用户名: 密码: 验证码:
曲面零件连续成形的理论与数值模拟研究及控制软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲面零件具有质量轻、流线型好、承载能力强等特点,被广泛应用于工业生产的各个领域。随着经济的发展和社会的进步,对各种曲面件的需求开始从大批量单一产品向小批量或单件多样化的产品转变。模具成形是加工曲面零件的重要方法,但每一种零件都要开发相应的模具,并且模具的设计、调试周期长,尤其加工大型曲面件时,成形设备的体积大、制造成本高。因此,开展新的曲面件成形工艺研究具有重要的理论意义和实用价值。
     卷板成形是一种传统的连续成形方式,曲面连续成形将传统卷板成形的直辊用可弯曲的柔性辊代替,形成一种快速、高效的板料加工技术,适用于不同形状大型双曲度曲面件的成形。目前,曲面连续成形工艺虽然已有一定的研究工作,但在板料连续成形理论、成形曲面件的精度、数值模拟的有限元模型及成形过程控制等方面还有许多亟待解决的问题,迫切需要进一步深入研究,提高工程应用价值,以融入到现代制造业的行列中。本文通过对连续成形过程中板料双向弯曲变形的理论分析,建立了成形过程横向与纵向形状控制模型,并开发了成形过程控制软件。
     本文研究的主要内容和结论如下:
     1.根据板料连续成形的变形历史,对连续成形过程提出了一种平板横向弯曲与柱面纵向弯曲组合的曲面形成机制。板料连续成形时,在局部变形区先形成横向曲率变为柱面,再由上辊下压使柱面发生纵向弯曲变为双曲度曲面,并通过柔性辊滚动实现板料连续进给完成曲面件的成形。由此可见,曲面连续成形的最终曲率要综合考虑单向弯曲回弹及横向与纵向弯曲的相互影响。基于三种不同的材料模型,给出单向弯曲变形中弯矩与回弹比的计算公式。分析了连续成形过程中横向与纵向弯曲的相互影响,结果表明:纵向成形的曲率越大,对横向弯曲形成的附加弯矩越大,上辊下压前后横向曲率的变化值也就越大;横向弯曲对纵向曲率的影响主要体现在截面形状方面,不同的横向曲率形成不同的横截面形状,纵向压下量不变时在横截面上产生的弯矩和惯性矩不同,使纵向弯曲的相对回弹比随横向曲率的减小呈指数递减。
     2.描述了不同曲面件的连续成形原理。根据成形曲面的扫略特性,给出成形曲面的数学描述形式。基于横向回弹及纵向弯曲对横向曲率的影响,对横向目标截面线方程进行补偿,得到上、下柔性辊的轴线方程及每个控制点的调形量,建立了横向弯曲的形状控制模型。分析纵向滚弯成形过程中柔性辊与板料接触点和弯曲角的变化,考虑纵向回弹和横向曲率对纵向成形的影响,得到上辊下压量与成形目标曲率的关系式,建立了纵向弯曲的形状控制模型。采用本文建立的控制理论与方法进行数值模拟,成形的曲面件精度较高,验证了该方法的有效性。
     3.提出了一种连续柔性辊的有限元建模方法。连续柔性辊模型中接触方式为光滑曲线接触,避免压痕产生,提高了成形件的表面质量;应力、应变分布更加均匀;成形曲面件的精度较高。对柔性辊调形过程进行有限元仿真,分析控制点数量对调形形状及成形精度的影响,结果表明:控制点数量越多,调形形状越接近于目标形状,成形曲面件的精度也越高。给出了柔性辊调形误差的补偿方法,补偿后成形曲面件的精度提高,验证了补偿方法的可行性。
     4.分析了不同材料和板厚对柔性辊产生的作用力,结果表明:随着弹性模量和屈服强度的增加,板料对柔性辊的作用力提高,随着板厚的增加,对柔性辊的作用力也会增加,而且上辊受到的作用力要大于下辊。分析了材料性能、板厚、上辊下压量、柔性辊形状及下辊中心距对成形误差的影响规律,结果表明:横向与纵向成形误差随弹性模量的增加而减小;随板厚的增加而减小;随上辊压下量的增加而减小;随横向曲率半径的减小而减小;随下辊中心距的增加而增大。给出了横向与纵向弯曲的相互影响曲线,压下量不变时,横向曲率半径增加,纵向曲率半径有减小的趋势;柔性辊形状不变时,上辊压下量增大,横向曲率半径增加。
     5.基于给出的连续成形过程横向与纵向的控制理论与方法,在VC++平台开发了曲面连续成形过程的控制软件。该软件主要包括曲面造型模块、工艺参数设置模块、程序计算模块及图形显示模块。曲面造型模块可以实现NURBS曲面重构;工艺参数设置模块的功能是输入设备参数、材料力学性能及板料尺寸;程序计算模块能够根据目标曲面横向与纵向曲率,计算出上辊压下量及柔性辊上每个控制点的调形量;图形显示模块结合OpenGL库函数,用来虚拟显示曲面连续成形过程。
     6.开发了连续成形过程的计算机控制系统。应用该系统成形典型曲面件并与数值模拟件进行对比,实验结果与数值模拟结果吻合较好。采用数值模拟方法为部分正高斯曲率和负高斯曲率曲面件建立了控形数据库。通过连续成形过程控制系统实现了不同类型曲面件的成形,以鞍面件和凸面件为目标曲面件,分析成形件表面质量和成形精度,结果证明曲面连续成形工艺加工的曲面件质量和精度都符合要求。
The surface parts, which have the characteristics of light quality, good streamline, highbearing capacity, etc., are widely used in various industrial fields. With the development ofeconomy and the progress of society, the demand for surface parts shifts from mass productionfor single product to small batches or single-piece production for wide-variety of products. Dieforming is an important method for forming surface parts. However, each part needs a kind ofdie, and it has the disadvantages of long development and debugging cycle. When forminglarge scale surface parts, the volume of the die forming device is large and the manufacturingcosts are high. Therefore, it has great theoretical significance and utility value for studying thenovel surface parts forming technology.
     Roll bending is a traditional continuous forming method. Continuous forming employsthree flexible rolls instead of straight rolls of roll bending, which is a rapid and efficientforming technology. It is suitable for forming large scale parts with doubly curved surface. Theresearch on continuous forming has made some progress, but there are many urgent problemsto be solved. For improving the engineering application value, the continuous forming theory,accuracy of forming surface part, finite element model of numerical simulation and formingprocess control need to be further studied. In this paper, the double bending theory of sheetmetal in continuous forming process was analyzed, and the transverse and longitudinal shapecontrol models were established. Then, the control software of continuous forming process wasdeveloped.
     The main contents and conclusions in this paper are as follows:
     1. According to the deformation history of sheet metal in continuous forming process, thesurface forming mechanism was provided, which is a combination of flat plate transverselybending and cylindrical surface longitudinally bending. In continuous forming process, first thesheet metal is bent in transverse direction in local deformation region, then the sheet metal isbent in longitudinal direction by top roll, finally the sheet metal is changed into doubly curvedsurface part by the rotation of the flexible rolls. Therefore, the formed part needs to consider the one-direction springback and the influence between transverse and longitudinal bending. Basedon the three different material models, the bending moment and springback ratio of singlebending was given. The influence between transverse and longitudinal bending was analyzed.The results show that the difference of transverse radius before and after springback decreaseswith the decrease of longitudinal curvature, and the longitudinal relative springback ratio is anexponential decline curve with the increase transverse radius.
     2. The principle of continuous forming for different types of surface parts was described.According to the feature of swept surface, the mathematic equation of formed surface wasgiven. Based on the transverse springback and the influence of longitudinal bending ontransverse curvature, the axis equations of the top and bottom flexible rolls and the adjustingvalue of each control point can be obtained by compensating the equation of transverse sectionline of target surface, and then the transverse shape control model was established. Consideringthe unloading stage and the influence of transverse bending on longitudinal curvature, therelation between the downward displacement of top roll and the longitudinal target curvaturecan be acquired, and the longitudinal shape control model was established. The numericalsimulations were carried out by the control theory and method provided in this paper. It isfound that the quality and accuracy of the formed part is good.
     3. The modeling method with continuous flexible roll was put forward. The contact linebetween flexible rolls and sheet metal is smooth, which can avoid impression and improve thesurface quality. The distribution of stress and strain in that model is uniform, and the accuracyof the formed part is high. The flexible roll adjusting process was simulated, and the influenceof the number of control point on adjusting shape and forming precision were studied. Theadjusting shape approaches the target shape with the increase of the number of control point.And the forming precision also increases with the increase of the number of control point. Dueto the adjusting errors of flexible roll, a compensation method was proposed and the adjustingerrors decreased after compensation, which was verified through numerical simulations.
     4. The influence of different materials and thickness of sheet metal on reaction forces onflexible rolls was analyzed. The results show that the reaction forces on flexible roll increasewith the increase of the elastic modulus and yield strength of material and the plate thickness.The reaction forces on top flexible roll are larger than those on bottom flexible rolls. Theinfluence rules of material, plate thickness, downward displacement of top roll, shape offlexible roll and center distance between bottom rolls on forming accuracy of sheet metal werestudied. The results show that the forming errors decrease with the decrease of elastic module,decrease with increase of thickness of sheet metal, decrease with the decrease of the downwarddisplacement of top roll, decrease with the decrease of transverse radius of curvature andincrease with the increase of the center distance of the two bottom flexible rolls. The correlationship curve between transverse and longitudinal bending was obtained. When thedownward displacement of top roll remains the same, the longitudinal curvature increase withthe decrease of the transverse radius of curvature. When the shape of flexible roll remainsunchanged, the transverse radius of curvature increase with the increase of the downwarddisplacement of top roll.
     5. Based on the control theory and method established above, the continuous formingcontrol software is developed on VC++platform. The control software was divided into foursections: surface constructing module, parameter setting module, computing module and graphdisplaying module. The first module can reconstruct the target surface by importing the digitaldata points. The second module can be used for inputting the device parameters, materialproperty and dimension of sheet metal. The third module can calculate the downwarddisplacement of top roll and the adjusting value of each control point. The fourth module candisplay the continuous forming process with the help of OpenGL.
     6. The computer control system of continuous forming process was developed bycombining the control software with the experimental set. The numerical simulations andforming experiments of typical surface parts were carried out, and the results show that theexperimental results agree well with the simulated results. The shape control databases ofsurface parts with positive and negative Gaussian curvatures were established. The differenttypes of doubly curved surface parts were formed by continuous forming process controlsystem. The smoothness and dimensional accuracy of the saddle and torus surface parts wereanalyzed, and the results demonstrate that the surface quality and precision of surface partsformed by continuous forming technology meet the requirement.
引文
[1]赵军,马瑞.板材成形新技术及其发展趋势Ⅰ[J].金属成形工艺,2002,20(6):1-5.
    [2]赵军,马瑞.板材成形新技术及其发展趋势Ⅱ[J].金属成形工艺,2003,21(2):1-6.
    [3]徐刚,鲁洁,黄才元.金属板材冲压成形技术与装备的现状与发展[J].锻压装备与制造技术,2004,39(4):16-22.
    [4]王俊彪.材料的先进成形技术[M].北京:高等教育出版社,2002.
    [5]王少辉.多点拉形中局部变形与成形缺陷及其控制方法的数值模拟研究[D].长春:吉林大学,2011.
    [6]黄俊波,陈先有.飞机钣金零件的计算机辅助设计与制造[J].机械设计与制造,2008,2:83-85.
    [7]王新华.汽车冲压技术[M].北京:北京理工大学出版社,1999.
    [8]武兵书.中国模具工业的发展及现状[J].中国制造业信息化:应用版,2010,39(4):58-60.
    [9] Nan XR, Gao B, Wu BZ. Process Optimization for suction plastic forming of in-mold decoration plasticsheet with CAE[J]. Advanced Materials Research,2010,102-104:74-78.
    [10]王永锋,曹静,刘锐.中国汽车模具工业的现状与未来[J].现代零部件,2008(7):76-78.
    [11] Schützer K, Helleno A L, Pereria S C. The influence of the manufacturing strategy on the production ofmolds and dies[J]. Journal of Materials Processing Technology,2006,179(1-3):172-177.
    [12]汪骥.水火弯板自动化加工工艺的关键技术研究[D].大连:大连理工大学,2006.
    [13] J. Sawamura, Y. Tomita, N. Osawa, et al. Study on the combustion model and turbulent model forthermal flow analysis of impinging jet flame during line heating process[J]. Journal of the Society ofNaval Architects of Japan,2002,192(11):531-543.
    [14] T. Terasaki, K. Yamaguchi, T. Nomoto, et al. Study on transverse shrinkage and angular distortiongenerated by line heating[J]. Journal of the Society of Naval Architects of Japan,2003,193(6):65-74.
    [15] J.G. Shin, C.H. Ryu, J.H. Nam. A comprehensive line-heating algorithm for automatic formation ofcurved shell plates[J]. Journal of Ship Production,2004,20(2):69-78.
    [16] D.E. Hardt, W.A. Norfleet, V.M. Valentin, et al. In process control of strain in a stretch formingprocess[J]. Journal of Engineering Materials and Technology,2001,123(4):496-503.
    [17] B.T. Araghi, G.L. Manco, M. Bambach, et al. Investigation into a new hybrid forming process:Incremental sheet forming combined with stretch forming[J]. CIRP Annals-Manufacturing Technology,2009,58(1):225-228.
    [18]韩金全,万敏,袁胜,等.飞机复杂蒙皮拉形模具型面设计方法[J].北京航空航天大学学报,2008,34(11),1360-1363.
    [19] D.H. He, X.Q. Li, D.S. Li, et al. Process design for multi-stage stretch forming of aluminium alloyaircraft[J]. Transactions of Nonferrous Metals Society of China,2010,20(6):1053-1058.
    [20]周朝晖,蔡中义,李明哲.多点模具的拉形工艺及其数值模拟[J].吉林大学学报(工学版),2005,35(3):287-291.
    [21]蔡中义,张海明,李光俊,等.多点拉形数值模拟及模具型面补偿方法[J].吉林大学学报(工学版),2008,38(2):329-333.
    [22]陈雪.基于离散夹钳与多点模具的板材柔性拉形技术研究[D].长春:吉林大学,2011.
    [23]张昊晗.多辊下压式柔性拉形过程及其数值模拟研究[D].长春:吉林大学,2011.
    [24]彭赫力.柔性夹钳拉形过程及其数值模拟研究[D].长春:吉林大学,2013.
    [25] Cai ZY, Wang SH, Xu XD, et al. Numerical simulation of multi-point stretch forming process of sheetmetal[J]. Journal of Materials Processing Technology,2009,209(1):396-407.
    [26] Wang SH, Cai ZY, Li MZ. Numerical investigation of the influence of punch element in multi-pointstretch forming process[J]. International Journal of Advanced Manufacturing Technology,2010,49(5-8):475-483.
    [27]李国祥.喷丸成形[M].北京:国防工业出版社,1982.
    [28]曾元松.喷丸成形技术在民用飞机整体壁板研制中的应用[J].航空制造技术,2008(1):54-55.
    [29]曾元松,黄遐,李志强.先进喷丸成形技术及其应用与发展[J].2006,13(3):23-29.
    [30] A Friese. Metal Finishing News[J]. World’s largest shot peening machine installed at Airbus Plant,2004(5):189-220.
    [31]康小明.喷丸成形的数值模拟研究[D].西安:西北工业大学,1999.
    [32] Daly J J, Harrison J R, Hackel L A. New laser technology makes lasershotsmpeening commerciallyaffordable[C]. Proceedings of the7th International Conference on Shot Peening (ICSP-7), Warsaw,Poland,2000:379-386.
    [33]莫健华,韩飞.金属板材数字化渐进成形技术研究现状[J].中国机械工程,2008,19(4):491-497.
    [34] Amino H, Lu Y, Maki T, et al. Dieless NC forming, prototype of automotive service parts[C].Proceedings of2nd International Conference on Rapid Prototyping and Manufacturing, Beijing,2002:179-185.
    [35] Ambrogio G, Cozza V, Filice L, et al. An analytical model for improving precision in single pointincremental forming[J]. Journal of Materials Processing Technology,2007,191(1):92-95.
    [36] Micari F, Ambrogio G, Filice L. Shape and dimensional accuracy in single point increment forming:state of the art and future trends[J]. Journal of Materials Processing Technology,2007,191(1):390-395.
    [37] Tekkaya A E, Shankar R, Sebastiani G, et al. Surface reconstruction for incremental forming[J].Production Engineering,2007,1(1):71-78.
    [38]方刚.激光成形技术的特点及其应用[J].应用激光,2001,21(2):107-109.
    [39]季忠,刘庆斌,吴诗悖.金属薄板的激光成形技术[J].激光与光电子学进展,1995,11:24-25.
    [40]段园培,薛克敏,朱晓勇,等.多道次板料激光弯曲成形热力耦合有限元分析[J].应用激光,2006,26(6):419-412.
    [41]石经纬,李俐群,陈彦宾,等.多道次板料激光弯曲成形热力耦合有限元分析[J].中国激光,2007,34(9):1303-1307.
    [42] Scully K. Laser line heating[J]. Ship Production,1987,3(4):237-246.
    [43] Geiger M, Vollertsen F. The mechanism of laser forming[J]. CIRP Annuals,1993,42(1):301-304.
    [44] Kyrsanidi A K, Kermanidis T B. Numerical and experimental investigation of the laser formingprocess[J]. Journal of Materials Processing Technology,1999,87(1):281-290.
    [45] Kyrsanidi A K, Kermanidis T B, Pantelakis S G. An analytical model for the prediction of distortionscaused by the laser forming process[J]. Journal of Materials Processing Technology,2000,104(1):94-102.
    [46]汪华,周贤宾.飞机蒙皮多点成形用复合柔性垫层的结构参数优化[J].航空学报,2007,28(6):1482-1486.
    [47] D.E. Hardt, M.C. Boyce, K.B. Ousterhout, et al. CAD-driven flexible forming system forthree-dimensional sheet metal parts[C]. International Congress and Exposition,1993:69-76.
    [48] D.F. Walczyk, D.E. Hardt. Design and analysis of reconfigurable discrete dies for sheet metal forming[J].Journal of Manufacturing System,1998,17(6):436-454.
    [49] Li MZ, Cai ZY, Liu CG. Flexible manufacturing of sheet metal parts based on digitized-die[J]. Roboticsand Computer-Integrated Manufacturing,2007,23(1):107-115.
    [50] Cai ZY, Li MZ. Optimum path forming technique for sheet metal and its realization in multi-pointforming[J]. Journal of Materials Processing Technology,2001,110(2):136-141.
    [51] Li MZ, Cai ZY, Sui Z, et al. Multi-point forming technology for sheet metal[J]. Journal of MaterialsProcessing Technology,2002,129(1-3):333-338.
    [52] Cai ZY, Li MZ. Multi-point forming of three-dimensional sheet metal and the control of the formingprocess[J]. International Journal of Pressure Vessels and Piping,2002,79(4):289-296.
    [53] Cai ZY, Li MZ. Finite element simulation of multi-point sheet forming process based on implicitscheme[J]. Journal of Materials Processing Technology,2005,161(3):449-455.
    [54]李明哲,胡志清,蔡中义,等.自由曲面工件的连续高效塑性成形方法[J].吉林大学学报(工学版),2007,37(3):489-494.
    [55] Yang G, Mori K, Osakada K. Determination of forming path in three-roll bending using FEM simulationand fuzzy reasoning[J]. Journal of Materials Processing Technology,1994,45(1-4):161-166.
    [56] W.L. Hu, Z.R. Wang. Theoretical analysis and experimental study to support the development of a morevaluable roll-bending process[J]. International Journal of Machine Tools and Manufacture,2001,41(5):731-747.
    [57]闫静,王珉,左敦稳.异形截面管双轴柔性滚弯技术理论分析与试验研究[J].机械工程学报,2004,40(11):169-173.
    [58]刑伟荣.卷板机的现状与发展[J].锻压装备与制造技术,2010,45(2):10-16.
    [59] S. Roggendorff, J. Haeusler. Plate bending: three rolls and four rolls compared[J]. Welding and MetalFabrication,1979:353-357.
    [60]上海市造船公司国外资料编译组.国外造船设备选辑[M].上海:上海科学技术情报研究所,1974.
    [61]胡卫龙,王仲仁.各种卷板成形工艺的辊筒受力分析[J].锻压机械,1992(4):43-50.
    [62]胡卫龙.三辊卷板机新的驱动方式[J].锻压机械,1985(1):7-9.
    [63]胡卫龙.三辊卷板工作辊的受力计算[J].锻压技术,1987(3):37-39.
    [64]胡卫龙.水平下调式卷板机最佳弯边位置的确定[J].机械工艺师,1988(9):24-25.
    [65]胡卫龙.板材弯卷成形理论的研究进展[J].锻压技术,1991(2):40-45.
    [66]胡卫龙.板料在四辊卷板机上的弯卷成形[J].新技术新工艺,1987(6):19-20.
    [67]胡卫龙.立式卷板机的特点及板的弯曲成形方式[J].新技术新工艺,1988(3):12-13.
    [68]徐辅仁.船体板成形后曲率与三辊弯板机中心辊进给量的关系[J].中国造船,1991(1):85-100.
    [69]茅云生,侯磊,王呈方.板材滚弯成形的理论计算与自动控制模型[J].中国造船,2003,44(2):74-79.
    [70]茅云生,向胜,邵天芬.板材滚弯成形理论及自动控制的研究进展[J].船海工程,2001(6):28-31.
    [71]茅云生.板材滚弯时上辊下降值与成形曲率间关系的理论分析[J].武汉造船,1995(1):22-27.
    [72]舒东海,王呈方.三辊弯板机自动控制数学模型的探讨[J].造船技术,1994(6):19-21.
    [73]舒东海.三辊弯板机自动控制模型的建立与实验研究[D].武汉:武汉水运工程学院,1993.
    [74]斯厚达.滚弯成形薄板圈形零件的回弹分析与计算[J].机械工艺师,1994(10):31-32.
    [75] M. Hua, I.M. Cole, K. Baines, et al. A formulation for determining the single-pass mechanics of thecontinuous four-roll thin plate bending process[J]. Journal of Materials Processing Technology,1997,67(1-3):189-194.
    [76] M. Hua, K. Baines, I.M. Cole. Bending mechanisms, experimental techniques and preliminary tests forthe continuous four-roll plate bending process[J]. Journal of Materials Processing Technology,1995,48(1-4):159-172.
    [77]莫施宁.弯板机和矫正机[M].北京:机械工业出版社,1985.
    [78]格罗莫娃.成批生产中板材和型材零件的制造[M].北京:国防工业出版社,1964.
    [79] N.E. Hansen, O. Jannerup. Modeling of elastic-plastic bending of beams using a roller bendingmachine[J]. Journal of Engineering for Industry,1979,101:304-310.
    [80] E. Trostmann, N.E. Hansen, G. Cook. General scheme for automatic control of continuous bending ofbeams[J]. Journal of Dynamic Systems, Measurement, and Control,1982,104:173-179.
    [81] D.E. Hardet, M.A. Roberts, K.A. Stelson. Closed-loop shape control of a roll-bending process[J].Journal of Dynamic Systems, Measurement, and Control,1982,104:317-322.
    [82] M.M. Seddeik, J.B. Kennedy. Deformation in hollow structural section(HSS) member subjected tocold-bending[J]. International Journal of Mechanical Sciences,1987,29(3):195-212.
    [83] M Yang, S Shima. Simulation of pyramid type three-roll bending process[J]. International Journal ofMechanical Sciences,1988,30(12):877-886.
    [84] M Yang, S Shima, T Watanabe. Model-based control for three-roll bending process of channel bar[J].Journal of Engineering for Industry,1990,112(4):346-351.
    [85] A.H. Gandhi, H.K. Raval. Analytical and experimental modeling of top roller position for three-rollercylindrical bending of plates and its experimental verification[J]. Journal of Materials ProcessingTechnology,2008,197(1-3):268-278.
    [86]山下勇,加藤和典,遠藤順一.可撓ロールによる複曲面成形加工の研究(第1報可撓べンデイングロール機の試作)[C]日本塑性加工学会.第37回塑性加工連合講演会論文集,横浜,1986:345-348.
    [87]山下勇,加藤和典,遠藤順一.可撓ロールによる複曲面成形加工の研究(第3報成形形状に及ぼすロール幅の影響)[C]日本塑性加工学会.昭和63年度塑性加工春季講演会論文集,北九州,1988:505-508.
    [88] Yamakawa T, Yamashita I. Apparatus for forming plate with a double-cuved surface: United States,4770017[P].1988-9-13.
    [89] Kim T J, Yang D Y. Improvement of formability for the incremental sheet metal forming process[J].International Journal of Mechanical Sciences,2000,42(7):1271-1286.
    [90] Yoon S J, Yang D Y. Development of a highly flexible incremental roll forming process for themanufacture of a doubly curved sheet metal[J]. CIRP Annals-Manufacturing Technology,2003,52(1):201-204.
    [91] Yoon S J, Yang D Y. An incremental roll forming process for manufacturing doubly curved sheets fromgeneral quadrilateral sheet blanks with enhanced process features[J]. CIRP Annals-ManufacturingTechnology,2005,54(1):221-224.
    [92] Shim D S, Yang D Y, Kim K H, et al. Numerical and experimental investigation into cold incrementalrolling of doubly curved plates for process design of a new LARS (line array roll set) rolling process[J].CIRP Annals-Manufacturing Technology,2009,58(1):239-242.
    [93] Shim D S, Yang D Y, Kim K H, et al. Investigation into forming sequences for the incremental formingof doubly curved plates using the line array roll set (LARS) process[J]. International Journal of MachineTools&Manufacture,2010,50(2):214-218.
    [94]李明哲,胡志清,蔡中义,等.自由曲面工件多点连续成形方法[J].机械工程学报,2007,43(12):155-159.
    [95] D.J. Bammann, E.C. Aifantis. A model for finite-deformation plasticity[J]. Acta Mechanica,1987,69(1-4):97-117.
    [96] D.J. Benson, J.O. Hallquist. A simple rigid body algorithm for structural dynamics programs[J].International Journal for Numerical Methods in Engineering,1986,22(3):723-749.
    [97] K. Bathe, S. Bolourchi. A geometric and material nonlinear plate and shell element[J]. Computer andStructures,1980,11(1):23-48.
    [98] Y.T. Keum, E. Nakamachi, R.H. Wagoner, et al. Compatible description of tool surfaces and FEMmeshes for analyzing sheet forming operations[J]. International Journal for Numerical Methods inEngineering,1990,30(8):1471-1502.
    [99] H. Ameziane-Hassani, K.W. Neale. On the analysis of sheet metal wrinkling[J]. International Journal ofMechanical Sciences,1990,33(1):13-30.
    [100] K.W. Neale, P. Tugcu. A numerical analysis of wrinkle formation tendencies in sheet metals[J].International Journal for Numerical Methods in Engineering,1990,30(8):1595-1608.
    [101] P. Nordlund. Adaptivity and wrinkle indication in sheet metal forming[J] Computer Methods inApplied Mechanics and Engineering,1998,161(1):127-143.
    [102] P. Nordlund, B. Haggblad. Prediction of wrinkle tendencies in explicit sheet metal formingsimulation[J]. International Journal for Numerical Methods in Engineering,1997,40(22):4079-4095.
    [103] T.X. Yu, W. Johnson, W.J. Stronge. Stamping and springback of circular plates deformed inhemispherical dies[J]. International Journal of Mechanical Sciences,1984,26(2):131-148.
    [104] A.P. Karaffillis, M.C. Boyce. Tooling design in sheet metal forming using springback calculations[J].International Journal of Mechanical Sciences,1992,34(2):113-131.
    [105] H.S. Mehta, S. Kobayashi. Finite element analysis and experimental investigation of sheet metalstretching[J]. Journal of Applied Mechanics,1973,40:874-880.
    [106] A.S. Wifi. An incremental complete solution of the stretch forming and deep drawing of a circularblank using a hemispherical punch[J]. International Journal of Mechanical Sciences,1976,18(1):23-31.
    [107] P.V. Marcal, I.P. King. Elastic-plastic analysis of two dimensional systems by the finite elementmethod[J]. International Journal of Mechanical Sciences,1967,9(3):143-155.
    [108] O.C. Zinkiwicz, S. Valliappan, I.P. King. Ealsto-plastic solutions of engineering problems InitialStress finite element approach[J]. International Journal for Numerical Methods in Engineering,1969,1:75-100.
    [109] Y. Yamada, N. Yoshimura, T. Sakurai. Plastic stress-strain matrix and its application for the solution ofelastic-plastic problems by the finite element method[J]. International Journal of Mechanical Sciences,1968,10:343-354.
    [110] P.C. Galbraith, J.O. Hallquist. Shell element formulation in LS-DYNA3D: their use in the modeling ofsheet metal forming[J]. Journal of Materials Processing Technology,1995,50(1):158-167.
    [111] L. Bernspang, K. Mattiasson, E. Schedin, et al. Verification of an explicit finite element code for thesimulation of the press forming of rectangular boxes of coated sheet steels[J]. Journal of MaterialsProcessing Technology,1993,39(3):431-453.
    [112] Y. Nagai, K. Ito. An advanced analysis of axisymmetric plastic sheet bending including transverseshear deformation[J]. International Journal of Mechanical Sciences,1991,33(9):717-728.
    [113] M.J. Finn, P.C. Galbraith, L. Wu, et al. Use of a coupled explicit-implicit solver for calculatingspringback in automotive body panels[J]. Journal of Materials Processing Technology,1995,50(1):395-409.
    [114] L. Bernspang, T. Hammam, K. Mattiasson, et al.Verification of an explicit finite element code for thesimulation of the press forming of rectangular boxes of coated sheet steels[J]. Journal of MaterialsProcessing Technology,1993,39:431-453.
    [115] Y. Nagai, K. Ito. An advanced analysis of axisymmtric plastic sheet banding include transverse sheardeformation[J]. International Journal of Mechanical Sciences,1991,33:717-728.
    [116]钱直睿.多点成形中的几种关键工艺及其数值模拟研究[D].长春:吉林大学,2007.
    [117]胡平,卫教善.冲压成形模具分析软件—KMAS[J].模具制造,2004(6):9-11.
    [118]陈中奎,施法中,黄迪民.板材冲压成形过程有限元分析原型系统的开发[J].计算机辅助与制造,1999(6):44-46.
    [119]张凯峰.三维板壳成形过程的粘塑性有限元分析[C].中国机械工程学会锻压分会第六届学术年会论文集,北京,1995.
    [120]邵春雷,顾伯勤.利用ABAQUS/Explicit进行三辊弯板机板材成形数值模拟[J].石油化工设备,2006,35(2):62-65.
    [121]陈兰,张新洲,孙宇,等.大型船用卷板机卷板成形过程的数值模拟[J].锻压技术,2011,36(5):76-80.
    [122]陈兰,张新洲,孙宇,等.大型船用卷板机上辊挠曲变形预补偿研究[J].锻压技术,2011,36(4):92-96.
    [123]左敦稳,王珉,刘奎,等.双轴柔性滚弯技术的实验研究[J].南京航空航天大学学报,1998,30(5):473-479.
    [124]闫静,左敦稳,王珉.双轴柔性滚弯技术的有限元分析[J].机械科学与技术,2003,22(2):203-205.
    [125]胡军峰,杨建国,方洪渊,等.滚弯过程的三维动态仿真模拟[J].塑性工程学报,2005,12(3):51-55.
    [126] Z.K. Feng, H. Champliaud. Modeling and simulation of asymmetrical three-roll bending process[J].Simulation and Modelling Practice and Theory,2011,19(9):1913-1917.
    [127] Z.K. Feng, H. Champliaud. Three-stage process for improving roll bending quality[J]. Simulation andModelling Practice and Theory,2011,19(2):887-898.
    [128] J. Zeng, Z.H. Liu, H. Champliaud. FEM dynamic simulation and analysis of the roll-bending processfor forming a conical tube[J]. Journal of Materials Processing Technology,2008,198(1-3):330-343.
    [129] Ahmed, Ktari, Zied Antar, Nader Haddar, et al. Modeling and computation of the three-roller bendingprocess of steel sheets[J]. Journal of Mechanical Science and Technology,2012,26(1):123-128.
    [130]胡志清,李明哲,龚学鹏.三维曲面板类件的连续柔性成形技术研究[J].塑性工程学报,2008,15(1):51-54.
    [131]胡志清.连续多点成形方法、装置及成形实验研究[D].长春:吉林大学,2008.
    [132] Z.Q. Hu, M.Z. Li, Z.Y. Cai, et al. Continuous flexible forming of three-dimensional surface parts usingbendable rollers[J]. Materials Science and Engineering A,2009,49(1-2),234-237.
    [133]龚学鹏,李明哲,胡志清.三维曲面柔性卷板成形技术及其数值模拟[J].北京科技大学学报,2008,30(11):1296-1300.
    [134]龚学鹏,李明哲,胡志清.连续多点成形过程中应力应变场数值分析[J].北京理工大学学报,2008,28(12):1043-1047.
    [135]龚学鹏,李明哲,胡志清.使用可弯曲辊的三维曲面卷板成形过程数值模拟[J].吉林大学学报(工学版),2008,38(6):1310-1314.
    [136] X.P Gong, M.Z. Li, Z.Q. Hu, et al. Research on continuous multi-point forming technology forthree-dimensional sheet metal[J]. International Journal of Materials and Product Technology,2010,38(2-3):210-222.
    [137]龚学鹏,李明哲,胡志清.连续多点成形过程中起皱缺陷的有限元分析[J].机械工程学报,2010,46(22):31-35.
    [138]邓玉山,李明哲,龚学鹏.板厚对三维曲面柔性卷板成形过程影响的数值模拟研究[J].锻压技术,2010,35(4):36-39.
    [139]方建国.柔性卷板成形中起皱和端部效应的数值模拟研究[D].长春:吉林大学,2008.
    [140]张家宇.连续柔性成形的端部效应研究及数值模拟[D].长春:吉林大学,2012.
    [141] Y.W. Lan, Z.Y. Cai, M.Z. Li. Numerical simulation and test research of continuous flexible formingprocess for the spherical parts[J]. Advanced Materials Research,2001,291-294:269-272.
    [142]余同希,章亮炽.塑性弯曲理论及其应用[M].北京:科学出版社,1992.
    [143] TX Yu, LC Zhang. Plastic Bending: Theory and Applications[M]. Singapore: World ScientificPublishing Co. Pte. Ltd.,1996.
    [144] Gardiner F J. The springback of metals[J] Trans. ASME,1957,79(1):1-9.
    [145] Z. Marciniak, J.L. Duncan, S.J. Hu. Mechanics of Sheet Metal Forming[M].2nd Edition. London:Butterworth Heinemann Ltd.,2002.
    [146] William F. Hosford, Robert M. Caddell. Metal Forming Mechanics and Metallurgy[M].3rd Edition.Cambridge: Cambridge University Press,2007.
    [147]隋洲,蔡中义,李明哲.连续柔性成形纵向与横向曲率的相互影响[J].塑性工程学报,2013,20(1):117-120.
    [148] Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells[M].2nd Edition. New York:Engineering Societies Monographs,1959.
    [149]蔡中义,李明哲,兰英武,等.三维曲面零件连续成形的形状控制[J].吉林大学学报(工学版),2011,41(4):978-983.
    [150] Z.Y. Cai, Y.W. Lan, M.Z. Li, et al. Continuous sheet metal forming for doubly curved surface parts[J].International Journal of Precision Engineering and Manufacturing,2012,13(11):1997-2003.
    [151] Z.Y. Cai, Z. Sui, F.X. Cai, et al. Continuous flexible roll forming for three-dimensional surface part andthe forming process control[J]. International Journal of Advanced Manufacturing Technology,2013,66(1-4):393-400.
    [152] Z.Y. Cai, M.Z. Li, Y.W. Lan. Three-dimensional sheet metal continuous forming process based onflexible roll bending: Principle and experiments[J]. Journal of Materials Processing Technology,2012,212(1):120-127.
    [153]龚学鹏.三维曲面板类件的多点滚压成形研究[D].长春:吉林大学,2010.
    [154]曹金凤,石亦平. ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [155]何天淳,姚文斌.受扭钢丝软轴的强度及刚度计算[J].昆明理工大学学报,2000,25(4):50-55.
    [156] Karlsson H, Sorensen.ABAQUS/CAE User’s Manual[M]. Version6.4. ABAQUS, Inc.,2007.
    [157]陈喜悌.板材多点成形的起皱和回弹数值分析[D].长春:吉林大学,2004.
    [158]徐士良,孙甲松.软件技术基础教程[M].北京:人民邮电出版社,2002.
    [159]刘极峰.计算机辅助设计与制造[M].北京:高等教育出版社,2004.
    [160]李宗义,徐华.面向对象的滑动轴承设计专家系统[J].计算机辅助设计与制造,1996(4):19-21.
    [161]金涛,陈建良,童水光.逆向工程技术研究进展[J].中国机械工程,2002,13(16):1430-4136.
    [162]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2002.
    [163] D Jiang, LC Wang. An algorithm of NURBS surface fitting for reverse engineering[J]. InternationalJournal of Advanced Manufacturing Technology,2006,31(1-2):92-97.
    [164] Milroy M J, Bradley D, Vickers G W. Segmentation of a wrap-around model using an active contour[J].Computer-Aided Design,1997,29(4):299-320.
    [165]王兴波,李圣怡.自动计算NURBS初始权因子的方法[J].航空学报,2001,22(2):184-186.
    [166] Ma W, Kruth J P. Parameterization of randomly measured points for least square fitting of B-splinecurves and surfaces[J]. Computer-Aided Design,1995,27(9):663-675.
    [167] Piegl L, Tiller W. Parameterization for surface fitting in reverse engineering[J]. Computer-AidedDesign,2001,33(8):593-603.
    [168] Ma W, Kruth J P. NURBS curve and surface fitting for reverse engineering[J]. International Journal ofAdvanced Manufacturing Technology,1998,14(12):918-927.
    [169] Varady T, Martin R R, Cox J. Reverse engineering of geometric models: an introduction[J].Computer-Aided Design,1997,29(4):255-268.
    [170] Benkodblac Pál, Kós G, Várady T, et al. Constrained fitting in reverse engineering[J]. Computer AidedGeometric Design,2002,19(3):173-205.
    [171]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [172]贾红丽,汤正诠.双三次Bézier曲面片的光滑拼接[J].应用数学与计算数学学报,2001,15(1):91-96.
    [173]李明哲,蔡中义,李任君.基于弯曲辊轧制的曲面零件连续成形方法[J].机械工程学报,2012,48(14):44-49.
    [174]李任君,李明哲,薛鹏飞,等.板材曲面柔性轧制方法[J].吉林大学学报(工学版),2013,43(6):1529-1535.
    [175]李任君,李明哲.三维曲面连续柔性成形方法的进展[J].塑性工程学报,2013,20(5):111-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700