用户名: 密码: 验证码:
羊草幼穗分化及子株与翌年成穗关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊草(Leymus chinensis),是禾本科赖草属根茎型多年生禾草,具有营养价值高、适口性好、耐寒、耐旱、耐盐碱等特点,是我国东北草原地区一种重要的牧草,同时也是干旱、半干旱地区建植人工草地的优良草种。然而,在自然条件下,羊草抽穗率和种子产量较低,阻碍了牧草生产和生态建设的需要。本研究通过对羊草幼穗分化过程、营养枝和生殖枝茎顶分生组织分化比较、跟踪调查各类芽和子株的出生时间、数量、内外部发育状态及其与翌年的成穗关系的研究,发现:
     (1)在返青-抽穗前的植株中,初生期、伸长期、单棱期、二棱期及以后的时期的茎顶分生组织均存在,而在抽穗后的营养枝,只有初生期、伸长期、单棱期三个阶段的茎顶分生组织,没有二棱期及以后时期的茎顶分生组织。温室中冬季继续生长植株呈现新叶不断抽出,高度增加,不抽穗的状态,其茎顶分生组织也只见有初生期、伸长期、单棱期三个阶段。以上结果表明,羊草茎顶分生组织只有分化到二棱期的植株才能进一步幼穗分化而成穗,冬季的低温在羊草的成穗中,发挥着极其重要的作用。
     (2)各类芽输出成子株的数量与上个月和当月的降雨量关系密切,在7-9月份当月的降雨量直接影响了当月子株的输出量,间接的影响了下个月的输出量,即充沛的降雨提高当月和下个月的子株输出量,干旱减少当月和下个月子株输出量。在降雨量充沛的情况下,分蘖芽输出成分蘖芽子株开始于7月中上旬,早于根茎芽子株的输出时间,根茎芽子株的输出开始于7月下旬;分蘖芽子株和根茎芽子株输出的高峰是8月份;分蘖芽子株和根茎芽子株输出的终期是生长季结束的10月下旬。在子株输出的始期,分蘖芽子株占总子株数量的90%左右;在子株输出的高峰期,分蘖芽子株占总子株数量的80%左右;在子株输出的终期,分蘖芽子株占总子株数量的70%左右。在生长季末期进入冬季时,芽与子株以及根茎芽与根茎芽子株的比例依据年份的不同显现不同的规律,但分蘖芽与分蘖芽子株的比例随年份发生变化的幅度较小,分蘖芽的数量略小于分蘖芽子株的数量。
     (3)不同出土时间子株在生长季末的叶龄数和株高有明显区别,即出生越早的子株在生长季末的叶龄数和株高越大,出生越晚的子株在生长季末的叶龄数和株高越小,9月之后,羊草子株的叶龄和株高没有明显的变化。同一叶龄子株的分化期包括初生期、伸长期和单棱期,没有二棱期及以后的分化时期,不同叶龄子株的分化期比例不同,叶龄数越大的子株单棱期的比例越大,叶龄数越小的子株初生期的比例越大。
     (4)抽穗植株的来源有两个,主要来源于上个生长季的果后营养期产生的子株,少部分来源于越冬芽。同一时期的分蘖芽子株在翌年的成穗能力明显高于根茎芽子株,较早出生的分蘖芽子株在翌年的成穗能力高于较晚出生的分蘖芽子株,不同出土时间的根茎芽子株在翌年的抽穗能力基本相同,分蘖芽子株在翌年的成穗贡献比较大,成穗植株主要来源于上个生长季的分蘖芽子株。
     8-9月份产生的子株数量最多,同时在成穗能力上9月之前出土的子株明显高于以后出土的子株,此时期子株对翌年的抽穗率贡献最大。各叶龄子株在翌年所形成的植株部分能够抽穗,越冬芽在返青后所形成植株的抽穗能力相对较低,但由于越冬芽数量较多,不能忽略其对羊草种群抽穗的贡献。
     本论文通过对羊草由子株到抽穗植株全过程的系统研究,明确了越冬芽和各叶龄子株在翌年都有成穗的能力,生长季末期各类型子株茎顶分生组织至多发育到单棱期,经冬季低温后,才能继续发育而成为抽穗植株。对翌年羊草种群抽穗的贡献除受子株的成穗能力影响以外,更受子株数量的影响。以上的研究结果说明羊草种群的抽穗率和种子产量是可以调控的,可以在适当的时期进行人工水肥处理等来提高翌年羊草种群的抽穗率和种子产量。
Leymus chinensis (Trin.) Tzvel. is a perennial rhizomatous species of the family Poaceae. It has high forage value and good palatability, and also tolerant to cold extremes, drought conditions, and salt-alkaline soils. So this plant is an important perennial grass that widely distributed in northeast China, and also an ideal grass for rangeland use in arid and semiarid regions. However, under nature conditions, the spike rate and seed production of L.chinensis is very poor, which block the needs of forage production and ecological construction. In present study, we explored the differentiation process of the young spike, compared the apical meristem differentiation in reproductive and vegetative shoots, and investigated the relationship of birth time, number, development and spike formation traits next year of various buds and daughter shoots. The results showed that:
     (1) For the grass after regreening but before spiking data, SAM differentiation was observed in the early stage, elongation stage, single ridge stage, double ridge stage and subsequent stages simultaneously. For the vegetative shoots that were measured after spiking, SAM differentiation was observed only in the early stage, elongation stage and single ridge stage but not in the double ridge stage or subsequent stages. For grass that grew in a greenhouse through the winter, new leaves developed continuously, increased in stem length and had no spiking, and SAM differentiation was observed only in the early stage, elongation stage and single ridge stage. Only grass experiencing SAM differentiation in the double ridge stage can head. The study also determined that low winter temperature played an extremely important role in the spiking of L. chinensis.
     (2) The number of daughter shoots formed by all kinds of buds has a close relationship with precipitation last month and this month. The output quantity of daughter was directly influenced by precipitation from July to September and the precipitation also indirectly affected the output quantity next month. This means that high precipitation can enhance output of daughter shoots this month and next month. However, drought conditions decreases it. Under high precipitation conditions, axillary daughter output by axillary buds starts in early July, and this time is earlier than the output time of rhizome buds, which starts in late July. Most axillary daughter shoots and rhizome buds output in August, and the termination time is late October. At the beginning time of daughter shoot output, axillary daughter shoot took up 90% of the total daughter shoot. During the fastigium of daughter shoot, axillary daughter shoot took up nearly 80% of the total daughter shoot. During the termination time of daughter shoot output, axillary daughter shoot took up nearly 70% of the total daughter shoot. During the late growing season, the proportion of buds, daughter shoot and rhizome buds, rhizome daughter shoot were different based on different year. However, little changes was found in the proportion of axillary buds and axillary daughter shoot, and the number of axillary buds was lower than axillary daughter shoot.
     (3) Leaf ages and plant hight of daughter shoots with different come up out of land time are great differed, the earlier birth of daughter shoot, the bigger of leaf age and plant hight; the later birth of daughter shoot, the smaller of leaf age and plant hight. After September, no obvious change was found in leaf and plant height of L. chinensis daughter shoots. The differentiation stage of daughter shoot with same leaf age contained early stage, elongation stage and single ridge stage, but have no double ridge and the subsequent differentiation stage. The proportions of differentiation stage of different leaf stage are also different. The bigger of leaf age, the larger of proportion in single stage. The smaller of leaf age, the larger of proportion in early stage.
     (4) The spike plants mainly come from the daughter shoots produced on nutrition stage after ripe during last growing season, only a little come from overwintering buds. The spike formation ability next year of axillary daughter shoot is significantly higher than rhizome daughter shoot in the same stage. The earlier birth of the axillary daughter shoot, the greater of spike formation ability. No obvious change was found in the spike formation ability next year between different come up out of land time. Axillary daughter shoot had the largest contribution for spike formation, the spike plants were mainly come from axillary daughter shoot last growing season.
     The number of daughter shoots formation in August-September is largest, and the height of daughter shoots which come up out of land before September is higher than that after September, as a result, these daughter shoots had the largest contribution for spike formation. A part of the daughter shoots of various leaf ages could spike next year. Shoots of overwinter buds after regreening could also spike, but the spike rate was very low. However, due to the large number of the overwinter buds, their contributions to spike formation of L. chinensis. could not be neglect.
     In present study, we systematic studied L. chinensis. from daughter shoot to spike plant, clarified that both of the overwinter buds and daughter shoots had contributions to spike formation next year. SAM differentiation was observed at most in single stage at the end of growing season, the shoots could spike only when experienced low temperature in winter. The contributions to spike formation next year not only affected by the spike ability of daughter shoot but also affected by the number of daughter shoot. Above results show that the spike and seed production of L. chinensis. can be controlled, nitrogen and water application in optimal periods can enhance spike rate and seed production next year.
引文
[1]陈默君,贾慎修.中国饲用植物[M].北京:中国农业出版社, 2002.
    [2]李建东.我国的羊草草原[J].吉林师范大学学报(自然科学版), 1978(1): 145-159.
    [3]王克平,娄玉杰,成文革等.吉生羊草营养物质动态变化规律的研究[J].草业科学, 2005, 22(08): 24-27.
    [4]张卫东.羊草生殖生物学研究[D].中国科学院研究生院(植物研究所), 2004.博士
    [5]祝廷成.羊草生物生态学[M].长春:吉林科学技术出版社, 2004.
    [6]中华人民共和国农业部畜牧兽医司,全国畜牧兽医总站主编.中国草地资源[M].北京:中国科学技术出版社, 1996.
    [7]李建东.东北草地的退化及其治理[J].国土与自然资源研究, 1995, 3: 34-38.
    [8]王梦龙.羊草结实特性的研究[J].中国草地, 1998(1): 18-20.
    [9]张兆军.松嫩平原羊草茎顶分生组织分化研究[D].东北师范大学, 2006.硕士
    [10]杨允菲,祝玲.松嫩平原十五种多年生禾草种群营养繁殖体冬眠特性的分析[J].草业学报, 1994, 3(02): 26-31.
    [11]杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报, 1995, 37(02): 147-153.
    [12]马鹤林,宛涛,孙启忠.羊草抽穗特性及穗分化过程的观察[J].内蒙古草原, 1983(1): 17-24.
    [13] Diggle P K. Extreme preformation in alpine polygonum viviparum: An architectural and developmental analysis[J]. American Journal of Botany, 1997, 84(2): 154.
    [14] Foerste A F. On the formation of the flower buds of spring-blossoming plants during the preceding summer[J]. Bulletin of the Torrey Botanical Club, 1891, 18(4): 101-106.
    [15] S rensen T. Temperature relations and phenology of the northeast greenland flowering plants[J]. Meddelelser om Groenland, 1941 (bd. 125, no.9).
    [16] Billings W, Bliss L. An alpine snowbank environment and its effects on vegetation, plant development, and productivity[J]. Ecology, 1959, 40(3): 388-397.
    [17] Billings W D, Mooney H A. The ecology of arctic and alpine plants[J]. Biological Reviews, 1968, 43(4): 481-529.
    [18] Critchfield W B. Leaf dimorphism in populus trichocarpa[J]. American Journal of Botany, 1960, 47(8): 699-711.
    [19] Critchfield W B. Shoot growth and heterophylly in ginkgo biloba[J]. Botanical Gazette, 1970, 131(2): 150-162.
    [20] Bliss L. Adaptations of arctic and alpine plants to environmental conditions[J]. Arctic, 1962, 15(2): 117-144.
    [21] Mark A. Floral initiation and development in new zealand alpine plants[J]. New Zealand journal of botany, 1970, 8: 67-75.
    [22] Remphrey W, Steeves T. Shoot ontogeny in arctostaphylos uva-ursi (bearberry): The annual cycle of apical activity[J]. Canadian journal of botany, 1984, 62(9): 1925-1932.
    [23] Remphrey W, Steeves T. Shoot ontogeny in arctostaphylos uva-ursi (bearberry): Origin and early development of lateral vegetative and floral buds[J]. Canadian journal of botany, 1984, 62(9): 1933-1939.
    [24] Inouye D W. Long-term preformation of leaves and inflorescences by a long-lived perennial monocarp,frasera speciosa (gentianaceae)[J]. American Journal of Botany, 1986: 1535-1540.
    [25] Hayes P, Steeves T, Neal B. An architectural analysis of shepherdia canadensis and shepherdia argentea: Patterns of shoot development[J]. Canadian journal of botany, 1989, 67(6): 1870-1877.
    [26] Jones C, Watson M, Lu Y. Developmental morphology and phenology of mayapple (podophyllum peltatum)[J]. American Journal of Botany, 1993, 80: 28.
    [27] Jones C S, Watson M A. Heteroblasty and preformation in mayapple, podophyllum peltatum (berberidaceae): Developmental flexibility and morphological constraint[J]. American journal of botany, 2001, 88(8): 1340.
    [28] Walton G B, Hufford L. Shoot architecture and evolution of dicentra cucullaria (papaveraceae, fumarioideae)[J]. International Journal of Plant Sciences, 1994, 155(5): 553-568.
    [29]盛岩,杨允菲.松嫩平原两种群落虎尾草种群有性繁殖的比较[J].东北师大学报(自然科学版), 2000, 32(02): 51-54.
    [30] Puntieri J, Stecconi M, Barthelemy D. Preformation and neoformation in shoots of nothofagus antarctica (g. Forster) oerst.(nothofagaceae) shrubs from northern patagonia[J]. Annals of Botany, 2002, 89(6): 665.
    [31]杨允菲,郑慧莹,李建东.松嫩平原两个趋异类型羊草无性系种群特征的比较研究[J]. Acta Botanica Sinica, 1997, 39(11): 1058-1064.
    [32] Ye X H, Yu F H, Dong M. A trade-off between guerrilla and phalanx growth forms in leymus secalinus under different nutrient supplies[J]. Annals of Botany, 2006, 98(1): 187.
    [33] Ryle G. Partition of assimilates in an annual and a perennial grass[J]. Journal of Applied Ecology, 1970, 7(2): 217-227.
    [34] Callaghan T. Growth and translocation in a clonal southern hemisphere sedge, uncinia meridensis[J]. The Journal of Ecology, 1984, 7(2): 529-546.
    [35] Callaghan T. Growth and population dynamics of carex bigelowii in an alpine environment. Strategies of growth and population dynamics of tundra plants 3[J]. Oikos, 1976, 27(3): 402-413.
    [36] Callaghan T. Adaptive strategies in the life cycles of south georgian graminoid species[J]. Adaptations within Antarctic ecosystems, 1977: 891-1002.
    [37] Abrahamson W G, Anderson S S, McCrea K D. Clonal integration: Nutrient sharing between sister ramets of solidago altissima (compositae)[J]. American journal of botany, 1991, 78(11): 1508-1514.
    [38] Zhang C Y, Yu F H, Chen Y F, et al. Phenotypic plasticity in response to the heterogeneous water supply in the rhizomatous grass species, calamagrostis epigejos in the mu us sandy land of china[J]. Acta Botanica Sinica, 2003, 45(10): 1210-1217.
    [39] Eckert C G. The loss of sex in clonal plants[J]. Evolutionary Ecology, 2001, 15(4): 501-520.
    [40] Weppler T, St cklin J. Variation of sexual and clonal reproduction in the alpine geum reptans in contrasting altitudes and successional stages[J]. Basic and Applied Ecology, 2005, 6(4): 305-316.
    [41] Doust L L. Population dynamics and local specialization in a clonal perennial (ranunculus repens): I. The dynamics of ramets in contrasting habitats[J]. The Journal of Ecology, 1981, 69(3): 743-755.
    [42] Prati D, Schmid B. Genetic differentiation of life-history traits within populations of the clonal plant ranunculus reptans[J]. Oikos, 2000, 90(3): 442-456.
    [43] Kroon H, Groenendael J. The ecology and evolution of clonal plants[M]. 1997.
    [44] Hartnett D C, Setshogo M P, Dalgleish H J. Bud banks of perennial savanna grasses in botswana[J]. African Journal of Ecology, 2006, 44(2): 256-263.
    [45] Vegis A. Dormancy in higher plants[J]. Annual Review of Plant Physiology, 1964, 15(1): 185-224.
    [46] Koller D. The physiology of dormancy and survival of plants in desert environments[J]. Cambridge university press, 1969, 23: 449-469.
    [47] Olson B, Richards J. Tussock regrowth after grazing: Intercalary meristem and axillary bud activity of tillers of agropyron desertorum[J]. Oikos, 1988, 51(3): 374-382.
    [48] Mullahey J J, Waller S S, Moser L E. Defoliation effects on yield and bud and tiller numbers of twosandhills grasses[J]. Journal of range management, 1991, 44(3): 241-245.
    [49] Hendrickson J, Berdahl J. Intermediate wheatgrass and russian wildrye responses to defoliation and moisture[J]. Journal of range management, 2002, 55(1): 99-103.
    [50] Wang Z, Li L, Han X, et al. Do rhizome severing and shoot defoliation affect clonal growth of leymus chinensis at ramet population level?[J]. Acta Oecologica, 2004, 26(3): 255-260.
    [51]杨允菲,李建东.不同利用方式对羊草繁殖特性的影响及其草地更新的分析[J].中国草地, 1994(05):34-37.
    [52]张春华,杨允菲,李建东.不同干扰条件下羊草种群营养繁殖的研究[J].草业科学, 1995, 12(06): 61-62.
    [53]李华,李月树,郭继勋等.灌溉、施肥对羊草放牧场产草量影响的研究[J].中国草原, 1983(04): 17-20+69.
    [54]王俊峰.氮、水和温度对羊草有性生殖及克隆生长的影响[D].东北师范大学, 2010.博士
    [55] Dalgleish H J, Hartnett D C. Below-ground bud banks increase along a precipitation gradient of the north american great plains: A test of the meristem limitation hypothesis[J]. New phytologist, 2006, 171(1): 81-89.
    [56]杨允菲,李建东.东北草原羊草种群单穗数量性状的生态可塑性[J].生态学报, 2001, 21(05): 752-758.
    [57] Wang J, Xie J, Zhang Y, et al. Methods to improve seed yield of leymus chinensis based on nitrogen application and precipitation analysis[J]. Agronomy journal, 2010, 102(1): 277-281.
    [58]王仁忠.放牧影响下羊草种群生殖生态学的研究[J].应用生态学报, 2000, 11(03): 399-402.
    [59]黄泽豪,朱锦懋,母锡金等.羊草有性繁殖力低的成因研究进展[J].中国草地, 2002, 24(06): 55-60.
    [60]王俊锋,穆春生,张继涛等.施肥对羊草有性生殖影响的研究[J].草业学报, 2008, 17(03): 53-58.
    [61] Huang Z, Zhu J, Mu X, et al. Pollen dispersion, pollen viability and pistil receptivity in leymus chinensis[J]. Annals of Botany, 2004, 93(3): 295.
    [62]卫星,申家恒.羊草大、小孢子发生与雌、雄配子体发育的观察[J].西北植物学报, 2003, 23(12): 2058-2065.
    [63]张卫东,刘公社,刘杰等.羊草自交不亲和性初步研究[J].草地学报, 2002, 10(04): 287-292.
    [64] Teng N, Huang Z, Mu X, et al. Microsporogenesis and pollen development in leymus chinensis with emphasis on dynamic changes in callose deposition[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2005, 200(3): 256-263.
    [65] Teng N, Chen T, Jin B, et al. Abnormalities in pistil development result in low seed set in leymus chinensis (poaceae)[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2006, 201(8): 658-667.
    [66]李晓峰,刘杰,刘公社.羊草若干数量性状的相关性及通径分析[J].草地学报, 2003, 11(01): 42-47.
    [67] Hoad G. Hormonal regulation of fruit-bud formation in fruit trees[J]. Flowering and Fruit Set in Fruit Trees 149, 1983: 13-24.
    [68]黄羌维,叶文.内源激素与果树成花的关系[J].福建师范大学学报(自然科学版), 1996, 12(01): 124-128.
    [69] Jackson D, Sweet G. Flower initiation in temperate woody plants. A review based largely on the literature of conifers and deciduous fruit trees[J]. Hort. Abstr, 1972, 42: 9-24.
    [70] Monselise S, Goren R. Flowering and fruiting interactions of exogenous and internal factors[J]. In Proc. First Int. Citrus Symp, 1969: 1105-1112.
    [71]赵大中,陈民,种康等.高等植物的春化作用与低温适应[J].植物生理学通讯, 1998, 34(02): 155-159.
    [72]李梅兰,侯雷平.植物春化作用研究进展[J].山西农业科学, 2005, 33(1): 43-45.
    [73]种康,雍伟东,谭克辉.高等植物春化作用研究进展[J].植物学通报, 1999, 16(05): 481-487.
    [74]彭华正.竹子分生组织发育特点以及相关基因的克隆和功能研究[D].浙江大学, 2005.博士
    [75]赵大中,雍伟东,种康等.高等植物开花研究现状简述[J].植物学通报, 1999, 16(02): 157-162.
    [76] Lang A. Physiology of flowering[J]. Annual Review of Plant Physiology, 1952, 3(1): 265-306.
    [77]唐祖奎,王玉敏.春蚕豆花芽分化的初步研究[J].作物学报, 1984, 10(04): 281-284+289.
    [78]丁秀琦.白菜型春油菜花芽分化研究[J].作物学报, 1990, 16(01): 83-90+99-100.
    [79]石万里,姚毓璆.菊花花芽分化初步研究[J].园艺学报, 1990, 17(04): 309-312+324.
    [80]陈竹君,陈迪锋,汪炳良等.榨菜花芽分化早期形态发育及细胞超微结构初探[J].浙江大学学报(农业与生命科学版), 2000, 26(01): 79-84.
    [81]程晓建,黎章矩,喻卫武等.香榧雌花芽的形态分化[J].林业科学, 2009, 45(10): 155-157+175.
    [82]郭玉敏,叶要妹,黄银等.日本矮紫薇花芽形态分化的研究[J].北方园艺, 2007(04): 149-151.
    [83]郭志刚,五井正意.关于梅花芽形态形成的研究[J].北京林业大学学报, 1995, 17(S1): 57-61+181-182.
    [84]韩燕来,远彤,陈锋等.小扁豆花芽分化与结实率的研究[J].河南农业大学学报, 1999, 33(04): 403-406.
    [85]何小弟,张远兵,王静等.芍药花芽形态分化的解剖学观察初探[J].安徽农业科学, 2007, 35(03): 719-720+722.
    [86]贺海洋,朱金启,高琪洁等.单叶蔷薇的花芽形态分化[J].园艺学报, 2005(02): 331-334.
    [87]黄冬华,周超华,魏国汶等.金边瑞香花芽形态分化研究[J].园艺学报, 2003, 30(03): 349-351+379.
    [88]惠麦侠,巩振辉,张鲁刚等.大白菜花芽形态分化的研究[J].园艺学报, 2003, 30(06): 731-733.
    [89]姜建福,赵长竹,李金强等.郑州地区甜樱桃花芽形态分化的观察[J].果树学报, 2009, 26(04): 466-470+591.
    [90]赖李明,任吉君.京水菜花芽分化的形态解剖学研究[J].种子, 2008, 27(11): 26-29.
    [91]李会芳,廖康,许正等.野生樱桃李花芽形态分化的研究[J].新疆农业科学, 2006, 43(05): 349-351+451.
    [92]刘海龙,宗敏,宣子灿等.‘早银桂’与‘小叶苏桂’桂花花芽形态分化的比较[J].园艺学报, 2007, 34(06): 1559-1562.
    [93]刘秀丽,招启柏,袁莉民等.烟草花芽分化的形态建成观察[J].中国烟草科学, 2003(01): 9-11.
    [94]彭伟秀,杨建民,于伟等.安哥诺和黑宝石李花芽形态分化的初步研究[J].河北农业大学学报, 2004, 27(03): 52-55.
    [95]孙建云,王庆亚,黄清渊.李花芽形态分化的研究[J].江西农业大学学报, 2005, 27(03): 413-416.
    [96]谭余,桂明珠,王兵.红树莓花芽分化的初步研究[J].园艺学报, 1997, 24(01): 29-34.
    [97]唐道城,李宏琛.唐菖蒲花芽形态分化与叶片生长的关系[J].青海大学学报(自然科学版), 2002, 20(06): 36-38.
    [98]唐道城,张志英,赵梁军.一串红花芽形态分化进程[J].园艺学报, 2001, 28(04): 367-369.
    [99]陶月良,曾广文,朱诚.黄瓜花芽启始分化的形态解剖研究[J].广西植物, 2002, 22(03): 228-231.
    [100]仝江,吴震,蒋芳玲等.乙烯利诱导网纹甜瓜主蔓两性花花芽分化的形态和解剖学研究[J].植物研究, 2008, 28(06): 746-750.
    [101]王彩云,高莉萍,鲁涤非等.‘厚瓣金桂’桂花花芽形态分化的研究[J].园艺学报, 2002, 29(01): 52-56.
    [102]王福青,王铭伦.花生花芽分化的形态解剖学研究[J].中国油料作物学报, 2000, 22(02): 41-44.
    [103]王桂梅.苹果花芽形态分化时期的研究[J].青海农林科技, 1994(02): 28-32.
    [104]韦三立,陈琰,韩碧文.大丽花的花芽分化研究[J].园艺学报, 1995, 22(03): 272-276.
    [105]巫朝福,张先炼,吴淑琴等.蚕豆花芽分化的研究[J].内蒙古农业科技, 1994(03): 1-3.
    [106]吴昌陆,胡南珍.蜡梅花部形态和开花习性研究[J].园艺学报, 1995, 22(03): 277-282.
    [107]杨磊,廖康,许正等.新疆野苹果花芽形态分化的研究[J].新疆农业科学, 2009, 46(03): 488-492.
    [108]于平,李同华,陈树森.小苹果花芽形态分化时期及临界节数的观察[J].林业科技, 1995, 20(03): 42-43.
    [109]远彤,李珂,闫文斌等.大蒜花芽分化的细胞组织学研究[J].河南农业大学学报, 1996, 30(02): 186-190.
    [110]郑宝强,王雁,彭镇华等.卡特兰的花芽形态分化[J].园艺学报, 2008, 35(12): 1825-1830.
    [111]周碧容,甘廉生,邱继水等.果梅不同成熟期品种花芽形态分化期的研究[J].亚热带植物通讯, 1995, 24(02): 6-9.
    [112]Humphreys L, Riveros F. Tropical pasture seed production[M]. FAO plant production and protection paper, 1986.
    [113]Canode C. Influence of fertilizer and residue management on grass seed production1[J]. Agronomy journal, 1978, 70(4): 543.
    [114]Chilcote D. Burning fields boosts grass seed yield[J]. Crops Soils Magazine, 1969, 21(8): 18.
    [115]Drake M C, Bredakis W. Yield of orchard grass as influenced by rates of nitrogen and harvest management1[J]. Agronomy journal, 1963, 55(4): 361.
    [116]Gonz¨¢lez F G, Slafer G A, Miralles D J. Grain and floret number in response to photoperiod during stem elongation in fully and slightly vernalized wheats[J]. Field Crops Research, 2003, 81(1): 17-27.
    [117]Youngberg H. Techniques of seed production in oregon[J]. Seed Production, 1980: 203-213.
    [118]Lamb P, Murray G. Kentucky bluegrass seed and vegetative responses to residue management and fall nitrogen[J]. Crop science, 1999, 39(5): 1416-1423.
    [119]Lorenzetti F. Achieving potential herbage seed yields in species of temperate regions[J]. Proceeding on the XⅦInternational Grassland Congress, 1993: 1621-1628.
    [120]Chilcote D, Youngberg H, Stanwood P, et al. Post-harvest residue burning effects on perennial grass development and seed yield[J]. Seed production. Butterworths, London, 1980: 91-103.
    [121]Young W, Younberg H, Chilcote D. Post-harvest residue management effects on seed yield in perennial grass seed production[J]. Journal of Applied Seed Production, 1984, 2: 36-40.
    [122]叶川,余喜初,王义林等.不同残茬处理对百喜草种子产量的影响[J].中国草地学报, 2008, 30(05): 70-74.
    [123]Mitchell R B, Moser L E, Moore K J, et al. Tiller demographics and leaf area index of four perennial pasture grasses[J]. Agronomy--Faculty Publications, 1998(90): 47-53.
    [124]张称意,李德新.短花针茅(stipa breviflora)枝条数消长及其与种群产量关系的研究[J].草地学报, 1991, 1(01): 163-171.
    [125]Cooper R L. A delayed flowering barrier to higher soybean yields[J]. Field Crops Research, 2003, 82(1): 27-35.
    [126]Callow M, Michell P, Baker J, et al. The effect of defoliation practice in western australia on tiller development of annual ryegrass (lolium rigidum) and italian ryegrass (lolium multiflorum) and its association with forage quality[J]. Grass and Forage Science, 2000, 55(3): 232-241.
    [127]Borm G, Van den Berg W. Effects of the application rate and time of the growth regulator trinexapac-ethyl in seed crops of lolium perenne l. In relation to spring nitrogen rate[J]. Field Crops Research, 2008, 105(3): 182-192.
    [128]Martins V M M. Effect of plant growth regulators on floret dynamics and seed production of perennial ryegrass (lolium perenne l.)[J]. University of Guelph, 1990.
    [129]King C, Chastain T, Garbacik C, et al. Spring irrigation management of perennial ryegrass seedproduction in the willamette valley[J]. Crop Sci, 2005, 124: 1-2.
    [130]Young W, Chilcote D O, Youngberg H W. Spring-applied nitrogen and productivity of cool-season grass seed crops[J]. Agronomy journal, 1999, 91(2): 339-343.
    [131]McIntyre G. Influence nitrogen nutrition on bud and rhizome development in agropyron repens l.Beauv[J]. Nature, 1964, 203: 1084-1085.
    [132]Klimes ova J, Klime L. Bud banks and their role in vegetative regeneration-A literature review and proposal for simple classification and assessment[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8(3): 115-129.
    [133]Benson E J, Hartnett D C, Mann K H. Belowground bud banks and meristem limitation in tallgrass prairieplant populations[J]. American journal of botany, 2004, 91(3): 416.
    [134]Hendrickson J, Briske D. Axillary bud banks of two semiarid perennial grasses: Occurrence, longevity, and contribution to population persistence[J]. Oecologia, 1997, 110(4): 584-591.
    [135]Lehtil K. Modelling compensatory regrowth with bud dormancy and gradual activation of buds[J]. Evolutionary Ecology, 2000, 14(4): 315-330.
    [136]马鹤林,宛涛,王风刚.羊草结实特性及结实率低的原因[J].中国草原, 1984(03): 15-21+81.
    [137]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理[M].北京:北京科学出版社, 1997.
    [138]穆春生.イネ品種の穂形質に関する発育形態学的研究[D].日本东京:东京大学, 2001.
    [139]Gardner J S, Hess W, Trione E. Development of the young wheat spike: A sem study of chinese spring wheat[J]. American journal of botany, 1985: 548-559.
    [140]李扬汉.禾本科作物的形态与解剖[M].上海:上海科学技术出版社, 1979.
    [141]松島省三,真多中喜夫.水稲幼穂の発育経過とその診断,全茎を対象として幼穂の発育経過とその基準および各発育段階の特徴[M].東京, 1956.
    [142]Harunosuke Kawahara T O, Nobuo Chonan. Observation on the differentiating process of panicle in rice plant by dissecting binocular microscope[J]. The Crop Science Society of Japan, 1959, 28(2): 197-200.
    [143]浙江农业大学,华中农学院,江苏农学院等.实用水稻栽培学[M].上海:上海科学技术出版社, 1981.
    [144]梁铁兵,雍伟东,谭克辉等.春化处理控制冬小麦的小穗发育[J].植物学报, 2001, 43(08): 788-794.
    [145]匡猛,邢国风.冬小麦春化研究进展[J].西南科技大学学报(自然科学版), 2005, 20(03): 61-66.
    [146]易津,李青丰,谷安琳等.根茎类禾草生物学特性研究进展[J].干旱区资源与环境, 2001, 15(S1): 1-16.
    [147]陈敏,宝音·陶格涛.羊草人工草地的建立及其科学管理的研究[J].植物学通报, 1993(S1): 45-46.
    [148]穆春生,张宝田,崔爽.不同生境羊草营养枝叶龄进程与地上生物量关系的研究[J].草业学报, 2004, 13(03): 75-79.
    [149]Toyota M, Tsutsui I, Kusutani A, et al. Initiation and development of spikelets and florets in wheat as influenced by shading and nitrogen supply at the spikelet phase[J]. Plant production science, 2001, 4(4): 283-290.
    [150]Zhang L, Takahashi T, Fujimoto K, et al. Factors in the reduction in grain number in winter wheat by early-sowing in yamaguchi[J]. Plant production science, 2007, 10(2): 189-198.
    [151]Onishi K, Sano Y, Nakashima H. Developmental fates of axillary buds as a major determinant for the pattern of life history in lolium[J]. Plant production science, 2003, 6(3): 179-184.
    [152]Porter J, Kirby E, Day W, et al. An analysis of morphological development stages in avalon winter wheat crops with different sowing dates and at ten sites in england and scotland[J]. Journal of Agricultural Sciences, 1987, 109: 107-121.
    [153]Zhang J, Mu C, Wang D, et al. Shoot population recruitment from a bud bank over two seasons ofundisturbed growth of leymus chinensis[J]. Botany, 2009, 87(12): 1242-1249.
    [154]Wang R, Ripley E, Zu Y, et al. Demography of sexual and biomass allocation of grassland and dune leymus chinensis: An analog for response to environment change[J]. Journal of Arid Environments, 2001, 49: 289-299.
    [155]Halloran G, Pennell A. Duration and rate of development phases in wheat in two environments[J]. Annals of Botany, 1982, 49(1): 115.
    [156]Trione E, Metzger R. Wheat and barley vernalization in a precise temperature gradient[J]. Crop science, 1970, 10(4): 390-392.
    [157]Rogers W E, Hartnett D C. Temporal vegetation dynamics and recolonization mechanisms on different-sized soil disturbances in tallgrass prairie[J]. American journal of botany, 2001, 88: 1634-1642.
    [158]Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production[J]. Science, 2001, 291(5503): 481.
    [159]张继涛.羊草种群地下芽库各类型芽变化及与地上植株形成关系的研究[D].东北师范大学, 2009.博士
    [160]张继涛,徐安凯,穆春生等.羊草种群各类地下芽的发生、输出与地上植株的形成、维持动态[J].草业学报, 2009, 18(04): 54-60.
    [161]Benson E J, Hartnett D C. The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie[J]. Plant Ecology, 2006, 187(2): 163-178.
    [162]Lee P. The impact of burn intensity from wildfires on seed and vegetative banks, and emergent understory in aspen-dominated boreal forests[J]. Canadian journal of botany, 2004, 82(10): 1468-1480.
    [163]Gao Y, Wang D, Ba L, et al. Interactions between herbivory and resource availability on grazing tolerance of leymus chinensis[J]. Environmental and Experimental Botany, 2008, 63(1-3): 113-122.
    [164]穆春生,张兆军.关于培育大穗型羊草品种提高种子产量的商榷[J].草业科学, 2006, 23(03): 68-71.
    [165]李月树,祝廷成.羊草种群地上部生物量形成规律的探讨[J].植物生态学与地植物学丛刊, 1983, 7(04): 289-298.
    [166]杨允菲,杨利民,张宝田等.东北草原羊草种群种子生产与气候波动的关系[J].植物生态学报, 2001, 25(03): 337-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700