用户名: 密码: 验证码:
中国海常见有害赤潮藻显微图像识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国沿海赤潮持续高频次发生,已严重影响到居民的饮水安全、水产养殖、水体景观价值等方面,造成了巨大的经济损失。我国各级政府部门和科研机构对有害赤潮进行快速监测、早期预警的需求越来越强烈。在此情形下,建设一个数字化和标准化的、具有“有害赤潮综合信息检索、藻种和藻毒素标准品供应、鉴定与检测标准技术提供、远程诊断服务”等功能的有害赤潮诊断标准技术平台,就成为国家的迫切需求。国际上虽已有类似设想,但尚未建成如此完整而独具特色的技术支持平台。
     本文通过分析我国沿海有害赤潮发生情况,给出常见有害赤潮藻名录,采集藻种不同生长时期、不同地理株系、不同角度的生物形态学信息及多视点图像,得出生物形态学分类判据,并汇集藻种分子生物学、色素和光谱信息,建立中国海常见有害赤潮藻综合数据库;同时,集成各种赤潮藻分析方法的鉴定与检测标准技术体系和处理方法,构建一个基于Web的有害赤潮生物诊断技术平台;以传统的生物形态学分类为依据,深入分析藻种细节特征和形状特征的明显差异,基于图像分析、统计学习和模式识别技术,构建赤潮藻显微图像自动诊断识别系统。本文主要工作及创新如下:
     1、中国海常见赤潮藻的海洋生物学信息和分类研究
     结合中国沿海近年来赤潮发生的情况,给出了本课题涉及的41种藻种名录,研究了这41种赤潮藻的生物形态学特征,初步阐述了赤潮藻生物形态分类思想,从而为有害赤潮藻数据库设计和显微图像识别系统的研究奠定基础。
     2、中国海常见有害赤潮藻数据库设计与实现
     采集藻种不同生长时期、不同地理分布的海洋生物学信息及不同角度的多视点图像,汇集本项目研究获得的赤潮藻形态学、分子生物学、色素与光谱数据,形成“有害赤潮藻综合信息库”。同时,汇集适用于不同时空尺度与精度的赤潮藻检测技术,建立赤潮藻鉴定与定量检测技术体系库。结合有害赤潮生物诊断技术平台的应用需求,设计了用于诊断识别的处理方法库和识别数据库,从而形成了完整的有害赤潮藻综合数据库。
     3、“有害赤潮生物诊断技术平台”建设
     依托中国海常见有害赤潮藻综合数据库,搭建“有害赤潮生物诊断技术平台”,主要包括赤潮藻综合信息库、赤潮藻鉴定与定量检测技术体系、在线诊断系统和有害赤潮研究与监测材料供应虚拟中心四部分。可满足数据库输入与查询的前端交互、赤潮研究相关资料的动态发布、诊断鉴定技术接口、用户管理等需要。“赤潮在线诊断”集成了项目开发的多项功能模块,包括人机互动检索、显微图像识别、化学分类、三维荧光光谱识别,可通过Internet提供在线远程服务。
     平台采用J2EE体系架构,融合了当前主流的Struts、Spring、Hibernate等Web应用框架,实现了适用于本项目需求的系统框架。系统设计采用MVC模式,将表现逻辑、业务逻辑、数据库调用逻辑分开,具有很好的独立性、可移植性和可扩展性。
     4、赤潮藻显微图像自动识别技术研究
     通过对有害赤潮藻类细胞生物形态学细节特征和形状特征的分析,建立了赤潮藻显微图像自动分类体系。分别对藻类细胞三种细节特征(有无角毛、横纵沟、尖顶刺)进行有效的自动提取,作为显微图像自动分类的重要判据,进而设计三级两类分类器,建立树状判别体系,将大样本集有效划分为小样本集,并针对不同的小样本集进行相应的自动分类,然后进一步提取全局形状特征,从而得出识别结果,多级分类器的设计思想同时也提高了识别准确率。
     分类器Ⅰ,根据细胞有无角毛,对上传图像进行第一级分类。对于赤潮藻显微图像,首先采用基于灰度方向角模型的细胞目标提取算法;针对角毛藻细胞分叉较多,进行基于形态学细化的骨架提取,得到藻种细胞骨架的细节特征,将骨架的节点和端点数目多少作为是否为角毛藻的判据。对角毛藻类进行分类识别,得到诊断结果;对无角毛类藻使用分类器Ⅱ继续判别。
     分类器Ⅱ,针对无角毛类藻,根据有无横纵沟进行第二级分类。对于无角毛类藻种,首先采用基于自动化阈值的最大轮廓细胞目标提取算法;针对显微图像中横纵沟区域与细胞主体景深不同,用基于约束标记分水岭变换进行横纵沟提取,获得藻种细胞的横纵沟细节描述,计算所提取横纵沟与细胞的面积之比和横纵沟区域质心到细胞质心距离与细胞最小外接矩形的长之比,将这两个比值的大小作为藻种有无横纵沟的判据。对无角毛有横纵沟类藻种进行分类识别,得到诊断结果;对无角毛无横纵沟类藻种使用分类器Ⅲ继续判别。
     分类器Ⅲ,针对无角毛无横纵沟类藻,根据有无尖顶刺进行第三级分类。针对显微图像中尖顶刺较小并与细胞主体边缘凸出相连,采用基于最佳结构元的尖顶刺提取方法,获得藻种细胞的尖顶刺细节描述,根据有无尖顶刺分为两类。然后分别进行分类识别,得到诊断结果。
     分类识别方面,主要结合不同赤潮藻的生物形态学特征,在细胞目标提取的基础上进行不变矩和形状因子特征的提取和描述,形成特征样本集;采用支持向量机对特征样本集进行训练,得到识别模型库;将待识别样本特征数据与相应类别识别模型库进行模式识别,得到最终诊断结果。
     采用上述分类器思想对41种赤潮藻种、共3600幅显微图像(其中训练样本2600幅,测试样本1000幅)进行识别测试,平均识别率为83.27%,去掉三级分类器的识别误差,实际识别率平均值为82.05%,达到了较好的识别效果。
In recent years, increasingly high-frequency occurrence of red tides in coastal Chinahas seriously affected the safety of drinking water to residents, aquaculture, water landscape value and other aspects, which has caused enormous economic losses every year. The increasingly strong demands of rapid monitoring on the dynamics changes of phytoplankton communities in water and the demands of early warning forecasting of freshwater cyanobacteria blooms, marine diatoms and dinoflagellate red tide have being grown by the government departments and research institutions.In this case, the establishment of a digital and standardized technology platform with a harmful red tides integrated information retrieval, algal species and algal toxins standard supply, identification and detection of standard technology,remote diagnostic services and other features of the harmful red tide diagnostic standard technology platform, has become the country's pressing needs. Although some international institutions have similar ideas,but such a complete and unique technical support platform is still not built.
     According to the analysis of HAB occurrence in coastal China, the species list of researchHAB is proposed. Based on the bio-morphological information and multi-viewpoints images about algal species collected in different growth stages, different geographic lines, bio-morphological classification criteria of different angles is obtained. After collecting of algae species and molecular biology, pigment and spectral information, the comprehensive database of HAB of China coastal waters is established. Based on the traditional biological morphological taxonomy, this paper studies a variety of red tide algal identification and detection standards technology system of analytical methods constructed a Web-based harmful red tide biological diagnostic technology platform; and builds microscopic images automatic diagnosis and recognition system based on image analysis, statistical learning and pattern recognition technology with the traditional morphological classification asthe basis,in-depth analysis of algal species characteristics and details of significant differences in shape features.The main work and innovation are as follows:
     1. Research on the marine biology information and classification of HAB in coastal China. According to the occurrence information of red tide in China's coastal areas in recent years, identify the issues involved in41species of algal and their ecological taxonomic characteristics and put forward to an idea on ecological taxonomic classification so as to lay a solid foundation on harmful algae database design and microscopic images recognition system.
     2. Design and implementation of HAB comprehensive database. Form the HAB comprehensive information database by Collecting in different growth stages, and different geographic distribution,marine biology information and different perspectives of the multi-viewpoint images,and brings together the project research information data of the HAB in ecological taxonomic, molecular biology, pigment and optical,etc.Design and create "HAB identification and quantitative detection technology system"database, acquisition the detection technology applied in different spatial and temporal scales and precision.Combined with the application requirements of HAB biological diagnostic technology platform, we design the recognition processing method and identification database for diagnosis, thereby forming a complete comprehensive database of harmful algae.
     3. Establish HAB biological diagnostic technology platform.The platform includes comprehensive information database, the identification and quantitative detection system, on-line diagnostic system, the virtual center for research and monitoring material supply,which can meet the requests for the input and query platform, for the dynamic releasing relevant information of the research, for the diagnosis and identification of technical interfaces and for the user management."The on-line diagnostic system" integrates a number of modules for project development, including the interactive retrieval between human-computer, microscopic image recognition, chemical classification, three-dimensional fluorescence spectrum recognition, which can provide remote services through the Internet.The platform adopted J2EE architecture and integrated the current mainstream of Struts, Spring, Hibernate and other Web application framework to realize the requests of the system framework of the project. The system design adopted MVC pattern to separate the presentation logic, business logic, database adjustment logic,has very good independence, portability and scalability.
     4.Research onautomatic identification of HAB microscopic image. Through analyzing of the morphologicaldetail features and shape features of the HAB cells, the automatic classification system of the microscopic images is founded.Effective automaticalextraction separated from three detail features of algae cells (with or without seta,cingulum or sulcus, spine),the important judgement criterion of automatic classification of microscopic images is obtained.Then design three levels of two types of classifiers, and establish three identification system to divide a large sample set into small set. To classifythe different small sample set withcorresponding automatic classification, then make a further extraction of global shape characteristics,so as to get the recognition results. In this way classifier design ideas also improve the recognition accuracy rate.
     Classifier Ⅰ, according to cells with the seta or not, the first level of classification begins with uploading images. Firstly, the microscopic images of target algaes are extracted out based on gray-scale model algorithm, and according Chaetoceros have more bifurcations, the structures are refined based on morphology to get the details of features of the cytoskeleton of the algae species as the judgement criterion of the chaetoceros. Then the first classification chaetoceros can be diagnosised and return results; the other algaeswithout seta will be going on by using the classifier Ⅱ.
     Classifier Ⅱ, the algae without seta classification continue with the second level according to the cingulum or sulcus. The maximum contour of target cells are extracted out based on the automatic threshold valuesalgorithm, and then the cingulum or sulcus are extracted based upon the watershed transformwith the constraint mark to get the detailed description of algae cells. To calculate the area ratio between the cingulum and cell and the diantance ratio between the cingulum centroid to cell's and the length of minimum exterior rectangle of the cell as judgment criterion,then the images with the cingulum or sulcus are classified and can be identified; the images without cingulum or sulcus will be continued by using the classifier Ⅲ.
     Classifier Ⅲ, regarding the algae without cingulum or sulcus, the classification of the third level begin upon algea withor withoutthe spine by adopting the extraction method based on the best structure element to get the detailed description of the spine of the algae cells anddivide into two categories,then make classification andrecognition.
     On the classification and recognition, mainly combined with different features of bio-morphological of algae, invariant moments and shape factor features are extracted and described based on the extraction of target cells to form the feature samples; then these samples are trained by using support vector machine to get recognition model database; then identify the sample characteristics with the corresponding model database for pattern recognition; finally obtained good recognition results.
     We have identification test on41kinds of red tide algae species, a total of3600microscopic images (the training sample2600pieces and test sample1000pieces)by above classifier thought, the average recognition rate is83.27%, removed the three level classifier recognition error, the actual recognition rate average is82.05%, achieved better recognition results.
引文
[1]郑天凌等.赤潮控制微生物学.厦门:厦门大学出版社.2011
    [2]邹景忠.赤潮生物与赤潮灾害研究.见:曾呈奎,编.中国海洋科学研究及开发.青岛:青岛出版社,1992:284-287
    [3]华泽爱.赤潮灾害.北京:海洋出版社,1994
    [4]梁松,钱宏林,齐雨藻.中国沿海的赤潮问题.生态科学,2000,19(4):44-50
    [5]姚鹏,于志刚,米铁柱.海洋浮游藻类的化学分类法.海洋环境科学;2003,22(1):75-80
    [6]Balfootr H W,Snoek J, Smiths J R M, et al Automatic identification of algae:neural network analysis of flow cytometric data. J Plankton Res,1992,14(4):575-589
    [7]张前前,王修林,祝陈坚.赤潮浮游植物种类和数量分析的研究进展.海洋环境科学,2004,23(1):46-47,57,67.
    [8]高亚辉,杨军霞,骆巧琦,等.海洋浮游植物自动分析和识别技术.厦门大学学报,2006,45(S2):40-45.
    [9]Cowles T J,Desiderio R A.Neuer S. In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Marbiol,1993,115:217-222
    [10]Seppaelae J,Balode M. The use of spectral fluorescence methods to detect changes in the phytoplankton community. Hydrobiologia,1998,363 (1/3):207-217
    [11]张前前,类淑河,王修林等.浮游植物活体三维荧光光谱分类判别方法研究.光谱学与光谱分析,2004,24(10):1227-1229
    [12]Scholin C A,Marin R,Miller P E, et al DNA probes and a receptor-binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. J Phycol,1999:1356-1367
    [13]周为峰,樊伟.应用MODIS进行赤潮遥感监测的研究进展.遥感技术与应用,2007,22(6):768-772
    [14]姜国建.对比研究中国和美国的海洋灾害预报机制管理体制.海洋开发与管理,2006,6:30-34
    [15]周名江,朱明远.我国近海有害赤潮发生的生态学、海洋学机制及预测防治研究进展.地球科学进展,2006,21(7):673-679
    [16]邹景忠.赤潮灾害.见:曾呈奎,编.中国海洋志.河南:大象出版社,2003:802-826
    [17]郭皓,王健国,易晓蕾等.中国近海赤潮生物图谱.北京:海洋出版社,2004
    [18]郑海永.基于生物形态学的有害赤潮显微图像诊断研究:[博士学位论文].青岛:中国海洋大学电子系.2009
    [19]Jeffries H.P, Berman M.S, Katsinis et al. Automated sizing and counting and identification of zooplankton by pattern recognition. Marine Biology,1984,78:329-334
    [20]Pech-Pacheco J L, Alvarez-Borrego J. Optical-digital system applied to the identification of five phytoplankton species. Marine Biology,1998,132:357-365
    [21]Pech-Pacheco J L, Alvarez-Borrego J, et al. Identification of a red tide blooming species through an automatic optical-digital system. Proceedings of Algorithms and Systems for Optical Information Processing V, Optics and Imaging Systems. San Diego,CA, USA, 2001,4471:243-250
    [22]H du Buf and MM Bayer. Automatic Diatom Identification. World Scientific, Series in Machine Perception and Artificial Intelligence,2002,51:316.
    [23]Andrei C. Jalba, Michael H. F. Wilkinson, et al Automatic diatom identification using contour analysis by morphological curvature scale spaces. Machine Vision and Applications, 2005,16(4):217-227
    [24]ADIAC:http://rbg-web2.rbge.org.uk/ADIAC/db/adiacdb.htm
    [25]Davis, C.S, Fredrik T, et al. A three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton taxa and hydrography. American Society of Limnology and Oceanography:Methods 3,2005:59-74
    [26]Davis, C.S., Gallager, S.M., Slow, A.R. Microaggregations of Ocean Plankton Observed by Towed Video Microscopy. Science,1992,257:230-232
    [27]Qiao Hu, Davis, C.S. Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine. Marine Ecology Progress Series.2005,295:21-31
    [28]Tang X, Stewart W K, Huang H, et al. Automatic plankton image recognition. Artificial Intelligence Review,1998,12:177-199
    [29]Tang X, Lin F, Andrew Remsen. Binary plankton image classification. IEEE Journal of Oceanic Engineering,2006,31(3):728-735.
    [30]Hicks Y, Marshall D, Martin R R, et al. Automatic landmarking for building biological shape models. Proceedings of IEEE International Conference on Image Processing,2002:801-804
    [31]Culverhouse P F, Simpson R G, Ellis R, et al. Automatic classification of field collected dinoflagellates by artificial neural network. Marine Ecology Progress Serries,1996,139 281-287.
    [32]Luo T, Kramer K, Goldgof D B, et al. Recognizing plankton images from the shadow image particle profiling evaluation recorder. IEEE Transactions on System, Man and Cybernetics, 2004,34:2423-2433.
    [33]See Jason H, Campbell Lisa, et al. Combining new technologies for determination of phytoplankton community structure in the northern gulf of mexico. Journal of phycology, 2005,41:305-310
    [34]Embleton K V, Gibson C E, Heaney S I. Automated counting of phytoplankton by pattern recognition:a comparison with a manual counting method. Journal of Plankton Research, 2003,25:669-681
    [35]Rodenacker, K,Gais, P,Jutting, U et al. Semi-Automatic Recognition of Microorganisms in Water. Proceedings 2001 International Conference on, Thessaloniki, Greece,2001,3:30-33
    [36]Forero-Vargas M G,Alvarado J E, Luna-Tamayo A. Automatic diatom recognition on digital images. Proceedings of Applications of Digital Image Processing XXV, volume 4790 of Image Classification. Seattle, WA, USA,2002,133-142
    [37]张磊,王学民,王明时.基于图像处理技术的赤潮生物自动识别.仪器仪表学报,2003,24(S4): 369-370
    [38]王学民,张磊,王明时.图像处理技术在赤潮生物自动识别中的应用.计算机辅助设计与图形学学报,2004,16(2):158-162
    [39]王明时,王学民,张磊.显微图像分析技术在赤潮生物识别中的应用.天津大学学报,2004,37(5):392-395
    [40]曹洪宝,王学民.基于双光谱有毒赤潮优势藻图像分析的研究:[硕士学位论文].天津:天津大学,2005
    [41]孙勇,王学民.基于双光谱有毒赤潮藻显微图像自动识别系统的研究:[硕士学位论文].天津:天津大学,2007
    [42]戴君伟,王博亮,谢杰镇等.海洋赤潮生物图像实时采集系统,高技术通讯.2006,16(12): 1316-1320
    [43]郑少平,谢杰镇,王博亮等.基于形状特征描述子的赤潮优势种识别研究.厦门大学学报(自然科学版),2009,48(5):676-679
    [44]高亚辉,杨军霞,骆巧琦等.海洋浮游植物自动分析和识别技术.厦门大学学报(自然科学版),2006,45(S2):40-45
    [45]高亚辉,罗金飞,骆巧琦等.数学形态学在海洋浮游植物显微图像处理中的应用.厦门大学学报(自然科学版),2008,47(S2):242-245
    [46]Luo Jinfei, Luo Qiaoqi, Yang Chenhui. Towards a computer-aided identification system for marine phytoplankton images.2008(涉密)
    [47]赵文仓,周立俭等.浮游植物细胞图像识别方法的研究.计算机工程,2005,31(24):143-144,155
    [48]程军娜,冯晨.基于数学形态学的藻细胞图像预处理.中国海洋大学学报,2008,38(3):513-516
    [49]周立俭,冯晨.基于多小波的浮游植物细胞图像边缘检测方法.通信技术,2008,41 (7):242-243,246
    [50]Yanxia Li, Haiyong Zheng, and Hui Cao. Image Decomposition Based on G-Space and PDE. IEEE International Symposium on Knowledge Acquisition and Modeling Workshop,2008, 1:410-413.
    [51]Haiyong Zheng, Zhaolei Liu, and Xiufang Ren. Cell Image Matching Based on Fractal Neighbor Distance. Fourth International Conference on Natural Computation,2008,4:609-612.
    [52]Shanshan Shi, Haiyong Zheng. An Improved Approach for Cell Image Recognition Based on Fractal Coding and Fractal Singular Value Neighbor Distance. IEEE International Symposium on Knowledge Acquisition and Modeling Workshop,2008,1:432-435.
    [53]Haiyong Zheng, Xiaoyan Qiao, and Yanxia Li. An Improved Threshold De-noising Algorithm Based on Multi-wavelet for Cell Image Edge Detection. Second International Symposium on Intelligent Information Technology Application,2008,3:362-365.
    [54]Peng Yuan, Xiaoyan Qiao, and Haiyong Zheng. A New Method for the Cell-objects Extraction of Microscopic Phytoplankton Images. Second International Conference on Computer and Automation Engineering,2010.
    [55]孙东.赤潮多源监测数据处理与综合预测预报方法研究:[博士学位论文]上海:上海交通大学.2009
    [56]Florentino F.R and Juan M.C CBR based system for forecasting red tides Knowledge Based Systems,2003,16,321-328.
    [57]Evaggelos V.H,etc Monitoring water quality through a telematic sensor network and a fuzzy expert system, Expert Systems,2007,24(3),143-161.
    [58]Anderson D.M. Turning back the harmful red tide. Nature,1997, (388):513-514
    [59]GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms science plan. Baltimore and Paris:SCOR and IOC,2001:86
    [60]周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-59
    [61]齐雨藻,王艳,王寿松等.中国沿海赤潮.北京:科学出版社,2003
    [62]Hallegraeff G M, Hara Y. Taxonomy of harmful marine raphidophytes. In:HallegraeffG M, Anderson D M, Cembella A D, (eds.). Proceedings of Manual on harmful marinemicroalgae. Paris:Renouf Pub Co., Ltd,1995:365-371.
    [63]Sournia A. Red tide and toxic marine phytoplankton of the world ocean:An inquiry into biodiversity. In:Lassus P, Arzul G, Denn E, et al., (eds.). Proceedings of Harmful Marine Algal Blooms, Proliferation D'Algues Marines Nuisibles. London, New York, Paris:Technique & Documentation-Lavosier/Andover England UK:Intercept Ltd,1995:103-112.
    [64]赵冬至等.中国典型海域赤潮灾害发生规律.北京:海洋出版社,2010
    [65]程兆第,高亚辉Mike Dickman硅藻彩色图集合.北京:海洋出版社,1996:120,101图版
    [66]郭玉洁,钱树本.中国海藻志.第五卷.硅藻门.北京:科学出版社,2003
    [67]杨世民,董树刚.中国海域常见浮游硅藻图谱.青岛:中国海洋大学出版社,2006
    [68]王珊,萨师煊.数据库系统概论(第4版).北京:高等教育出版社,2006
    [69]西尔伯沙茨等著,杨冬青等译.数据库系统概念(原书第5版).北京:机械工业出版社,2006
    [70]Garcia-Molina H, Ullman J D, Widom J. Database Systems:The Complete Book. Upper Saddle River, New Jersey:Prentice Hall,2001.
    [71]Ramakrishnan R, Gehrke J. Database Management Systems.3th ed., McGraw-Hill Companies,2002.
    [72]王珊,张孝,李翠平.数据库技术与应用.北京:清华大学出版社,2005.
    [73]Silberschatz A, FKorth H, SSudarshan. Database Systems Concepts.5th ed., McGraw-Hill Companies,2005.
    [74]苏纪兰.中国的赤潮研究.中国科学院院刊,2001(5):339-342
    [75]丛丕福,张丰收,曲丽梅.赤潮灾害监测预报研究综述.灾害学,2008,23(2):127-130
    [76]俞志明.赤潮灾害的预防与治理.北京:科学出版社.1994
    [77]王修林,孙培艳,高振会等.中国有害赤潮预测方法研究现状和进展.海洋科学进展,2003,21(1):93-98
    [78]梁松,钱宏林,齐雨藻.中国沿海的赤潮问题.生态科学,2000,19(4):44-50
    [79]于志刚,米铁柱,姚鹏,甄毓.赤潮藻鉴定与定量检测方法进展.中国海洋大学学报(自然科学版).2009
    [80]J2EE电子商务系统开发从入门到精通--基于Struts和Hibernate技术实现。北京:清华大学出版社,2007
    [81]PaulJ.Perrone. J2EE构建企业系统--专家级解决方案.北京:清华大学出版社,2001
    [82]Deepak Alur, John Crupi,Dan Malks.Core J2EE Patterns:Best Practices and Design Strategies.Second Edition.Prentice Hall PTR,2003:213-222
    [83]吕梁.有害赤潮数据采集与诊断系统的设计与实现:[硕士学位论文].青岛:中国海洋大学电子系.2010
    [84]布洛克著,杨春花,俞黎敏译Effective Java中文版(第2版).北京:机械工业出版社,2009.
    [85]Elaine Quintino da Silva & Dilvan de Abreu Moreira. WebMODE:A Framework for Development of Web-based Tools for Management of Educational Activities. Proceedings of the Fifth IEEE International Conference on Advanced Learning Technologies,2005
    [86]柳永坡.JSP应用开发技术.北京:人民邮电出版社.2005
    [87]刘中兵.开发者突击:Java Web主流框架整合开发[J2EE +Struts+Hibernate+Spring]北京:电子工业出版社.2008
    [88]刘晓华,张健,周慧贞.JSP应用开发详解(第三版).北京:电子工业出版社.2007.1
    [89]曹广鑫,王谢华,王建风Struts数据库项目开发宝典.北京:电子工业出版社,2004.1
    [90]寇毅,吴力文.基于MVC设计模式的Struts框架的应用方法.计算机应用,2003.23:11-11
    [91]罗时飞.精通Spring北京:电子工业出版社,2005.4
    [92]约翰逊Spring框架高级编程(蒋培译),北京:机械工业出版社,2006
    [93]Craig Walls,Ryan Breideabach,Spring In Action(李磊,程立,周悦虹译).北京:人民邮电出版社.2006
    [94]宋汉增,沈琳.利用Hibernate对象持久化服务简化Java数据库访问.计算机应用,2004,23(12),21-22
    [95]Hibernate.org. Hibernate参考文档http://www.redsaga.com 2008
    [96]王玉芹.基于Hibernate的论文中心管理系统设计.吉林:吉林大学.2008
    [97]郑海永,王国宇,张浩.中国海洋大学.一种无角毛类赤潮藻显微图像目标细胞提取方法.中国发明专利,申请号:2010101155923,申请日:2010-03-02.
    [98]乔小燕.基于生物形态学的赤潮藻显微图像分割与特征提取研究:[博士学位论文].青岛:中国海洋大学电子系.2010
    [99]车武军,杨勋年,汪国昭.动态骨架算法.软件学报.2003,14(4):818-823
    [100]P. Soille. Morphological Image Analysis:Principles and Applications. Second edition. Springer-Verlag.2008
    [101]H. Talbot, L. Vincent. Euclidean skeletons and conditional bisectors. Visual Communi-cations and Image Processing'92,1992:862-876
    [102]刘志敏,杨杰,施鹏飞.数学形态学的细化算法.上海交通大学学报,1998,32(9):15-19
    [103]郑海永,王国宇,张浩.中国海洋大学.一种角毛藻显微图像细胞目标提取方法.中发明专利,申请号:2010101156061申请日:2010-03-02.
    [104]马东,程敬之,李斌.细胞图像的彩色纹理分析方法研究.西安交通大学学报,2000,34(1):108-110
    [105]Serra J. Image Analysis and Mathematical Morphology. Academic Press, London,1982
    [106]Tang X, Lin F, Andrew Remsen. Binary plankton image classification. IEEE Journ Oceanic Engineering,2006,31(3):728-735.
    [107]周明全,耿国华,韦娜.基于内容图像检索技术.北京:清华大学出版社.2007
    [108]章毓晋.基于内容的视觉信息检索.北京:科学出版社,2003
    [109]Kenneth R.Castleman. Digital image Processing(Second Edition). Publishing House of Electronics Industry,2005,409-415
    [110]龚声蓉,刘纯平,王强等.数字图像处理与分析.北京:清华大学出版社.2006
    [111]王铌.海洋浮游生物数字图像处理方法:[硕士学位论文].青岛:中国海洋大学.2006
    [112]Hu M.K.Visual pattern recognition by moment invariants. IRE Transaction Information Theory,1962,8(2):179-187
    [113]V.Vapnik. The nature of statistics learning theory. New York:Springer Verlag,1995
    [114]V.Vapnik. Statistical learning theory. New York:J.Wiley,1998
    [115]袁鹏.无角毛有害赤潮藻显微图像自动识别系统:[硕士学位论文].青岛:中国海洋大学电子系.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700