用户名: 密码: 验证码:
星地一体化网络的无线资源管理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动智能终端的普及及其应用多元化的发展,移动数据流量呈爆炸性增长,移动卫星网络(MSS, Mobile Satellite System)作为下一代网络的重要组成部分,也面临着为用户提供高带宽连接的挑战。卫星通信依赖于视距(LOS, Line of Sight)连接,在有遮挡的环境下信号强度将大幅衰减,因此,利用地面网络的覆盖特性对卫星覆盖进行补充,将二者融合,构建星地一体化网络,实现高速移动宽带网络的全天候以及全地域无缝覆盖,得到了广泛的关注与研究。
     星地一体化网络从本质上来说是异构的无线网络,从拓扑结构来看,包括天基网络与地基网络两部分:天基网络为位于不同轨道的移动卫星或星座,地基网络为基于地面无线标准部署的蜂窝网络,二者由移动卫星网络统一管理,构成一体化的网络。星地一体化网络的特点是,移动卫星网络通过在地面部署基于MSS频段的地面蜂窝网络,改善传统卫星信号遭阻挡区域的覆盖,能够带来系统用户数的提升以及网络资源的更充分利用。此目标的实现依赖于在一体化网络架构下对系统频率、功率、带宽、接入权限等资源进行高效分配与管理,克服两种网络在传输机制、接入技术、组织方式等方面的差异,为用户提供无缝透明的服务质量。
     因此,本文给出面向未来移动通信需求的星地一体化网络架构,对无线资源管理方法进行深入研究,得到了一些具有积极意义和参考价值的方法和结论。主要的研究工作与成果可概括为以下几个方面:
     首先,给出星地一体化网络架构及无线资源管理的理论基础。从技术及应用层面出发,部署集中式架构的地基蜂窝网络,并与天基移动卫星网络进行一体化设计,实现高带宽与全球无缝的覆盖。基于此框架,深入分析了星地一体化网络分层小区间的干扰对系统频谱效率(Spectral efficiency)以及能量效率(Energy efficiency)的影响,为后续星地一体化网络能量高效的分层干扰管理奠定理论基础;给出一个通用的公平QoS映射方法,利用多媒体业务的自适应带宽调整特性ABA(Adaptive Bandwidth Adaptation),在移动卫星网络与地面网络之间非对称地调整业务的服务等级,为后续的呼叫接入控制提供接入用户数增益;给出了支持卫星接口的媒质无关切换(MIH,Media Independent Handover)机制,为后续的垂直切换提供底层消息传输支持。
     其次,由于星地一体化网络利用卫星波束小区、宏蜂窝小区、微蜂窝小区来灵活地实现对热点区域、非热点区域以及零星业务区域的无缝覆盖,导致分层小区间存在干扰。目前对这种分层干扰的管理一般通过在卫星波束小区与地面小区间复用频率以实现干扰避免,在地面小区间进行干扰协调。本文提出了能量高效的干扰协调策略IC-LC,针对由于卫星摄动或运动对地面小区产生干扰的情况,利用矩阵带状化MR(Matrix Relaxation)算法和流功率分配SPA(Stream Power Allocation)算法进行波束赋形与发射功率分配,以较低的运算复杂度对地面小区间的干扰进行协调,有效抑制小区间的干扰。通过建立模块化的能耗模型,验证了IC-LC的低运算复杂度可降低处理中心的处理能耗,实现对系统能量效率的优化。
     再次,呼叫接入控制CAC(Connection Admission Control)负责调度星地一体化网络中用户的呼叫请求,并为其分配资源进行准入控制。由于星地一体化网络中存在不同覆盖区的新呼叫以及切换呼叫(包括水平切换与垂直切换),需要根据呼叫的特性以及网络状况确定调度与准入控制准则。本文将接入调度转换为带优先级的多服务队列调度MSQS(Multi-Server Queue Scheduling)问题,基于系统状态的遍历性以及平稳状态的存在性,提出了N-非强占优先排队准则N-NPPQ(N-Non Preemptive Priority Queue),利用N-队列动态调度新呼叫与切换呼叫;并进一步针对垂直切换与水平切换呼叫提出基于资源预留的准入控制准则,利用卫星波束小区稳定状态的准可逆性,将波束小区进行虚拟窗划分并计算切换概率来建立动态的预留池,有效平衡了垂直切换与水平切换呼叫之间的接入矛盾。接入调度以及准入控制共同完成呼叫接入控制,有效降低了由于系统资源调配不均所导致的呼叫阻塞率,优化了预留资源的利用率。
     最后,垂直切换使星地一体化网络中的用户能够在移动卫星网络与地面网络间无缝漫游,并能够根据用户需求以及网络状态使用户始终连接到最佳的网络。垂直切换包括网络发现、切换触发与切换判决、切换执行等步骤,其中切换触发与切换判决用于确定是否触发垂直切换并确定切换目标网络,是实现无缝垂直切换的重要前提及保障。鉴于不必要的切换触发将产生不必要的信令开销及资源浪费,同时导致失败切换与不必要切换,本文提出基于多阈值的切换触发算法,通过预测用户在地面蜂窝小区中的滞留时间及信道占用时间,计算得到多个切换阈值来触发用户由移动卫星网络到地面网络的垂直切换,降低了已有基于接收信号强度(RSS, Received Signal Strength)以及速率感知的切换触发策略存在的失败切换与不必要切换数。鉴于星地一体化网络中移动卫星网络时延较长,垂直切换判决需要尽快完成,提出了基于信用评价的切换判决算法,利用用户对网络的评价作为垂直切换判决的参考,避免传统的多属性切换判决算法在星地一体化网络中所需的参数收集、计算以及长判决时延。
Fueled by the proliferation of users’ various mobile devices and applications, wireless mobile data traffic volumes are exponentially increasing, which results in the high capacity demands for mobile and wireless networks. Mobile satellite networks (MSS), as the indispensable component of next generation network (NGN), are facing this challenge as well. The problem with MSS is that the satellite communication relies on the Line of Sight (LOS) connection between mobile users and satellite, which is difficult to maintain, especially in urban or indoor coverage scenarios. Therefore, MSS are finding the way out by utilizing terrestrial networks to complement the satellite coverage, leading to the integration of the two networks and the vision of worldwide seamless coverage.
     The integrated satellite and terrestrial network (ISTN) is heterogeneous, consisting of the space-based network and terrestrial network in topology. Space-based network would be satellites locating in different orbits or even constellations while the terrestrial network is the cellular network implemented with terrestrial wireless standards. Both networks are controlled by MSS in an integrated architecture. The essential feature of ISTN is that MSS greatly enhances its coverage in traditional areas where its signal is blocked and improves the utilization of otherwise under-utilized MSS spectrum by deploying terrestrial cellular networks. The realization of this feature, however, largely depends on the ability of MSS to efficiently manage and allocate the radio resources such as system spectrum, power, bandwidth, access control to provide seamless and transparent Quality of Service to mobile users, despite of the differences between the two networks.
     This thesis focuses on achieving this goal by studying on the radio resource management methods in ISTN in an integrated architecture. The main work and contribution could be summarized as follows:
     To start with, ISTN network architecture and basic radio resource management methods are given. Centralized architecture is chosen for the deployment of terrestrial networks, forming an integrated network with MSS. Detailed analysis and description on the impact of cross-tier interference on system spectral efficiency and energy efficiency are provided, laying the foundation for the energy efficient interference coordination in Chapter3. A general fair QoS mapping mechanism is proposed, which utilizes the property of adaptive bandwidth adaption to provide admission gain for connection admission control in Chapter4. To ensure seamless vertical handover in ISTN, MIH based vertical handover mechanism is built, which adds MIH support to satellite interface and serves as solid foundation for future work.
     Next, considering that ISTN deploys satellite cell, macro cell, micro cell to satetisfy the various traffic requirements, management of cross-tier interference due to the overlap coverage needs to be studied to mitigate the negative impact of interference on the system capacity. Current interference mitigation strategies are incapable of simultaneously optimizing both spectral and energy efficiency. Therefore, an energy efficient interference management scheme is presented, which proposes channel matrix relaxation and stream power allocation to perform beamforming and power allocation. The scheme is capable of enhancing spectral efficiency while at the same time lowering the baseband processing power, thus optimizing the energy efficiency as well. Moreover, to accurately accommodate the various sources of power consumption in the nework, a detailed modulated power model is developed, based on which the energy efficient advantages of proposed scheme is verified from the perpective of energy consumption and and energy efficiency.
     Then, connection admission control (CAC) allocates resources to connections according to connection characteristics and network conditions. In ISTN, there exist different types of connections, i.e., new connections, horizontal handovers and vertical handovers. Considering QoS requirements of multiple services and connections, this thesis transforms the CAC scheduling problem into a Multi-Server Queue Scheduling problem and proposes N-NPPQ rule, namely, N-Non Preemptive Priority Queue, to dynamically serve new and handover connections; A reservation pool based admission control scheme is further proposed to distinguish the vertical and horizontal handovers. The reservation pool is constructed by utilizing the pseudo inverse property of satellite spotbeam and the handover probability of connections. With the proposed scheduling and admission control methods, connection blocking due to unfair allocation of system resources is reduced and resverd resource utilization is improved.
     Lastly, transparent vertical handover between terrestrial and mobile satellite network consists of different stages such as network discovery, handover triggering and handover decision, handover execution, among which triggering and decision are essential to achieve seamless and transparent handover in ISTN. Current studies lack detailed support for the vertical handover of mobile satellite networks as an independent wireless access network. Meanwhile, problems such as handover failures and unnecessary handovers and long handover decision delay exist in current triggering algorithms and multi-attribute based vertical handover decision algorithms. In view of these deficiencies, this thesis proposes a multi-threshold triggering and reputation based vertical handover shceme. The scheme calculates three handover failure and unnecessary handover pertinent thresholds to trigger handovers; it also builds a reputation system to facilitate the vertical handover decision to reduce handover delay. Simulation is conducted in the overlapping coverage area of ISTN and the proposed scheme is evaluated from the perspective of handover failures, unnecessary handovers, handover blocking, network load and handover decision delay, etc.
引文
[1] Evans B, Werner M, Lutz E, et al. Integration of Satellite and TerrestrialSystems in Future Multimedia Communications[J]. IEEE WirelessCommunications,2005,12(5):1536-1284.
    [2]那振宇.卫星互联网服务质量保障方法研究[D].哈尔滨:哈尔滨工业大学,2010:1-5.
    [3]郭庆,王振永,顾学迈.卫星通信系统[M].北京:电子工业出版社,2010:455-457.
    [4] Farserotu J, Prasad R. A Survey of Future Broadband Multimedia SatelliteSystems, Issues and Trends[J]. IEEE Communications Magazine,2000,38(6):128-133.
    [5]甘仲民,张更新.卫星通信技术的新发展[J].通信学报,2006,27(8):2-9.
    [6] Gennaro G E, Filippo D C, Marzia M, et al. Next Generation InteractiveS-Band Mobile Systems: Challenges and Solutions[J]. International Journalof Satellite Communications and Networking,2013,10(2):1-16.
    [7] Khan A, Kellerer W, Kozu K, et al. Network Sharing in the Next MobileNetwork: TCO Reduction, Management Flexibility, and OperationalIndependence[J]. IEEE Communications Magazine,2011,49(10):134-142.
    [8] CISCO. Visual Networking Index: Global Mobile Data Traffic ForecastUpdate2011-2016[R]. CISCO Whitepaper,2012:1-2.
    [9] Ishii H, Kishiyama Y, Takahashi H. A Novel Architecture for LTE-B:C-Plane/U-Plane Split and Phantom Cell Concept[C]//2012IEEE GlobcomWorkshops. New York: IEEE,2012:624-630.
    [10] Vojcic B, Matheson D, Clark H. Network of Mobile Networks; HybridTerrestrial-Satellite Radio[C]//International Workshop on Satellite and SpaceCommunications. Las Vegas, CA: IEEE,2009:451-455.
    [11] Sadek M, Aissa S. Personal Satellite Communication: Technologies andChallenges[J]. IEEE Wireless Communications,2012,19(6):28-35.
    [12]胡向晖,任术波,程宇新,等.结合ATC技术的新一代卫星移动通信系统简介[C]//第七届卫星通信新技术新业务年会.北京,2011:249-258.
    [13] Ibnkahla M, Rahman Q, Sulyman A, et al. A. High-speed Satellite MobileCommunications: Technologies and Challenges[J]. Proceedings of the IEEE,2004,92(2):312-339.
    [14] Perminder D, Amit M, Carlos U V. Macro and Small Cell/Wi-Fi Networks:An Analysis of Deployment Options as the Solution for the Mobile DataExplosion[J]. Bell Labs Technical Journal,2013,18(1):59-79.
    [15] Taleb T, Hadjadj A Y, Ahmed T. Challenges, Opportunities and Solutions forConverged Satellite and Terrestrial Networks[J]. IEEE WirelessCommunications,2011,18(1):46-52.
    [16] Bloomberg. Iridium, Globalstar Pursue Customers with Satellite Wi-Fi[OL].2014.http://www.bloomberg.com/news/2014-02-04/iridium-globalstar-pursue-customers-with-satellite-wi-fi.html.
    [17] Yamazato T, Aman T, Katayama M. Dynamic Bandwidth Allocation ofSatellite/Terrestrial Integrated Mobile Communication System[C]//GlobalTelecommunications Conference (GLOBECOM2010). Miami: IEEE,2010:1-5.
    [18] Damnjanovic A, Montojo J, Yongbin W, et al. A Survey on3GPPHeterogeneous Networks[J]. IEEE Wireless Communications,18(3):10-21.
    [19] Kishiyama Y, Benjebbour A, Ishii H, et al. Evolution Concept and CandidateTechnologies for Future Steps of LTE-A[C]//IEEE International Conferenceon Communication Systems (ICCS). Singapore: IEEE,2012:473-477.
    [20] Zhang J, Collings I, Chung S C, et al. Evolving Small-Cell CommunicationsTowards Mobile-over-FTTX Networks[J]. IEEE Communications Magazine,2013,51(12):92-101.
    [21] Kiiski M. LTE-Advanced: The Mainstream in Mobile BroadbandEvolution[C]//2010European Wireless Conference (EW). London,2010:983-988.
    [22] Sastri K, Giovanni G, Sooyoung K. Satellite Component of NGN: Integratedand Hybrid Networks[J]. International Journal of Satellite Communicationsand Networking,2011,29(3):191-208.
    [23] Chandrasekhar V, Kountouris M, Andrews J G. Coverage in Multi-antennaTwo-tier Networks[J]. IEEE Transactions on Wireless Communications,2009,8(10):5314-5327.
    [24] Teodor G M, Telemaco M, Jens M, et al. Integration of BroadcastTechnologies with Heterogeneous Networks–An IEEE802.21CentricApproach[J]. IST FP6Integrated Project Daidalos-II,2007,11(1):1-2.
    [25] Efthymiou N, Sheriff R, Properzi A. Inter-segment Handover Algorithm foran Integrated Terrestrial/Satellite-UMTS Environment[C]//Proceedings ofthe Personal, Indoor and Mobile Radio Communications (PIMRC). Boston,USA: IEEE,1998:993-998.
    [26] Brand H F, Giralda A, Vesely A. Inter-segment Handover Results in theINSURED Project[C]//The4th ACTS Mobile Communication Summit'99.Sorrento, Italy: ACTS,1999:852-888.
    [27] Delli F M, Faggiano A, Giralda A. VIRTUOUS: A Project to Favour theMigration from GPRS to Terrestrial and Satellite UMTS[C]//The FirstInternational Conference on3G Mobile Communication Technologies.London, UK: IEEE,2000:387–391.
    [28] Minowa M T, Hamamoto N, Fujino Y, Nishinaga N, et al. Satellite/TerrestrialIntegrated Mobile Communication System for Nation's Security andSafety[J]. IEICE Transactions on Communications,2008, J91-B(12):1629-1640.
    [29] Tanaka A, Okamoto E, Tsuji H, et al. Interference-aware Weighting Schemefor Satellite/Terrestrial Integrated Mobile Communication System[C]//The9th Wireless Communications and Mobile Computing Conference (IWCMC).Sardinia, Italy: IEEE,2013:1803-1808.
    [30] Umehira M. A Consideration on Frequency Sharing in Satellite andTerrestrial Integrated Mobile Communication Systems[J]. IEICESAT2007-63,2008(11):6-11.
    [31] Berioli M, Werner M. Integrating Satellite and Terrestrial Technologies forEmergency Communications: the WISECOM Project[C]//The QShine’07Conference. Vancouver, Canada: IEEE,2007:1103-1108.
    [32] Verpoorte J, Schippers H, Jorna P, et al. Development of the SANDRAAntenna for Airborne Satellite Communication[C]//Aerospace Conference.Toronto, Canada: IEEE,2011:1-15.
    [33] Plass S. Seamless networking for aeronautical communications: One MajorAspect of the SANDRA Concept[J]. Aerospace and Electronic SystemsMagazine,2012,27(9):21-27.
    [34] ITU. Integration of Terrestrial and Satellite Mobile CommunicationSystems[S]. ITU-R M.1182-1RI-R,2004.
    [35] ETSI. Satellite Earth Stations and Systems (SES). Combined Satellite andTerrestrial Networks scenarios[S/OL].2013, http://www.etsi.org/deliver/etsi_tr/103100_103199/103124/01.01.01_60/tr_103124v010101p.pdf.
    [36] Do S K, Jaekyoung A, Dong C P. Integrated/Hybrid Satellite and TerrestrialNetworks for Satellite IMT-Advanced Services[J]. International Journal ofSatellite Communications and Networking,2010,29(3):14.
    [37] Mihael M K, Enrico D, Giovanni G. Performance Study of an IntegratedSatellite/Tterrestrial Mobile Communication System[J]. International Journalof Satellite Communications,1996,14(5):413-425.
    [38] Liu S, Qin F, Gao Z, et al. LTE-satellite: Chinese Proposal for SatelliteComponent of IMT-Advanced system[J]. China Communications,2013,10(10):47-64.
    [39] Hee W H, Kunseok K, Bon J K. A Satellite Radio Interface Compatible withTerrestrial3GPP LTE System[J]. Personal Satellite Services Lecture Notes ofthe Institute for Computer Sciences, Social Informatics andTelecommunications,2013,12(3):1-12.
    [40]曹光宇.星地融合网络中的切换与资源分配[M].北京:北京邮电大学,2011:23-27.
    [41]郑磊.下一代无线网络中移动性管理架构与关键技术研究[M].北京:北京邮电大学,2010:31-34.
    [42] Berggren F. Multi-radio Resource Management for Ambient Networks[C]//Proceedings of PIMRC'2005. Berlin, Germany: IEEE,2005:942-946.
    [43] Unhee P K, Dae S O, Bon J. Interference-Limited Dynamic ResourceManagement for an Integrated Satellite-Terrestrial System[J]. ETRI Journal,2014,8(2):1-8.
    [44] Mayfield W, Chang D, Novak J. Communication System EmployingReuse ofSatellite Spectrum for Terrestrial Communication[P]. Google Patents,2004.
    [45] Zheng D, Karabinis P D. Adaptive Beam-forming with InterferenceSuppression and Multi-user Detection in Satellite Systems with TerrestrialReuse of Frequencies[C]//IEEE Vehicular Technology Conference(VTC2005-Fall). San Francisco, CA: IEEE,2005:2637-2641.
    [46]焦现军,曹桂兴. MSV-ATC卫星移动通信技术研究[J].航天器工程,2007,16(5):59-67.
    [47] Mashino J, Sugiyama T. Subcarrier Suppressed Transmission for OFDMA inSatellite/Terrestrial Integrated Mobile Communication System[C]//2011IEEE International Conference on Communication (ICC2011). Kyoto, Japan:IEEE,2011:1-5.
    [48] Mashino J, Shirato Y, Sugiyama T. Subcarrier Suppressed TransmissionScheme for Satellite/Terrestrial Integrated Mobile CommunicationSystem[C]//IEEE Vehicular Technology Conference Fall(VTC2010-Fall).Vancouver, Canada: IEEE,2010:1-5.
    [49] Deslandes V, Tronc J, Beylot A L. Analysis of Interference Issues inIntegrated Satellite and Terrestrial Mobile Systems[C]//Advanced satellitemultimedia systems conference (asma) and the11th signal processing forspace communications workshop (spsc). Cesena, Italy,2010:256-261.
    [50] Gao Y, Ou Q, Zeng Q, et al. Analysis of Mutual Interferences between twoComponents In Satellite-Terrestrial Integrated System[C]//ConsumerElectronics, Communications and Networks (CECNet). Xianning, China,2013:145-148.
    [51] Bes C, Boustie C, Hulkkonen A, et al. Mobile Broadband Everywhere: TheSatellite, a Solution for a Rapid and Large3.9G Deployment[C]//The SixthInternational Conference on Systems and Networks Communications(ICSNC2011). Barcelona, Spain: IEEE,2011:43-46.
    [52] Zhang M, Fu Y, Chang Y. Coexistence Studies on the InterferencePerformance Between Mobile Satellite System and LTE Network[J]. ChinaCommunications,2013:1-11.
    [53] Roivainen A, Ylitalo J, Kyrolainen J, et al. Performance of TerrestrialNetwork with the Presence of Overlay Satellite Network[C]//IEEEInternational Conference on Communications (ICC2013). Budapest,Hungary: IEEE,2013:5089-5093.
    [54] Wang Y, Pedersen K. Performance Analysis of Enhanced Inter-CellInterference Coordination in LTE-Advanced HeterogeneousNetworks[C]//Vehicular Technology Conference (VTC2012Spring).Yokohama, Japan: IEEE,2012:1-5.
    [55] E-UTRA. FDD Home eNode B (HeNB) Radio Frequency (RF) Requirementsanalysis[S].3GPP TR36.921Std.,2011.
    [56] E-UTRA. FDD Home eNode B (HeNB) Radio Frequency (RF) Requirementsanalysis[S].3GPP TR36.922Std.,2011.
    [57] E-UTRA. Further Enhancements to LTE Time Division Duplex (TDD) forDownlink-Uplink (DL-UL) Interference Management and TrafficAdaptation[S].3GPP TR36.828Std.2013.
    [58] Weingarten H, Steinberg Y, Shamai S. The Capacity Region of the GaussianMultiple-Input Multiple-Output Broadcast Channel[J]. IEEE Transactions onInformation Theory,2006,52(9):3936-3964.
    [59] Schubert M, Boche H. Solution of the Multiuser Downlink BeamformingProblem with Individual SINR Constraints[J]. IEEE Transactions onVehicular Technology,2004,53(1):18-28.
    [60] Peel C, Hochwald B, Swindlehurst A. A Vector-perturbation Technique forNear-capacity Multiantenna Multiuser Communication-part I: ChannelInversion and Regularization[J]. IEEE Transactions on Communications,2005,53(1):195-202.
    [61] Wiesel A, Eldar Y, Shamai S. Linear Precoding via Conic Optimization forFixed MIMO Receivers[J]. IEEE Transactions on Signal Processing,2006,54(1):161-176.
    [62] Stojnic M, Vikalo H, Hassibi B. Rate Maximization in Multi-antennaBroadcast Channels with Linear Preprocessing[C]//GlobalTelecommunications Conference (GLOBECOM '04). Texas, USA: IEEE,2004(Vol.6):3957-3961.
    [63] Spencer Q, Swindlehurst A, Haardt M. Zero-forcing Methods for DownlinkSpatial Multiplexing in Multiuser MIMO channels[J]. IEEE Transactions onSignal Processing,2004,52(2):461-471.
    [64] Wong K, Murch R, Letaief K. A Joint-channel Diagonalization for MultiuserMIMO Antenna Systems[J]. IEEE Transactions on Wireless Communications,2003,2(4):773-786.
    [65] Marzetta T. How Much Training is Required for Multiuser Mimo Signals,Systems and Computers[C]//Fortieth Asilomar Conference on Digital ObjectIdentifie. Monterey, California: ACSSC,2006:359-363.
    [66] Chen X, Xu X, Tao X. Energy Efficient Power Allocation in GeneralizedDistributed Antenna System[J]. IEEE Communications Letters,2012,16(7):1022-1025.
    [67] He C, Sheng B, Zhu P, et al. Energy-and Spectral-Efficiency Tradeoff forDistributed Antenna Systems with Proportional Fairness[J]. IEEE Journal onSelected Areas in Communications,2013,31(5):894-902.
    [68] He S, Huang Y, Jin S, et al. Coordinated Beamforming for Energy EfficientTransmission in Multicell Multiuser Systems[J]. IEEE Transactions onCommunications,2013,61(12):4961-4971.
    [69] He S, Huang Y, Jin S, et al. Max-Min Energy Efficient Beamforming forMulticell Multiuser Joint Transmission Systems[J]. IEEE CommunicationsLetters,2013,17(10):1956-1959.
    [70] De R F, Tropea M, Marano S. Call Admission Control for Integrated DiffServTerrestrial and IntServ Satellite Network[C]//Vehicular TechnologyConference (VTC2004Spring). Milan, Italy: IEEE,2004:2921-2925.
    [71] Lattanzi F, Giambene G, Acar G, et al. Admission Control and HandoverManagement for High-speed Trains in Vehicular Geostationary SatelliteNetworks with Terrestrial Gap Filling[J]. International Journal of SatelliteCommunications and Networking,2010,28(1):1-27.
    [72] Molinaro A, De R F, Marano S, et al. A Scalable Framework for IP-orientedTerrestrial-GEO Satellite Networks[J]. IEEE Communications Magazine,2005,43(4):130-137.
    [73] Pace P, Aloi G, De F, et al. An Integrated Satellite-HAP-Terrestrial SystemArchitecture: Resources Allocation and Traffic ManagementIssues[C]//Vehicular Technology Conference(VTC2004Spring). Milan, Italy:IEEE,2004:2872-2875.
    [74] Falowo O, Chan H. Adaptive Bandwidth Management and Joint CallAdmission Control to Enhance System Utilization and QoS in HeterogeneousWireless Networks[J]. EURASIP Journal on Wireless Communications andNetworking,2007(3):2-13.
    [75] Alexandri E, Martinez G, Zeghlache D. Adaptive Joint Call AdmissionControl and Access Network Selection for Multimedia WirelessSystems[C]//Wireless Personal Multimedia Communications. Hawaii, USA:IEEE,2002:1390-1394.
    [76] Falowo O, Chan H. Joint Call Admission Control Algorithms: Requirements,Approaches, and Design Considerations[J]. Computer Communications,2008,31(6):1200-1217.
    [77] Riadh D K, Julien F, Fabrice A, et al. Optimized Handover and ResourceManagement: An802.21-based Scheme to Optimize Handover and ResourceManagement in Hybrid Satellite-Terrestrial Networks[J]. InternationalJournal of Satellite Communications and Networking,2014,32(1):1-24.
    [78]冯晓峰,吕宗庭.异构无线网络联合呼叫接纳控制优化算法[J].西安:西安电子科技大学学报(自然科学版).2013,40(5):194-199.
    [79] Paolo C G, Silvia M. QoS Support in Hybrid WiFi and DVB-S Networks[C]//International Workshop on Satellite and Space Communications(IWSSC2007). Sydney, Australia: IEEE,2007:1223-1227.
    [80] Paolo C G. Resource Management in Hybrid DVB-RCS and WiFiNetworks[C]//Proceedings of the Global Communications Conference(IEEEGlobecom2008). LA, CA: IEEE,2008:923-928.
    [81] Nay P, Chi Z. Vertical Handoff Decision Algorithm for Integrated UMTS andLEO Satellite Networks[C]//Communications and Mobile Computing(CMC'09). New Orleans, USA: IEEE,2009:180-184.
    [82] Papapetrou E, Pavlidou F. Analytic Study of Doppler-based HandoverManagement in LEO Satellite Systems[J]. IEEE Transactions on Aerospaceand Electronic Systems,2005,41(3):830-839.
    [83] Xu Y, Dong Q, Chi C K. An Elastic Handover Scheme for LEO SatelliteMobile Communication Systems[C]//Global TelecommunicationsConference(GLOBECOM '00). San Francisco, CA: IEEE,2000(vol.2):1161-1165.
    [84] Rizvi S, Olariu S, Rizvi S. Radar-A Novel Admission Control and HandoffManagement Scheme for Multimedia LEO Satellite Networks[C]//MilitaryCommunications Conference(MILCOM '06). Washington DC, USA: IEEE,2006:1-7.
    [85] Todorova S, Nguyen H. A Selective Look-Ahead Bandwidth AllocationScheme for Reliable Handoff in Multimedia LEO Satellite Networks[C]//The2nd European Conference on Universal Multiservice Networks. Colmar,France,2002:36-43.
    [86] Boukhatem L, Gaiti D, Pujolle G. A Channel Reservation Algorithm forHandover Issues in LEO Satellite Systems based on a Satellite-fixed CellCoverage[C]//Vehicular Technology Conference(VTC '01Spring). Rhodes,Greece: IEEE,2001(vol.4):2975-2979.
    [87] Boukhatem L, Beylot A, Gaiti D, et al. TCRA: A Resource ReservationScheme for Handover Issue in LEO Satellite Systems[C]//WirelessCommunications and Networking(WCNC2003). New Orleans, USA: IEEE,2003(vol.1):114-119.
    [88] Zheng W. A New Channel Assignment Strategy for Low Earth Orbit MobileSatellite Systems[C]//The Second International Conference on Advances inSatellite and Space Communications(SPACOMM2010). Athens, Greece:IEEE,2010:47-51.
    [89] Matar G, Brahim I, Badr H. Handover Priority Schemes for Multi-classTraffic in LEO Mobile Satellite Systems[J]. International Journal ofComputer Science Issues,2012,12(1):46-56.
    [90]丁丁,马东堂,魏急波. LEO卫星网络中基于门限的切换优先资源管理机制[J].信号处理.2009,25(8):1285-1291.
    [91]王国玉,丁丁,马东堂.多业务LEO卫星网络中最优呼叫允许控制及切换管理策略[J].电子与信息学报.2010,32(7):1559-1563.
    [92]兰洪光,夏小涵,张晓宁,等.卫星-地面融合网络无缝切换技术研究[C]//第八届卫星通信学术年会论文集.北京,中国,2012:232-237.
    [93] IEEE. Standard for Local and metropolitan area networks-Media IndependentHandover Services[S]. IEEE Std802.21,2009.
    [94] Ting B, Trestian R, Muntean G. Reputation-based Network SelectionSolution for Improved Video Delivery Quality in Heterogeneous WirelessNetwork Environments[C]//Broadband Multimedia Systems andBroadcasting(BMSB2013). Uxbridge, West London: IEEE,2013:1-8.
    [95] Younghyun K, Chung G, Soonjun P. An Enhanced Information Server forSeamless Vertical Handover in IEEE802.21MIH Networks[J]. ComputerNetworks,2011;55(1):12.
    [96] Zekri M, Jouaber B, Zeghlache D. An Enhanced Media IndependentHandover Framework for Vertical Handover Decision Making based onNetworks' Reputation[C]//Local Computer Networks Workshops(LCN2012).Clearwater Beach, USA: IEEE,2012:673-678.
    [97] Piri E, Pentikousis K. Towards a GNU/Linux IEEE802.21Implementation. Communications[C]//IEEE International Conference on Communications(ICC '09). Tokyo, Japan: IEEE,2009:1-5.
    [98] Corujo D, Guimaraes C, Santos B, et al. Using an Open-source IEEE802.21Implementation for Network-based Localized Mobility Management[J].IEEE Communications Magazine,2011,49(9):114-123.
    [99] Rouil R G, Montavont N. Media Independent Handover Transport UsingCross-layer Optimized Stream Control Transmission Protocol[J]. ComputerCommunications,2010,33(9):11.
    [100] Rajeev G G. Cross-plane Information Sharing for QoS in Satellite-TerrestrialIntegrated Packet Networks[J]. International Journal of SatelliteCommunications and Networking,2011,29(3):21-47.
    [101] Gurkan G B, Fatih A. Hybrid Satellite-IEEE802.16System for MobileMultimedia Delivery[J]. International Journal of Satellite Communicationsand Networking,2011,29(3):1-20.
    [102] Salhani M D, Beylot A. Terrestrial Wireless Networks and Satellite SystemsConvergence[C]//AIAA International Communications Satellite SystemsConference (ICSSC2007). Seoul, Korea: AIAA,2007:1-5.
    [103] Qureshi R, Dadej A. Adding Support for Satellite Interfaces to802.21MediaIndependent Handover[C]//The15th IEEE International Conference onNetworks (ICON2007). India Habitat Centre, India: IEEE,2007:542-546.
    [104] Fun H P, Berioli M. Mobility Extension for Broadband SatelliteMultimedia[C]//International Workshop on Satellite and SpaceCommunications (IWSSC2009). Siena, Italy: IEEE,2009:62-66.
    [105] Arnal R D, Fasson J, Bernard J, et al. Handover Management for HybridSatellite/Terrestrial Networks[C]//The4th International Conference onPersonal Satellite Services(PSATS2012). Bradford, United Kingdom: IEEE,2012:9.
    [106] Muhammad A, Prashant P, Yim H. Common RRM in Satellite-TerrestrialBased Aeronautical Communication Networks[C]//The Third InternationalICST Conference(PSATS2011). Malaga, Spain: IEEE,2011:328-341.
    [107] Shin M, Park M, Oh D, et al. Practical Vertical Handover Mechanismsbetween Satellite and Terrestrial Networks[C]//The Third Conference onSmart Spaces (NEW2AN2010). Petersburg, Russia,2010:353-364.
    [108] Buburuzan T, May G, Melia T, et al. Integration of Broadcast Technologieswith Heterogeneous Networks-An IEEE802.21Centric Approach. Consumer Electronics[C]//The15th International Conference on Computersin Education (ICCE2007). Hiroshima, Japan: IEEE,2007:1-2.
    [109]宁磊.星地一体化网络中多属性决策切换算法研究[D].哈尔滨:哈尔滨工业大学,2012:35-43.
    [110] Ning L, Wang Z, Yang M, et al. Vertical Handoff Decision AlgorithmTowards User Experience and Speed Perception[J]. Journal of HarbinInstitute of Technology,2013,45(9):1-6.
    [111] Yan X, Ahmet S Y, Narayanan S. A Survey of Vertical Handover DecisionAlgorithms in Fourth Generation Heterogeneous Wireless Networks[J].Computer Networks,2010,54(11):1848-1863.
    [112] Igor B B, Stefano D, Fabio L, et al. Performance Evaluation of NetworkSelection Algorithms for Vertical Handover Procedures overSatellite/Terrestrial Mobile Networks[C]//The Sixth International Conferenceon Advances in Satellite and Space Communications(SPACOMM2014).Nice, France: IEEE,2014:47-52.
    [113]黄飞,许辉,周恒,等. LEO卫星通信中基于服务质量的综合加权接入策略[J].电子与信息学报,2008,30(10):2411-2414.
    [114] Na Z, Wang Z, Guo Q, et al. A Call Admission Control Algorithm Based onUtility Fairness for Low Earth Orbit Satellite Networks[C]//IEEEInternational Conference on Communications(ICC'08). Beijing, China,2008:2835-2839.
    [115]杨森.异构无线网络垂直切换关键技术研究.解放军信息工程大学[M].2010:89-95.
    [116] Wiesel A, Eldar Y, Shamai S. Zero-Forcing Precoding and GeneralizedInverses[J]. IEEE Transactions on Signal Processing,2008,56(9):4409-4418.
    [117] Boccardi F, Huang H. Zero-Forcing Precoding for the MIMO BroadcastChannel under Per-Antenna Power Constraints[C]//Signal ProcessingAdvances in Wireless Communications(SPAWC '06). Cannes, France: IEEE,2006:1-5.
    [118]3GPP. E-UTRA: Further Advancements for E-UTRA Physical LayerAspects[R]. TR36.814Std. R.,2010.
    [119] Arnold O, Richter F, Fettweis G, et al. Power Consumption Modeling ofDifferent Base Station Types in Heterogeneous Cellular Networks[J]. FutureNetwork and Mobile Summit,2010:1-8.
    [120] Desset C, Debaillie B, Giannini V, et al. Flexible Power Modeling of LTEBase Stations[C]//Wireless Communications and Networking Conference(WCNC2012). Paris, France: IEEE,2012:2858-2862.
    [121] Auer G, OB V, Giannini O, et al. D2.3: Energy Efficiency Analysis of theReference Systems, Areas of Improvements and Target Breakdown[R].INFSO-ICT-247733Earth (Energy Aware Radio and NeTwork TecHnologies),Tech. Rep.,2012.
    [122] Texas Instruments. TLK6002: Dual Channel0.47Gbps to6.25GbpsMulti-Rate Transceiver[R]. Texas Instruments SLLSE34A Rev. A,2010.
    [123] Avago Technologies. Digital Diagnostic SFP,850nm3.072/2.4576Gb/s,RoHS OBSAI/CPRI Compatible Optical Transceiver[R]. Avago TechnologiesAFBR-57J5APZ,2013.
    [124] Anwar J, Anwar A, Yousef H. Wideband Modeling of Land-Mobile-SatelliteChannel in Built-Up Environment[J]. Journal of Electromagnetic Analysisand Applications,2012,4(3):101-107.
    [125]丁丁. LEO卫星网络呼叫允许控制及切换管理机制研究[D].长沙:国防科学技术大学.2010:7-10.
    [126]厉莉.具有优先权的多服务台排队模型[D].南京:江苏大学.2006:23-29.
    [127] Enrico D. Characterization of User Mobility in Low Earth Orbit MobileSatellite Systems[J]. Wireless Networks,2000(6):165-179.
    [128] Li W, Xu C. Modeling and Performance Evaluation of a Cellular MobileNetwork[J]. IEEE/ACM Transactions on Networking,2004,12(1):131-145.
    [129]杨斌何,靳瑾,徐广涵. LEO卫星通信系统覆盖时间和切换次数分析[J].电子与信息学报,2014,36(4):804-809.
    [130]3GPP. HNB and HNB-Macro Propagation Models[R]. R4-071617G,2007.
    [131] Camerer K. Reputation and Corporate Strategy: A Review of Recent Theoryand Applications[J]. Strategic Management Journal,1988,9(5):443-454.
    [132] Kamvar M, Garcia H. The Eigen Trust Algorithm for ReputationManagement in P2P Networks[C]//The12th international conference onWorld Wide Web. Budapest, Hungary: IEEE,2003:640-651.
    [133] Song S, Hwang K, Zhu R, et al. Trusted P2P Transactions with FuzzyReputation Aggregation[J]. IEEE Internet Computing,2005,9(6):24-34.
    [134] Ormond O, Murphy J, Muntean G. Utility-based Intelligent NetworkSelection in Beyond3G Systems[C]//IEEE International Conference onCommunications(ICC'06). Istanbul, Turkey: IEEE,2006:1831-1836.
    [135] Vu L H, Hauswirth M, Aberer K. QoS-Based Service Selection and Rankingwith Trust and Reputation Management[C]//International Conference onCooperative Information Systems(CoopIS2005). Agia Napa, Cyprus: IEEE,2005:466-483.
    [136] Yao W, Vassileva J. A Review on Trust and Reputation for Web ServiceSelection. Distributed Computing Systems[C]//The27th InternationalConference on Digital Object Identifier(ICDCSW'07). Toronto, Canada:IEEE,2007:25-34.
    [137] Sharna S A. Adaptive Weight Factor Estimation from User Preferences forVertical Handoff Decision Algorithms[C]//IEEE Wireless Communicationsand Networking Conference(WCNC2011). Cancun, Mexico,2011:1143-1148.
    [138] Stevens E, Wong S. Comparison between Vertical Handoff DecisionAlgorithms for Heterogeneous Wireless Networks[C]//The63rd IEEEVehicular Technology Conference(VTC2006Spring). Melbourne, Australia:IEEE,2006:947-951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700