2000,21:23-26.
    156.蒋汉明,高坤山.氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响.水生生物学报,2004,28(5):545-550.
    157.李刚.刺参(Apostichopus japonicas)营养成分和生理变化对养殖水体中关键环境因子的响应研究[硕士学位论文].青岛:中国海洋大学,2010.
    158.李君丰,张从尧,王华,王伟,杨辉.仿刺参幼参对Cu2+的蓄积及Cu2+慢性胁迫对其生长的影响.2011,海洋环境科学,30(5):609-613
    159.李强,罗永成,李华等.常用抗菌药物和消毒剂对刺参幼体的急性毒性试验.大连水产学院学报,2005,20(2):105-110.
    160.梁淼.刺参(Apostichopus japonicas)个体生长差异的实验研究[博士学位论文].青岛:中国海洋大学,2010.
    161.梁松,钱宏林,齐雨藻.赤潮研究的现状和有关问题.生态科学,1992,1:120-126.
    162.林洪,王唯芬,李德昆等.水产品安全性现状与质量管理.福州大学学报(自然科学版),2002,30(增刊):681-685.
    163.林勇新.形态特征及藻源有机质对改性粘土絮凝有害藻华生物效率的影响[博士学位论文].北京:中国科学院大学,2013.
    164.刘广远,贺伟,邵秘华,张德福,宋云香.疏浚物对栉孔扇贝急性致死量的实验研究.海洋环境科学,1998,17(3):19-23.
    165.吕豪,周伯文.四种药物对刺参幼参毒性的初步研究.水产科学,2005,24(6):28-31.
    166.马明辉,宫强,刘述锡,陈红星,宋云香.悬浮物对虾夷扇贝致死效应的研究.海洋环境科学,2004,23(3):46-48.
    167.梅卓华,张哲海,赵春霞,徐敏,李敏.南京玄武湖蓝藻水华治理后水质和浮游植物的动态变化.湖泊科学.2010(1):44-48.
    168.缪锦来,石红旗.赤潮灾害的发展趋势,防治技术及其研究进展.安全与环境学报.2002,2(3):40-44.
    169.潘克厚,姜广信.有害藻华(HAB)的发生,生态学影响和对策.中国海洋大学学报:自然科学版.2004,34(5):781-786.
    170.齐雨藻,郑磊,汪蓉.锥状斯氏藻生活史及其生理生态调控.海洋与湖沼,1997,28(6):288-592.
    171.齐雨藻,邹景忠,梁松.中国沿海赤潮.北京:科学出版社,2003:133-165.
    172.宋秀贤,俞志明,高咏卉.一种有效去除赤潮生物的粘土复合体系.应用生态学报,2003,14(7):1165-1168.
    173.宋秀贤,俞志明,孙晓霞.粘土—MMH体系絮凝赤潮生物的动力学研究.海洋与湖沼.2000,31(4):434-440.
    174.孙晓霞,宋秀贤,张波,俞志明.粘土-MMH体系对赤潮生物的絮凝作用机制研究.海洋科学.1999,21(2):46-49
    175.孙晓霞,张波,俞志明.赤潮防治剂对中国对虾的毒性研究.海洋环境科学,2000,19(4):6-8.
    176.孙振兴,赵彦翠,陈燕妮,杜岩岩,张军营.几种卤素类消毒剂对刺参幼参的急性毒性作用.海洋科学,2008,32(3):68-72.
    177.佟蒙蒙.我国赤潮的分型分级及赤潮灾害评估体[硕士学位论文].广州:暨南大学,2006.
    178.王朝晖,张玉娟,曹宇.锥状斯氏藻休眠孢囊萌发调控因子的实验室研究.热带海洋学报,2010,29(3):93-96.
    179.王朝晖.中国沿海甲藻孢囊与赤潮研究.北京:海洋出版社,2007.
    180.王贵宁,姜令绪,王韶华等.盐度对菲律宾蛤仔摄食率和清滤率的影响.海洋科学,2010,34(6):6-8.
    181.王如才,王昭萍,张建中.海水贝类养殖学.青岛海洋大学出版社,1998,155~170.
    182.王艳,熊德甫,顾海峰,李韶山.锥状施克里普藻孢囊的多种形态.特征植物学报,2009,44(6):701-709.
    183.王扬才,陆开宏.蓝藻水华的危害及动态治理.水产学杂志,2004,17(1):90-94
    184.王印庚,廖梅杰,郝志凯等.刺参体腔液穿刺抽取后细胞恢复过程的初步研究.渔业科学进展,2010,31(5):52-58.
    185.吴萍,俞志明.吉米奇表面活性剂改性粘土治理赤潮研究.环境科学.2007,28(1):80-86.
    186.肖咏之,齐雨藻,王朝晖等.大亚湾海域锥状斯氏藻赤潮及其与孢囊的关系.海洋科学,2000,25(9):50-54.
    187.肖咏之,王朝晖,陈菊芳等.广东大亚湾甲藻孢囊及其与锥状斯氏藻赤潮的关系.水生生物学报,2003,27(4):372-376.
    188.薛素燕.养殖刺参(Apostichopus japonicas)的生态习性及代谢生理的初步研究[硕士学位论文].青岛:中国海洋大学,2007.
    189.俞志明, D V Subbo Rao.粘土矿物对尖刺拟菱形藻多列型生长和藻毒素产生的影响.海洋与湖沼,1998,29(1):47-52.
    190.俞志明,曹西华.“九五”期间中国沿海有害赤潮灾害状况及其防治对策.安全与环境学报.2002,2(6):15-17.
    191.俞志明,马锡年,谢阳.粘土矿物对海水中主要营养盐的吸附研究.海洋与湖沼.1995a,26(2):208-214.
    192.俞志明,马锡年,谢阳.粘土矿物对海水中主要营养盐的吸附研究.海洋与湖沼,1995a,26(2):208-213.
    193.俞志明,宋秀贤,张波,孙晓霞.粘土表面改性及对赤潮生物絮凝作用研究.科学通报.1999,44(3):308-311.
    194.俞志明,邹景忠,马锡年,李全生.治理赤潮的化学方法.海洋与湖沼.1993,2(3):314-318.
    195.俞志明,邹景忠,马锡年,王利峡.粘土矿物去除赤潮生物的动力学研究.海洋与湖沼.1995b,26(1):1-6.
    196.俞志明,邹景忠,马锡年.一种去除赤潮生物更有效的粘土土种类.自然灾害学报,1994a,3(2):105-109.
    197.俞志明,邹景忠,马锡年.一种提高粘土矿物去除赤潮生物能力的新方法.海洋与湖沼,1994b,25(2):226-232.
    198.张善东,宋秀贤,王悠,俞志明.大型海藻龙须菜与锥状斯氏藻间的营养竞争研究.海洋与湖沼.2005a,36(6):556-560.
    199.张善东,俞志明,宋秀贤,宋飞,王悠.大型海藻龙须菜与东海原甲藻间的营养竞争.生态学报.2005b,25(10):2676-2680.
    200.张玉娟,曹宇,王朝晖等. N和P对锥状斯氏藻生长及孢囊形成的影响.海洋环境科学,2006,25(4):7-10.
    201.张哲海.玄武湖蓝藻水华应急治理成效分析.污染防治技术,2006,19(5):56-59.
    202.张志胜,张淑玲,韩春菊.石墨炉原子吸收光谱法测定虾产品中铝的方法研究.现代生物医学进展,2008,8(12):2487-2489.
    203.赵文,张义伟,魏杰,于晓辉.刺参养殖池塘颗粒悬浮物结构及其沉积作用.生态学报,2009,29(11):5749-5757.
    204.郑江,齐雨藻.赤潮甲藻孢囊研究综述.暨南大学学报(自然科学与医学版),1995,16(1):137-149.
    205.中华人民共和国卫生部,2010.食品安全国家标准食品中蛋白质的测定.1—7.
    206.中华人民共和国卫生部,2010.食品安全国家标准食品中灰分的测定.1—2.
    207.中华人民共和国卫生部,2010.食品安全国家标准食品中水分的测定.1—6.
    208.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2008.肉制品总糖含量测定.1—4.
    209.中华人民共和国卫生部,中国国家标准化管理委员会,2003.食品中脂肪的测定.43—46.
    210.中华人民共和国卫生部,中国国家标准化管理委员会,2003.面制食品中铝的测定.471—474.
    211.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):53-59.
    212.周名江,朱明远.我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展,2006,21(7):673-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700