用户名: 密码: 验证码:
基于SDG模型的故障诊断及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产特别是流程工业中,在进行故障诊断研究时,存在着难以建立精确定量模型的困难,利用检测变量残差的方法进行故障诊断也存在许多困难。根据过程的作用机理和元素关系建立反映系统深层知识的定性模型,如符号定向图(SDG),然后与其它的定量方法相结合,研究基于SDG模型的半定量故障诊断方法,不失为一种新途径。然而,SDG模型的理论及其在流程工业中的应用还有很多问题有待解决,包括SDG的建模方法、推理机制、与定量算法的融合等。论文以流程工业的SDG模型建模和基于SDG模型的故障诊断方法为研究重点,主要研究四个问题:
     (1)深入分析了SDG模型的特性,利用微分代数方程,论证了SDG模型是一个具有线性初始响应的定性模型,研究了流程工业SDG模型中由于负反馈和前馈导致的补偿响应和逆响应对基于SDG模型的故障诊断的影响,即其对相容路径的破坏,采用矩阵理论给出了SDG模型的数学描述。(2)研究了SDG模型的建立方法,论证了模型驱动的SDG节点信息和数据驱动的趋势信息的互补关系,采用趋势分析方法,利用关联节点趋势来建立SDG模型,并研究了基于趋势分析和SDG模型的定性故障诊断方法。(3)研究了基于SDG模型的半定量故障诊断方法,采用数据融合方法处理SDG模型及其样本之外的定量信息,一是利用模糊融合的方法,在故障逆向搜索过程中由节点的定量信息表示故障传播几率并进行半定量推理,二是利用信息融合的方法,融合初始响应的动态信息和最终响应的状态信息得到可能故障集;此外,在SDG模型数学描述的基础上采用Bayes理论研究了多源故障诊断。(4)将基于SDG模型的半定量故障诊断方法应用于“铝电解槽智能健康诊断系统”。
     通过理论分析和实例与应用研究表明,论文对SDG模型的特性分析符合流程工业实际,所提出的SDG建模方法能够克服阈值敏感性,可建立较为准确的定性模型,基于SDG模型的模糊融合和信息融合半定量推理方法可以在推理过程中处理定量信息,提高了基于SDG模型的故障诊断的分辨率,从而建立了适于流程工业的基于SDG模型的故障诊断框架。
When fault diagnosis is studied in industry, especially in process industry, it is difficult to build precise quantitative models and diagnose faults by variable residual detection. According to function mechanism and unit relationships of the processes, qualitative models are built which reflect deep knowledge of systems, such as signed directed graph (SDG). Combined with other quantitative methods, SDG-based method is a new approach to study quasi-quantitative fault diagnosis. Yet there are many problems not resolved in the theory of SDG and its application in process industry, including modeling method, inference mechanism, fusion with quantitative methods, etc. The focuses of this dissertation are on the methods of SDG modeling in process industry and SDG-based fault diagnosis, and four problems are studied as below.
     (1) The characters of SDG model are deeply analyzed. It is demonstrated that SDG is a linear qualitative model of initial response by differential algebraic equation. Then the influences of compensatory response and inverse response caused by negative feedback and feed forward in SDG model are analyzed, which destroy the consistent path. In addition, the mathematic description of SDG model by matrices is given. (2) SDG modeling method is studied. The complementary relationship of node information in model-driven SDG and trend information in data-driven trend analysis is illuminated. Then SDG model is built by trend analysis to associate node trends and meanwhile the qualitative fault diagnosis method based on trend analysis and SDG is proposed. (3) The method of quasi-quantitative fault diagnosis based on SDG is studied. Quantitative information not in SDG model and its sampling is processed by data fusion. One is to calculate fault propagation probabilities according to node quantitative information by fuzzy fusion in inverse inference. Another is to fuse dynamic information of initial response and state
引文
[1] Venkat V, Raghunathan R, Kewen Y, et al. A review of process fault detection and diagnosis Part I: quantitative model-based methods. Computers and Chemical Engineering, 2003, 27(3): 293~311
    [2] Venkat V, Raghunathan R, Kewen Y, et al. A review of process fault detection and diagnosis Part II: qualitative models and search strategies. Computers and Chemical Engineering, 2003, 27(3): 313~326
    [3] Venkat V, Raghunathan R, Kewen Y, et al. A review of process fault detection and diagnosis Part III: process history based methods. Computers and Chemical Engineering, 2003, 27(3): 327~346
    [4] Vedam H, Venkatasubramanian V. Signed digraph based multiple fault diagnosis. Computers and Chemical Engineering, 1997, 21(Suppl. 1): S655-S660
    [5] 张贝克. SDG(符号有向图)实时推理机制、图形化软件平台及安全工程应用研究:[博士学位论文]. 北京:北京化工大学,2004
    [6] Umeda T, Kuriyama T. A graphical approach to cause and effect analysis of chemical processing systems. Chemical Engineering Science, 1980, 35(12): 2379~2388
    [7] Lapp S, Powers G. Computer-aided synthesis of fault-trees. IEEE Transactions on Reliability, 1977, 26(2): 2~12
    [8] Iri M, Aoki K, O’Shima E, et al. An algorithm for diagnosis of system failures in the chemical process. Computers and Chemical Engineering, 1979, 3(1-4): 489-493
    [9] Shiozaki J, Matsuyama H, O’Shima E, et al. An improved algorithm for diagnosis of system failures in the chemical process. Computers and Chemical Engineering, 1985, 9(3): 285~293
    [10] Shiozaki J, Matsuyama H, Tano K, et al. Fault diagnosis of chemical processes by the use of signed, directed graphs. Extension to five-range patterns of abnormality. International Chemical Engineering, 1985, 25(4): 651~659
    [11] Tsuge Y, Shiozaki J, Matsuyama H, et al. Feasibility study of a fault-diagnosis system for chemical plants. International Chemical Engineering, 1985, 25(4): 660~667
    [12] Kramer M, Palowitch B. A rule-based approach to fault diagnosis using the signed directed graph. American Institute of Chemical Engineers Journal, 1987, 33(7): 1067~1078
    [13] Kokawa M, Satoshi M, Shigai S. Fault location using digraph and inverse direction search with application. Automatic, 1983, 19(6): 729~735
    [14] Shiozaki J, Shibata B, Matsuyama H, et al. Fault diagnosis of chemical processes utilizing signed directed graphs-improvement by using temporal information. IEEE Transactions on Industrial Electronics, 1989, 36(4): 469~474
    [15] Oyeleye O, Kramer M. Qualitative simulation of chemical process systems: steady state analysis. American Institute of Chemical Engineers Journal, 1988, 34(9): 1441~1454
    [16] Chang C, Yu C. On-line fault diagnosis using the signed directed graph. Industrial and Engineering Chemistry Research, 1990, 29(7): 1290~1299
    [17] Chang C. Online fault diagnosis using improved SDG. Taipei, Taiwan: National Taiwan Institute of technology, 1988.
    [18] Wilcox N, Himmelblau D. Possible cause and effect graph (PCEG) model for fault diagnosis I. Methodology. Computers and Chemical Engineering, 1994, 18(2): 103~116
    [19] Wilcox N, Himmelblau D. Possible cause and effect graph (PCEG) model for fault diagnosis II. Application. Computers and Chemical Engineering, 1994, 18(2): 117~127
    [20] Han C, Shih R, Lee L. Quantifying signed directed graphs with the fuzzy set for fault diagnosis resolution improvement. Industrial and Engineering Chemistry Research, 1994, 33(8): 1943~1954
    [21] Shih R, Lee L. Use of fuzzy cause-effect diagraph for resolution fault diagnosis for process plants I. Fuzzy cause-effect digraph. Industrial and Engineering Chemistry Research, 1995, 34(5): 1688~1702
    [22] Shih R, Lee L. Use of fuzzy cause-effect diagraph for resolution fault diagnosis for process plants II. Diagnosis algorithm and applications. Industrial and Engineering Chemistry Research, 1995, 34(5): 1703~1717
    [23] Yu C, Lee C. Fault diagnosis based on qualitative/quantitative Process knowledge. American Institute of Chemical Engineers Journal, 1991, 37(4): 617~628
    [24] Wang X, Yang S A, Yang S H, et al. The application of fuzzy qualitative simulation in safety and operability assessment of process plants. Computers and Chemical Engineering, 1996, 20(Suppl. pt A): S671~S676
    [25] Tarifa E, Scenna N. Fault diagnosis, direct graphs, and fuzzy logic. Computers and Chemical Engineering, 1997, 21(Suppl. 1): S649~S654
    [26] Kim H, Lee K. Fuzzy implications of fuzzy cognitive map with emphasis on fuzzy causal relationship and fuzzy partially causal relationship. Fuzzy Sets and Systems, 1998, 97(3): 303~313
    [27] Wang X, Yang S, Veloso E, et al. Qualitative process modeling - a fuzzy signed directed graph method. Computers and Chemical Engineering, 1995, 19(Suppl.): S735~S740.
    [28] Genovesi A, Harmand J, Steyer J P. A fuzzy logic based diagnosis system for the online supervision of an anaerobic digestor pilot-plant. Biochemical Engineering Journal, 1999, 3(3): 171~183.
    [29] Li R, Wang X. Qualitative/quantitative simulation of process temporal behavior using clustered fuzzy digraphs. American Institute of Chemical Engineers Journal, 2001, 47(4): 906~919.
    [30] Venkatasubramanian V, Zhao J, Viswanathan S. Intelligent system for HAZOP analysis of complex process plants. Computers and Chemical Engineering, 2000, 24(9): 2291~2302
    [31] Mylaraswamy D, Venkatasubramanian V. A hybrid framework for large scale process fault diagnosis. Computers and Chemical Engineering, 1997, 21(Suppl. 1): S935~S940
    [32] Dash S, Venkatasubramanian V. Challenges in the industrial applications of fault diagnostic systems. Computers and Chemical Engineering, 2000, 24(2): 785~791
    [33] Vaidhyanathan R, Venkatasubramanian V. Experience with an expert system for automated HAZOP analysis. Computers and Chemical Engineering, 1996, 20(Suppl. pt B): S1589-S1594
    [34] Vedam H, Venkatasubramanian V. Signed digraph based multiple fault diagnosis. Computers and Chemical Engineering, 1997, 21(Suppl. 1): S655~S660
    [35] Chung H, Bien Z, Park J, et al. Incipient multiple fault diagnosis in real time with application to large-scale system. IEEE Transactions on Nuclear Science, 1994, 41(4): 1692~1703.
    [36] Zhang Z Q, Wu C G, Zhang B K, et al. SDG multiple fault diagnosis by real-time inverse inference. Reliability Engineering and System Safety, 2005, 87(2): 173~189.
    [37] Vedam H, Venkatasubramanian V. PCA-SDG based process monitoring and fault diagnosis. Control Engineering Practice, 1999, 7(7): 903~917
    [38] Wang H, Song Z H, Wang H. Statistical process monitoring using improved PCA with optimized sensor locations. Journal of Process Control, 2002, 12(6): 735~744
    [39] Maurya M R, Rengaswamy R, Venkatasubramanian V. A systematic framework for the development and analysis of signed digraphs for chemical processes. I. Algorithms and analysis. Industrial and Engineering Chemistry Research, 2003, 42(20): 4789~4810
    [40] Maurya M R, Rengaswamy R, Venkatasubramanian V. A systematic framework for the development and analysis of signed digraphs for chemical processes. II. Control loops and flowsheet analysis. Industrial and Engineering Chemistry Research, 2003, 42(2): 4811~4827
    [41] 黄卫东,王克昌. 基于定性和定量关系的液体火箭发动机故障诊断. 航空动力学报,1996,11(3):281~284
    [42] 黄卫东,王克昌. 基于深层知识规则的液体火箭发动机故障诊断. 宇航学报,1997,18(4):61~65
    [43] 刘洪刚,吴建军,陈小前,等. 基于 SDG 的智能故障诊断方法研究. 系统工程与电子技术,2002,24(1):103~109
    [44] 王文辉,周东华. 基于定性和半定性方法的故障检测与诊断技术. 控制理论与应用,2002,19(5):653~666
    [45] Lakshmanan K B, Rosenkrantz D J, Ravi S S. Alarm placement in systems with fault propagation. Theoretical Computer Science, 2000, 243(1-2): 269~288
    [46] Yang D, Yamane Y. Multi-sensor data fusion and its application to industrial control. SICE 2000, Iizuka: 2000. 215~220
    [47] Ma B. Parametric and nonparametric approaches for multisensor data fusion: [PhD thesis]. Michigan: The University of Michigan, 2001
    [48] Kokar M, Kim K. Review of multisensor data fusion architectures and techniques. The 1993 International Sympoalum on Intelligent Control, Chicago: 1993. 261~266
    [49] Bedworth M. Source diversity and feature-level fusion. Defence Evaluation and Research Agency, Worcestershire: 1999.
    [50] Bedworth M, Brien J. The omnibus model:a new model of data fusion. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(4): 30~36
    [51] Alford G, Varshney K. A layered architecture for multisensor data fusion systems,Conference Record of the Asilomar Conference on Signals, Systems and Computers, 1999, 1: 416~419
    [52] 刘同明,夏祖勋,解洪威. 数据融合技术及应用. 北京:国防工业出版社,1998. 1~16
    [53] Luo R, Kay M. Data fusion and sensor integration. In: Abidi M, Gonzalez R, eds. Data Fusion in Robotics and Machine Intelligence. Academic Press,1992. 7~135
    [54] Varshney P K, Multisensor data fusion. Electronics and Communication Engineering Journal, 1997, 9(6): 245~253
    [55] 滕召胜,罗隆福,童调生. 智能检测系统与数据融合. 北京:机械工业出版社,2000. 1~8
    [56] Viswanathan R, Varshney P. Distributed detection with multiple sensors: Part I. proceeding of the IEEE, 1997, 85(1): 54~63
    [57] Blum R,Varshney P. Distributed detection with multiple sensors: Part II,proceeding of the IEEE, 1997, 85(1): 64~79
    [58] Luo R. Dynamic multisensor data fusion system for intelligent robots. IEEE Journal of Robotics and Automation, 1989, 4(4): 386~396
    [59] Nadig D, Iyengar S, Jayasimha, D. New architecture for distributed sensor integration. Conference Proceedings - IEEE SOUTHEASTCON, 1993.
    [60] Jayasimha D, Iyengar S, Kashyap R. Information integration and synchronization in distributed sensor networks. Systems, Man and Cybernetics, IEEE Transactions, 1991, 21(5): 1032~1043
    [61] Mallick M, Coraluppi S, Carthel C. Advances in asynchronous and decentralized estimation. Aerospace Conference, IEEE Proceedings, 2001, 4(4): 1873~1888
    [62] Chatterjee P, Huntsbereer T. Comparison of techniques for sensor fusion under uncertain conditions. SPIE, 1988, 1005: 194
    [63] Varshney P. Distributed detection and data Fusion. New York: Springer, 1997.
    [64] Hanebeck U, Horn J. Fusing information simultaneously corrupted by uncertainties with known bounds and random noise with known distribution. Information Fusion, 2000, 1: 55~63
    [65] Delic H. Distributed weak signal detection and asymptotic relative efficiency in dependent noise. Signal Processing, 1999, 77(3): 335~342
    [66] Nguyen H. Uncertain if-then rules based on mathematical conditionals. IEEE International Conference on Fuzzy Systems, 1992: 39~46
    [67] Rao N. Multiple sensor fusion under unknown distributions. Journal of the Franklin Institute, 1999, 336: 285~299
    [68] Rao N. Fusion method for physical systems based on physical laws. ISIF 2000: 15~21
    [69] Shafer G. A mathematical theory of evidence. Princeton University Press, 1976.
    [70] Fabre S, Appriou A, Briotter X. Presentation and description of two classification methods using data fusion based on sensor management. Information Fusion, 2001, 2: 49~71
    [71] Salzenstein F, Boudraa A. Unsupertvised Multisensor data fusion approach. ISSPA, 2001: 152~155
    [72] Dubols D, Prade H. Possibility theory:an approach to computerized processing of uncertainty. New York: Plenum, 1988.
    [73] Stover J, Hall D. A fuzzy-logic architecture for autonomous multisensor data fusion. IEEE Transactions on Industrial Electronics, 1996, 43(3): 403~410
    [74] Prajitno P, Mort N. A fuzzy model-based multisensor data fusion system. Proceedings of SPIE, 2001, 4385: 301~312
    [75] Salam F, Erten G. Sensor fusion by principal and independent component decomposition using neural network. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 1999: 211~215
    [76] Khan A, Zohdy M. A genetic algorithm for selection of noisy sensor data in multisensor data fusion. Proceeding of the American Control Conference, 1997, 4: 2256~2262
    [77] Glockner I, Knoll A. A framework for evaluating fusion operators based on the theory of generalized quantifiers. International Conference on Multisensor Fusion and Intelligent Systems, 1999: 129~134
    [78] Zhang Z, Sun S. Multisensor data fusion based on the fuzzy neural network in nondestructive testing. The 6th IEEE International Conference on Electronics, Circuits and Systems, 1999, 2: 705~708
    [79] Li Y, Jiang J P. The integrated methodology of rough sets theory, fuzzy logic and genetic algorithms for multisensor fusion. Proceedings of the American Control Conference, 2001, 6: 4416~4421
    [80] Gan Q, Harris C. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion. IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(1): 273~280
    [81] Sasiadek J, Hartana P. Sensor data fusion using Kalman filter. ISIF 2000: 19~25
    [82] Brooks R, Iyengar S. Multisensor fusion:fundamentals and applications with software. New. Jersey: Prentice Hall Inc., 1997.
    [83] Klein L, A Boolean algebra approach to multiple sensor voting fusion. IEEE Transaction on Aerospace and Electronic Systems, 1993, 29(2): 317~327
    [84] 夏佩伦,李满意,程俊. 多传感器信息的表决融合. 火力与指挥控制,1994,20(1):37~41
    [85] 李兆杰,郭呈贺,钱文瀚. 多传感器集成融合技术. 传感器技术,1996,(6):1~4
    [86] Hall D, Llinas J. Handbook of multisensor data fusion. Boca Raton, etc.: CRC press, 2001.
    [87] Prankel C, Bedworth M. Control, estimation and abstraction in fusion architectures: lessons from human information processing. ISIF 2000: 3~10
    [88] Brooks R, Iyengar S. Robust distributed computing sensing algorithm. IEEE Computer, 1996, 29(6): 53~60
    [89] Solaiman B. Information fusion concepts: from information elements definition to the application of fusion approaches. Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4385: 205~212
    [90] Mombot B, Choquel J. An entropy method for multisource data fusion. ISIF 2000: 17~22
    [91] Bloch I. Information combination operators for data fusion: a comparative review with classification. IEEE Transactions on Systems, Man and Cybernetics Part A:Systems and Humans, 1996,26(1): 52~67
    [92] 贾红丽,滕桂法. 运用故障传播图进行诊断推理的研究. 河北农业大学学报,1996,19(4):69~74
    [93] 吴军强,梁军. 基于图论的故障诊断技术及其发展. 机电工程,2003,20(5):188~190
    [94] Dennis M B. Convergence in problem Solving: a prelude to quantitative analysis. IEEE Transaction on Systems, Man, and Cybernetics, 1993, 23(3): 746~765
    [95] Jan M K, Andrzej O. Application of causal graph GP for description of diagnosed process. 879~884
    [96] Tarifa E E, Scenna N J. A methodology for fault diagnosis in large chemical process and an application to a multistage flash desalination process: Part I. Reliability Engineering and System Safety, 1998,60(1): 29~40
    [97] Chung H, Bien Z, et al. Incipient multiple fault diagnosis in real time application to large scale system. IEEE Transaction on Nuclear Science, 1994, 41(4): 1692~1703
    [98] Dash S, Rengaswamy R, Venkatasubramanian V. Fuzzy-logic based trend classification for fault diagnosis of chemical processes. Computers and Chemical Engineering, 2003, 27(3): 347~362
    [99] Dash S, Maurya M R, Venkatasubramanian V. A novel interval-halving framework for automated identification of process trends. American Institute of Chemical Engineers, 2004, 50(1): 149~162
    [100] 王文辉,周东华. 基于定性和半定性方法的故障检测与诊断技术. 控制理论与应用,2002,19(5):653~659
    [101] Combastel C, Gentil Syiviane, Regnon J P. A symbolic reasoning approach to fault detection and isolation applied to electrical machines. Proceedings of the 1998 IEEE International Conference on Control Applications, 1998, 1: 475~479
    [102] Tarifa E E, Scenna N J. A methodology for fault diagnosis in large chemical process and an application to a multistage flash desalination process: Part II. Reliability Engineering and System Safety, 1998, 60(1): 41~51
    [103] 边肇祺,张学工. 模式识别. 北京:清华大学出版社,2000.
    [104] Richardson J M. Fusion of multisensor data. The International Journal of Robotics Research, 1988, 7(6): 78~96
    [105] 李洪兴,汪培庄. 模糊数学. 北京:国防工业出版社,1994.
    [106] Marzullo K. Tolerating failure of continuous-valued sensors. ACM Transactions on Computer Systems, 1990: 284~304
    [107] Fassinut-Mombot B, Choquel J B. An entropy method for multisource data fusion. Proceedings of the Third International Conference on Information Fusion 2000, 2000:10~13
    [108] Guo D, Wang X D. Dynamic sensor collaboration via sequential Monte Carlo. IEEE Journal on Selected Areas in Communications, 2004, 22(6): 1037~1047.
    [109] Hall D L, Llinas J. An introduction to multisensor data fusion. Proceedings of the IEEE, 1997, 85(1): 6~23
    [110] Wen C L. Multiscale data fusion for multi-sensor single model dynamic systems. Acta Electronica Sinica, 2001,29(3): 341~345.
    [111] Luo R C, Kay M G. Multisensor integration and fusion in intelligent systems. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5):901~931.
    [112] Chung A C S, Shen H C. Integrating dependent sensory data. Proceedings - IEEE International Conference on Robotics and Automation, 1998,4 : 3546~3551
    [113] 李圣怡,吴学忠,范大鹏. 多传感器融合理论及在智能制造系统中的应用. 长沙:国防科技大学出版社,1998. 119~225
    [114] Chung A C S, Shen H C, Basir O A. Decentralized approach to sensory data integration. IEEE International Conference on Intelligent Robots and Systems, 1997, 3 : 1409~1414.
    [115] Shiozaki J, Shibata B, Matsuyama H, et al. Fault diagnosis of chemical processes utilizing signed directed graphs—improvement by using temporal information. IEEE Transactions on Industrial Electronics, 1989, 36(4): 469~474
    [116] Huallpa B N, Nóbrega E, Von Zuben F J. Fault detection in dynamic systems based on fuzzy diagnosis. The 1998 IEEE International Conference on Fuzzy Systems, 1998, 2: 1482~1487
    [117] Tu F, Pattipati K, Deb S, et al. Multiple fault diagnosis in graph-based systems. SPIE Conference on Fault Diagnosis, Prognosis and System Health Management. Orlando, Florida: SPIE press, 2002.
    [118] 李民军,李劼,邹忠,等. 铝电解模糊专家控制器的开发与应用. 中南工业大学学报,1999,30(6):558~561
    [119] 邱竹贤. 铝电解. 北京:冶金工业出版社,1982.
    [120] 张稳. 浅谈我国电解铝工业现状. 有色金属设计,2004,31(2):66~68
    [121] 屠海令,赵国权,郭青蔚. 有色金属冶金、材料、再生与环保. 北京:化学工业出版社,2003.
    [122] 刘敏华,萧德云. 铝电解槽氧化铝浓度模糊控制. 高技术通讯,2005,15(6):34~37
    [123] 段新生. 证据理论与决策、人工智能. 北京:中国人民大学出版社,1993. 16~23
    [124] 毕巍强. 全球变化研究中的数据融合. 地学前缘,2002,9(2):387~391
    [125] Ramanna S. Rough sets and current trends in computing. Third International Conference on RSCTC. Malvern: Springer-Verlag GmbH, 2002. 602~609
    [126] Kivikunnas S. Overview of process trend analysis method and applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700