用户名: 密码: 验证码:
工业无线传感器网络MAC协议研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信网络及硬件技术的发展,具有自组织、扩展灵活等技术优势的无线传感器网络为工业系统无线感知和无线控制提供了重要手段。然而,工业现场用频设备复杂,对无线传感器网络的干扰尤为严重,这对面向应用的工业无线传感器网络数据可靠实时传输提出了新的挑战。
     本文针对工业无线传感器网络MAC层关键技术开展研究。主要研究成果和创新点如下:
     基于现场工业环境,论述了工业无线传感器网络的系统架构,并利用现场实验测试结果,分析了工业无线信道对无线信号传输的影响。
     提出了一种适用于工业无线传感器网络的信道接入控制协议IWSN-MAC。无线传感器网络中,基于竞争的CSMA机制和基于调度的TDMA机制无法满足工业实时应用需求。本文根据工业任务事件时间约束的不同,提出了一种以划分正交子载波的方式定义事件优先级的方法,并基于事件优先级,设计信道接入控制判决机制。该机制针对工业应用环境的复杂性以及用户设备竞争信道的随机行为,由中心控制设备根据用户设备优先级裁定信道接入优先级队列,用户设备则根据判决结果依次接入信道并传输数据。论文运用DTMC模型的分析方法,得到数据成功传输概率、吞吐量和传输延时性能指标。分析表明,本协议作为一种按需接入的且适应网络动态变化的MAC协议,能避免信道冲突产生的不确定时延问题,提供确定的且可预期的时延性能,尤其适用于突发紧急事件的工业应用。该方法在信道利用率方面也有明显优势。
     提出了一种工业无线传感器网络中心控制信道资源分配算法TS-CA。工业无线传感器网络是无线传感器网络和其它网络的混合网络,由于无线信道资源有限,复用信道易引发设备间的数据碰撞问题。本文以抵抗信道干扰为目的,基于人工智能理论,提出了一种通过禁忌搜索的迭代启发式思想为网络设备分配信道的方法。本算法针对工业应用环境的复杂性,将干扰温度度量作为信道分配算法的终止条件,避免搜索迭代过程陷入局部最优解迂回求解的问题。通过不断搜索迭代的过程,算法可以为网络提供一种全局最优的信道分配方案。分析表明,本算法可以有效地避免工业无线传感器网络中的信道干扰。
     提出了一种工业无线传感器网络自适应功率控制算法CRN-PC。本文根据工业无线传感器网络的系统特点,基于认知无线网络的分析思想,分别对工业无线传感器网络的主用户系统和次用户系统设计基于干扰温度的累积干扰模型,并根据该模型,将工业无线传感器网络的数据传输问题建模为干扰约束下的网络效用最优化问题。论文运用数学规划理论,得出功率控制问题的求解算法。分析表明,CRN-PC算法的收敛平衡点就是满足系统期望的数据传输可靠性指标的最优发射功率,并经过凸优化理论证明了算法平衡点的全局最优性。该算法在用户设备的功率资源利用率方面也有明显优势。
With development of communication and hardware technology, because of the self-organization, flexible expansion and other technical advantages, wireless sensor networks are expected to offer promising solutions for industrial system in the wireless sensing and wireless control. However, complex usage of industrial wireless technologies in the harsh industrial environment has induced serious interferences on wireless sensor networks, the fact of which brings a great variety of challenges to the performances on reliability and real-time in the application-oriented industrial wireless sensor networks.
     Regarding the key technologies of MAC layer of industrial wireless sensor networks, the main contributions of this thesis are as follows.
     Based on the industrial environment, we intend to describe the system architecture of the industrial wireless sensor networks in this thesis, and we analyze the impact of industrial wireless channel on the wireless signal transmission through the actual testing.
     In this thesis, a multi-user medium access protocol (named IWSN-MAC) suitable for industrial wireless sensor networks is proposed. In traditional wireless sensor net-works, both contention-based CSMA protocol and scheduling-based TDMA protocol are unable to meet the requirements for industrial real-time applications. In this thesis, re-garding different time-constraints of industrial tasks, we predefine a set of event priorities through the method of pre-assigning orthogonal frequencies, which are taken into ac-count different sub-carriers for requiring channel access to the centralized device. Based on event priorities, a novel judgment mechanism used to determine the order of accessing channel is proposed. And in according to the complexity of industrial environment and the randomness of competition in the wireless channel, the centralized device decides the final channel access priority order based on event priories, and device can access channel in each transmission phase one by one in according to the final decision. In or-der to investigate the performance of IWSN-MAC protocol, the stochastic behavior of devices to transfer data is analyzed through DTMC modeling, we estimate the perfor-mance on throughput and delay. The analysis results show that, as an on-demand MAC protocol which can be used in dynamic network scenario, IWSN-MAC contributes to not only avoid the uncertainty delay arising from channel conflict, but also ensure deter-ministic and predictable real-time for industrial wireless sensor networks. In addition, IWSN-MAC especially adapts to the time-critical applications. It can also strengthen performance on channel utilization.
     A centralized channel allocation algorithm (named TS-CA) which is suitable for industrial wireless sensor networks is proposed. Industrial wireless sensor network is merged from traditional wireless sensor networks and other networks, because of the constraint of the wireless channel resource, channel multiplexing easily produces data collisions. To avoid the interferences, from the perspective of artificial intelligence theory, TS-CA which is based on tabu search heuristic scheme can be used to provide a globally optimal channel allocation solution through the continuous iterative search process. TS-CA can provide a better channel subset for each device in the network. In order to avoid the endless looping problem on the iterative process of searching local optimal solution, the interference temperature is taken account into being the condition to terminate TS-CA algorithm. The analysis results show that TS-CA algorithm is effective due to channel interference's avoidance in industrial wireless sensor networks.
     An adaptive power control algorithm (named CRN-PC) which is also suitable for in-dustrial wireless sensor networks is proposed in this thesis. Based on the characteristics of industrial wireless sensor networks, from the perspective of cognitive radio network, we respectively model cumulative interference for primary system and secondary system in according to interference temperature. And then, the problem which targets at ensuring primary system reliability and ensuring secondary system reliability simultaneously can be modelled to be an optimization problem, the objective of which is to maximize the net-work utility with a couple of anti-interference constraints. This part applies utility theory into power control in the industrial wireless sensor networks. According to mathematical programming theory, we give a solution. The analysis results show that the ultimately equilibrium point of CRN-PC is the expected optimal transmission power targeted for ensuring communication reliability. Furthermore, the optimal value is proved to be the globally optimal transmission power based on the convex optimization theory. It can also strengthen performance on power utilization.
引文
[1]Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks:a survey. Com-puter networks,2002,38(4):393-422.
    [2]Karl H, Willig A. Protocols and architectures for wireless sensor networks. Wiley-Interscience, 2007.
    [3]Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Computer Networks,2008, 52(12):2292-2330.
    [4]孙利民.无线传感器网络.清华大学出版社有限公司,2005.
    [5]Tolle G, Polastre J, Szewczyk R, et al. A Macroscope in the Redwoods. Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, New York, NY, USA: ACM,2005.51-63.
    [6]Sukun K, Pakzad S, Culler D, et al. Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks. Proceedings of the 6th International Symposium on Information Processing in Sensor Networks. IEEE,2007.254-263.
    [7]Hartung C, Han R, Seielstad C, et al. FireWxNet:A Multi-tiered Portable Wireless System for Monitoring Weather Conditions in Wildland Fire Environments. Proceedings of the 4th International Conference on Mobile Systems, Applications and Services, New York, NY, USA: ACM,2006.28-41.
    [8]Tubaishat M, Zhuang P, Qi Q, et al. Wireless sensor networks in intelligent transportation systems. Wireless Communications and Mobile Computing,2009,9(3):287-302.
    [9]Arora A, Dutta P, Bapat S, et al. A line in the sand:a wireless sensor network for target detection, classification, and tracking. Computer Networks,2004,46(5):605-634.
    [10]Milenkovic A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications,2006,29(13):2521-2533.
    [11]Ferro E, Potorti F. Bluetooth and Wi-Fi wireless protocols:a survey and a comparison. IEEE Wireless Communications,2005,12(1):12-26.
    [12]Gast M.802.11 wireless networks:the definitive guide. O'Reilly Media, Inc.,2005.
    [13]Haartsen J C. The Bluetooth radio system. IEEE Personal Communications,2000,7(l):28-36.
    [14]IEEE Standard for Telecommunications and Information Exchange Between Systems-LAN/MAN-Specific Requirements-Part 15:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs). IEEE Std 802.15.1-2002,2002.1-473.
    [15]IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std 802.15.4-2003,2003.0-1-670.
    [16]Krishna C. Real-Time Systems. Wiley Online Library,1999.
    [17]Suriyachai P, Roedig U, Scott A. A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials,2012,14(2):240-264.
    [18]Willig A, Matheus K, Wolisz A. Wireless technology in industrial networks, the IEEE pro-ceedings,2005,93(6):1130-1151.
    [19]Willig A. Recent and emerging topics in wireless industrial communications:A selection. IEEE Transactions on Industrial Informatics,2008,4(2):102-124.
    [20]Gungor V C, Hancke G P. Industrial Wireless Sensor Networks:Challenges, Design Principles, and Technical Approaches. IEEE Transactions on Industrial Electronics,2009,56(10):4258-4265.
    [21]Soldati P, Zhang H, Johansson M. Deadline-constrained transmission scheduling and data evacuation in WirelessHART networks. Proceedings of the European Control Conference 2009 (ECC 09),2009.
    [22]Zhang H, Soldati P, Johansson M. Optimal link scheduling and channel assignment for con-vergecast in linear WirelessHART networks. Proceedings of the 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks. IEEE,2009.1-8.
    [23]Fiore G, Ercoli V, Isaksson A J, et al. Multihop multi-channel scheduling for wireless control in WirelessHART networks. Proceedings of the IEEE Conference on Emerging Technologies & Factory Automation. IEEE,2009.1-8.
    [24]D'Innocenzo A, Weiss G, Alur R, et al. Scalable scheduling algorithms for wireless networked control systems. Proceedings of the IEEE International Conference on Automation Science and Engineering. IEEE,2009.409-414.
    [25]Soldati P, Zhang H, Zou Z, et al. Optimal routing and scheduling of deadline-constrained traffic over lossy networks. Proceedings of the IEEE Global Telecommunications Conference. IEEE, 2009.1-6.
    [26]Saifullah A, Xu Y, Lu C, et al. Real-time scheduling for WirelessHART networks. Proceedings of the 31st IEEE Real-Time Systems Symposium. IEEE,2010.150-159.
    [27]Pister K, Doherty L. TSMP:Time synchronized mesh protocol. IASTED Distributed Sensor Networks,2008.391-398.
    [28]Han S, Zhu X, Mok A K, et al. Reliable and real-time communication in industrial wireless mesh networks. Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE,2011.3-12.
    [29]WirelessHART Approved by IEC as First International Standard for Wireless Communication in Process Automation. Technical report,2010. http://www.hartcomm.org/hcf/news/pr2010/ WirelessHART_approved_by_IEC.html.
    [30]ISA100 Wireless Standard Receives IEC Approval. Technical report,2011. http://www.isa.org/Template.cfm?Section=Press_Releases5&template=/TaggedPage/ DetailDisplay.cfm&ContentID=87201.
    [31]WIA-PA Crowned National Standard. Technical report,2011. http://english.sia.cas.cn/ns/es/ 201110/t20111020_76541.html.
    [32]WIA-PA Voting Result. Technical report,2011. http://www.iec.ch/dyn/www/f?p=103:52:0:: FSP_ORG_ID,FSP_DOC_ID,FSP_DOC_PIECE_ID:1376,136612,266318.
    [33]HART specification. Technical report. http://wirelesshart.hartcomm.org/.
    [34]Wireless Systems for Industrial Automation:Process Control and Related Applications. ANSI/ISA-100.11a-2011..
    [35]工业无线网络WIA规范第一部分:用于过程自动化的WIA系统结构与通信规范.GB/T26790.1-2011.
    [36]Dawson-Haggerty S, Tavakoli A, Culler D. Hydro:A hybrid routing protocol for low-power and lossy networks. Proceedings of the 1st IEEE International Conference on Smart Grid Communications. IEEE,2010.268-273.
    [37]Marina M K, Das S R. Ad hoc on-demand multipath distance vector routing. Wireless Com-munications and Mobile Computing,2006,6(7):969-988.
    [38]Carballido Villaverde B, Rea S, Pesch D. InRout-A QoS aware route selection algorithm for industrial wireless sensor networks. Ad Hoc Networks,2012,10(3):458-478.
    [39]Heo J, Hong J, Cho Y. EARQ:Energy aware routing for real-time and reliable communication in wireless industrial sensor networks. IEEE Transactions on Industrial Informatics,2009, 5(1):3-11.
    [40]Fang M, Li D, Quan J, et al. An Innovative Routing and Resource Optimization Strategy for WirelessHART.2012.353-360.
    [41]Pei H, Li X, Soltani S, et al. The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials,2013,15(1):101-120.
    [42]Wei Y, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks. Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, volume 3 of INFOCOM 2002. IEEE.1567-1576 vol.3.
    [43]Dam T, Langendoen K. An Adaptive Energy-efficient MAC Protocol for Wireless Sensor Networks. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, New York, NY, USA:ACM,2003.171-180.
    [44]Lin P, Qiao C, Wang X. Medium access control with a dynamic duty cycle for sensor network-s. Proceedings of IEEE Wireless Communications and Networking Conference, volume 3 of WCNC'04. IEEE,2004.1534-1539.
    [45]Jamieson K, Balakrishnan H, Tay Y. Sift:A MAC protocol for event-driven wireless sensor networks. Springer,2006:260-275.
    [46]Lu G, Krishnamachari B, Raghavendra C S. An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. Proceedings of the 18th International Parallel and Distributed Processing Symposium. IEEE,2004.224.
    [47]Hussain S, Khan T, Zaidi S. Latency and Energy Efficient MAC (LEEMAC) Protocol for Event Critical Applications in WSNs. Proceedings of the International Symposium on Collaborative Technologies and Systems. IEEE,2006.370-378.
    [48]Sun Y, Du S, Gurewitz O, et al. DW-MAC:a low latency, energy efficient demand-wakeup MAC protocol for wireless sensor networks. Proceedings of the 9th ACM international sym-posium on Mobile ad hoc networking and computing. ACM.53-62.
    [49]Choi L, Lee S, Jun J. SPEED-MAC:Speedy and Energy Efficient Data Delivery MAC Protocol for Real-Time Sensor Network Applications. Proceedings of the IEEE International Confer-ence on Communications. IEEE,2010.1-6.
    [50]Hoesel L F, Havinga P. A lightweight medium access protocol (LMAC) for wireless sensor networks:Reducing preamble transmissions and transceiver state switches.2004..
    [51]Chatterjea S, Van Hoesel L F W, Havinga P J M. AI-LMAC:an adaptive, information-centric and lightweight MAC protocol for wireless sensor networks. Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing Conference,2004.381-388.
    [52]Yang D, Xu Y, Gidlund M. Wireless coexistence between IEEE 802.11-and IEEE 802.15.4-based networks:A survey. International Journal of Distributed Sensor Networks,2011,2011.
    [53]Gidlund M, Yang D, Shen W, et al. Wireless Communication Method And System With Col-lision Avoidance Protocol, June 6,6 Jun 2013. US Patent 20,130,142,180.
    [54]Postolache O A, Pereira J M D, Girao P S. Smart sensors network for air quality monitoring applications. IEEE Transactions on Instrumentation and Measurement,2009,58(9):3253-3262.
    [55]Gungor V C, Lu B, Hancke G P. Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics,2010,57(10):3557-3564.
    [56]Hayes J, Beirne S, Lau K T, et al. Evaluation of a low cost wireless chemical sensor network for environmental monitoring. Proceedings of the IEEE Sensors. IEEE,2008.530-533.
    [57]Tang L, Wang K C, Huang Y, et al. Channel characterization and link quality assessment of IEEE 802.15.4-compliant radio for factory environments. IEEE Transactions on Industrial Informatics,2007,3(2):99-110.
    [58]Angskog P, Karlsson C, Coll J F, et al. Sources of disturbances on wireless communication in industrial and factory environments. Proceedings of Asia-Pacific Symposium on Electromag-netic Compatibility. IEEE,2010.281-284.
    [59]Coll J F, Chilo J, Slimane B. Radio-Frequency Electromagnetic Characterization in Factory Infrastructures. IEEE Transactions on Electromagnetic Compatibility,2012,54(3):708-711.
    [60]Gisbert J, Palau C, Uriarte M, et al. Integrated System for Control and Monitoring Industrial Wireless Networks for Labour Risk Prevention. Journal of Network and Computer Applica-tions,2013..
    [61]Sikora A, Groza V F. Coexistence of IEEE 802.15.4 with other Systems in the 2.4 GHz-ISM-Band. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, volume 3 of IMTC'05. IEEE,2005.1786-1791.
    [62]Huo H, Xu Y, Bilen C C, et al. Coexistence issues of 2.4 GHz sensor networks with other RF devices at home. Proceedings of the 3rd International Conference on Sensor Technologies and Applications. IEEE,2009.200-205.
    [63]Shin S Y, Park H S, Choi S, et al. Packet error rate analysis of ZigBee under WLAN and Bluetooth interferences. IEEE Transactions on Wireless Communications,2007,6(8):2825-2830.
    [64]Angrisani L, Bertocco M, Fortin D, et al. Experimental study of coexistence issues between IEEE 802.11b and IEEE 802.15.4 wireless networks. IEEE Transactions on Instrumentation and Measurement,2008,57(8):1514-1523.
    [65]Yoon D G, Shin S Y, Kwon W H, et al. Packet error rate analysis of IEEE 802.11b under IEEE 802.15.4 interference. Proceedings of the 63rd IEEE Vehicular Technology Conference, volume 3 of VTC Spring'06. IEEE,2006.1186-1190.
    [66]Shin S Y, Park H S, Kwon W H. Packet error rate analysis of IEEE 802.15.4 under sat-urated IEEE 802.11b network interference. IEICE transactions on communications,2007, 90(10):2961-2963.
    [67]Lo Bello L, Toscano E. Coexistence issues of multiple co-located IEEE 802.15.4/ZigBee networks running on adjacent radio channels in industrial environments. IEEE Transactions on Industrial Informatics,2009,5(2):157-167.
    [68]Goldsmith A. Wireless communications. Cambridge university press,2005.
    [69]霍宏伟.医疗护理无线传感器网络系统关键技术研究[D].2010.
    [70]Suriyachai P, Brown J, Roedig U. Time-critical data delivery in wireless sensor networks. Distributed Computing in Sensor Systems,2010.216-229.
    [71]Djukic P, Valaee S. Delay aware link scheduling for multi-hop TDMA wireless networks. IEEE/ACM Transactions on Networking,2009,17(3):870-883.
    [72]Li S, Ren S, Yu Y, et al. Profit and penalty aware scheduling for real-time online services. IEEE Transactions on Industrial Informatics,2012,8(1):78-89.
    [73]Toscano E, Bello L L. Multichannel superframe scheduling for IEEE 802.15.4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics,2012,8(2):337-350.
    [74]Shen W, Zhang T, Gidlund M, et al. SAS-TDMA:a source aware scheduling algorithm for real-time communication in industrial wireless sensor networks. Wireless Networks,2013, 19(6):1155-1170.
    [75]IEEE Standard for Local and metropolitan area networks-Part 15.4:Low-Rate Wireless Per-sonal Area Networks (LR-WPANs) Amendment 1:MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011),2012.1-225.
    [76]Shen W, Zhang T, Gidlund M. Joint routing and MAC for critical traffic in Industrial Wireless Sensor and Actuator Networks. Proceedings of IEEE International Symposium on Industrial Electronics. IEEE,2013.1-6.
    [77]Shen W, Zhang T, Barac F, et al. PriorityMAC:A Priority-Enhanced MAC Protocol for Critical Traffic in Industrial Wireless Sensor and Actuator Networks. IEEE Transactions on Industrial Informatics,2014,10(1):824-835.
    [78]Akerberg J, Gidlund M, Lennvall T, et al. Efficient integration of secure and safety critical industrial wireless sensor networks. EURASIP Journal on Wireless Communications and Net-working,2011,2011(1):1-13.
    [79]Kjesbu S, Brunsvik T. Radiowave propagation in industrial environments. Proceedings of the 26th Annual Conference of the IEEE Industrial Electronics Society, volume 4 of IECON'00. IEEE,2000.2425-2430.
    [80]Sexton D, Mahony M, Lapinski M, et al. Radio channel quality in industrial wireless sensor networks. Proceedings of sensors for industry conference. IEEE,2005.88-94.
    [81]Frolik J. A case for considering hyper-Rayleigh fading channels. IEEE Transactions on Wire-less Communications,2007,6(4):1235-1239.
    [82]Yu K, Zheng T, Pang Z, et al. Reliable flooding-based downlink transmissions for Industrial Wireless Sensor and Actuator Networks. Proceedings of IEEE International Conference on Industrial Technology. IEEE,2013.1377-1384.
    [83]Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications,2000,18(3):535-547.
    [84]So J, Vaidya N H. Multi-channel mac for ad hoc networks:handling multi-channel hidden terminals using a single transceiver. Proceedings of Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing. ACM,2004.222-233.
    [85]Gang Z, Chengdu H, Ting Y, et al. MMSN:Multi-Frequency Media Access Control for Wire-less Sensor Networks. Proceedings of INFOCOM 2006.25th IEEE International Conference on Computer Communications. Proceedings.1-13.
    [86]Hoi S, So W, Walrand J, et al. McMAC:A Parallel Rendezvous Multi-Channel MAC Protocol. Proceedings of Wireless Communications and Networking Conference,2007.WCNC 2007. IEEE,2007.334-339.
    [87]Jingbin Z, Gang Z, Chengdu H, et al. TMMAC:An Energy Efficient Multi-Channel MAC Protocol for Ad Hoc Networks. Proceedings of Communications,2007. ICC'07. IEEE Inter-national Conference on,2007.3554-3561.
    [88]Yafeng W, Stankovic J A, Tian H, et al. Realistic and Efficient Multi-Channel Communica-tions in Wireless Sensor Networks. Proceedings of INFOCOM 2008. The 27th Conference on Computer Communications. IEEE,2008.
    [89]Ramachandran K N, Belding E M, Almeroth K C, et al. Interference-Aware Channel Assign-ment in Multi-Radio Wireless Mesh Networks. Proceedings of the 25th IEEE International Conference on Computer Communications,2006.1-12.
    [90]Avallone S, Akyildiz I F. A channel assignment algorithm for multi-radio wireless mesh net-works. Computer Communications,2008,31(7):1343-1353.
    [91]Incel O D, Hoesel L, Jansen P, et al. MC-LMAC:A multi-channel MAC protocol for wireless sensor networks. Ad Hoc Networks,2011,9(1):73-94.
    [92]Raniwala A, Gopalan K, Chiueh T c. Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks. ACM SIGMOBILE Mobile Computing and Com-munications Review,2004,8(2):50-65.
    [93]Alicherry M, Bhatia R, Li Erran L. Joint Channel Assignment and Routing for Through-put Optimization in Multiradio Wireless Mesh Networks. IEEE Journal on Selected Areas in Communications,2006,24(11):1960-1971.
    [94]Pursley M B, Russell H B, Wysocarski J S. Energy-efficient transmission and routing protocols for wireless multiple-hop networks and spread-spectrum radios. Proceedings of Information Systems for Enhanced Public Safety and Security,2000.1-5.
    [95]Agarwal S, Katz R H, Krishnamurthy S V, et al. Distributed power control in ad-hoc wireless networks. Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, volume 2 of PIMRC'01. IEEE,2001.59-66.
    [96]Gomez J, Campbell A T, Naghshineh M, et al. Conserving transmission power in wireless ad hoc networks. Proceedings of the 19th International Conference on Network Protocols. IEEE, 2001.24-34.
    [97]Jung E S, Vaidya N H. A power control MAC protocol for ad-hoc networks. Wireless Net-works,2005,11(1-2):55-66.
    [98]Zawodniok M, Jagannathan S. A distributed power control MAC protocol for wireless ad hoc networks. Proceedings of IEEE Wireless Communications and Networking Conference, volume 3 of WCNC'04. IEEE,2004.1915-1920.
    [99]Ding P, Holliday J, Celik A. DEMAC:An adaptive power control MAC protocol for ad-hoc networks. Proceedings of the 16th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, volume 2 of PIMRC'05. IEEE,2005.1389-1395.
    [100]Mitola Ⅲ J, Maguire Jr G Q. Cognitive radio:making software radios more personal. Personal Communications, IEEE,1999,6(4):13-18.
    [101]Mitola J. Cognitive radio:An integrated agent architecture for software defined radio. Doctor of Technology, Royal Inst. Technol.(KTH), Stockholm, Sweden,2000.271-350.
    [102]Akyildiz I F, Lee W Y, Vuran M C, et al. NeXt generation/dynamic spectrum access/cognitive radio wireless networks:a survey. Computer Networks,2006,50(13):2127-2159.
    [103]Bertsekas D, Bertsekas D. Nonlinear Programming. Athena Scientific,1999.
    [104]Boyd S, Vandenberghe L. Convex optimization. Cambridge Univ Pr,2004.
    [105]Julian D, Chiang M, O'Neill D, et al. QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad-hoc networks. Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, volume 2 of INFO-COM'02. IEEE,2002.477-486.
    [106]Grant M, Boyd S, Ye Y. CVX:Matlab software for disciplined convex programming,2008.
    [107]Li G Y, Xu Z, Xiong C, et al. Energy-efficient wireless communications:tutorial, survey, and open issues. IEEE Wireless Communications,2011,18(6):28-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700