用户名: 密码: 验证码:
大空间建筑网架结构实用抗火设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大空间建筑作为公共建筑广泛应用的一种空间形式,其建筑骨骼——结构在火灾作用下的安全性是结构工程师必须考虑的问题。,应确定火灾作用中表征能量输出的温度场(非定场),然后再。目前,国内外对这两方面的研究或为空白或相当粗略。本文首先是研究用于大空间结构整体抗火计算与分析的温度场,提出大空间建筑火灾中空气升温的实用计算式;然后在实用计算式确定的空气升温条件下,得出有防火保护和无防火保护的钢构件升温简化计算方法,同时考虑火焰辐射引起的局部钢构件升温;由于钢构件的升温将导致钢材的材料性能变化和被约束构件的附加温度内力产生,因此,最后分析大空间建筑结构之一的正放四角锥网架在设定火灾作用下的结构反应,最终得到网架的实用抗火设计方法。具体的研究工作包括如下几个方面
     一、收集国内外对火灾特性的研究成果,充分认识火灾中空气升温的机理,确定用数值模拟方法预测建筑火灾中空气升温的温度场。
     二、确定大空间建筑火灾空气升温影响参数的定性变化规律,根据该参数变化规律,设计火灾场景,基于FDS非商业(美国NIST于2002年研发)火灾模拟计算机程序进行数值模拟实验。
     三、在对大空间建筑火灾中空气升温影响参数分析基础上,提出大空间建筑火灾中空气升温曲线的数学表达式,在大量数值模拟实验基础上,回归数学表达式中各项系数。得出实用大空间建筑火灾中空气升温计算分式,填补了目前研究中仅有小室火灾升温曲线,而无大空间建筑火灾升温曲线的空白。
     四,对于集总热容法建立钢构件的热平衡方程一般采用增量法求解的钢构件升温计算方法作进一步简化。将大空间建筑火灾下空气升温的实用计算方式导入基于集总热容法的钢构件热平衡方程,并对热平衡方程中各参数进行回归分析,得出有防火保护和无防火保护钢构件升温的简化计算方法。避免用增量法求解热平衡方程的繁琐。
     五、根据火焰的热物性(角系数、黑度)钢构件有效辐射表面系数概念,对集中热容法建立钢构件热平衡方程进行改进,通过对热平衡方程中的参数分析,提出不需考虑火焰辐射对钢构件升温影响的条件,在满足钢构件升温计算精度条件下,简化钢构件升温计算。
     六、基于通用有限元程序ANSYS对正放四角锥网架在恒载加温条件下的非线性结构(几何非线性,材料非线性)反应进行分析,模拟了在均匀温度场和非均匀温度场中,恒定加载下不同几何特性的正放四角锥网架整体结构反应,得到不同的参数条件下的正放四角锥网架在火灾中构件稳定破坏的临界温度T_(cr0)和整体结构丧失承载能力的临界温度T_(cr)。
     七、用有限元程序ANSYS进行网架在火灾中的结构全过程反应分析,得到不同参数条件下网架临界温度(T_(cr0)和T_(cr))值,在对影响T_(cr0)和T_(cr)的参数分析基础上确定网架的临界温度T_(cr0)和T_(cr)值的简化计算方法,进而提出大空间建筑网架结构实用抗火设计方法。
Large space building is widely used within public buildings. The fire safety of large space building structure must be researched by structural engineer. At first the temperature field which is attributed to energy dissipation must be determined, then analysis the behavior of large space structure imposed fire. However there is very limited research carried out. Researching temperature field used in large space structural design for fire safety, establishing utility temperature elevation empirical formula in large space fire, getting simply temperature calculation for protected or unprotected steel member based on utility temperature elevation empirical formula, considering local steel member elevated temperature by flame radiation are researched in this article. Because material properties may be changed with elevated temperature and internal strains may be induced by thermal expansion. As one of the large space structures regular pyramidic space structure behavior imposed design fire scenarios must be researched in order to get the utility method of fire resistance of regular pyramidic space structure. The specific works are outlined below.
     Based upon collected data of fire properties and recognized mechanics of elevated temperature in fire, estimated temperature field in building fire with arithmetic simulation can be gotten.
     The regularity of factor influencing elevated temperature of build fire must be obtained. Based upon the regularity of factor fire scenario can be designed. These scenarios may be simulated by computer programs "FDS" which use computational fluid dynamics researched by department of commerce of United States America in 2002.
     Simplified temperature variational field of large space fire through entire temperature elevation is established. Based on a great number of numerical experiments the mathematic model of temperature elevation in large space fire is presented . Finally, empirical formula of temperature elevation in large space fire is created, and the parameters of the empirical formula are fitted by regression analysis which fills up the space without the curve of temperature elevation in large space fire.
     The heat equilibrium equation based upon the lumped differential formulation usually be solved by iteration method. In order to simplify the iteration method The parameter of smoke temperature in heat equilibrium equation based upon the lumped differential formulation is substituted by the empirical formula of temperature elevation in large space fire, regression parameter, and analysis the parameters of heat equilibrium equation with regression method. Then the simplified analytical method to evaluate the temperatures of protected steel member and unprotected steel members can be obtained.
     The thermal properties parameters of flame (configuration factor、emissivity of the emitting surface、effective radiation area) are organized into heat equilibrium equation based upon the lumped differential formulation. The condition of neglected flame radiation in influencing elevated temperature of steel member can be gained by analyzed these thermal properties parameters of heat equilibrium equation based upon the lumped differential formulation.
     The geometrical nonlinearity and material nonlinearity behavior of regular pyramidic space structure under dead loading and elevated temperature is analyzed by the generic finite-element stress-analysis program "ANSYS". T_0 is the temperature at which member is buckling and T_(cr) is the temperature at which structure is failure . T_0 and T_(cr) can be gained by simulating the behavior of regular pyramidic space structures with diverse geometrical features under uniform and nouniform temperature field.
     The empirical value of T_0 and T_(cr) in varied condition can be gotten by analyzed the factors which influence the critical temperature (T_0 and T_(cr)) .If the empirical value of T_0 and T_(cr) are regarded as reference value, the T_0 and T_(cr) can be determined with interpolation method between these empirical values of T_0 and T_(cr)according to the geometrical feature of regular pyramidic space structure. If the time the structure load-bearing capacity lasting in the fire situation ruled by code and the smoke temperature in the same fire situation are presented, the T_0 and T_(cr) can be determined by the simplified analytical method to evaluate the temperatures of steel member. The T_0 and T_(cr) determined by the simplified analytical method to evaluate the temperatures of steel member is greater than the T_0 and T_(cr) determined with interpolation method between these empirical values of T_0 and T_(cr) according to the geometrical feature of regular pyramidic space structure, then structure is safety in fire,
引文
[1.1]Y.HE~*,I.MOORE,MLOUO & V.BECK.Doorway Calorimetry for Heat Release Measurement in Building Fires Combust.Sci.and Tech.1998,Vol.132,pp.365-389
    [1.2]Mingchun Luo,Yaping He & Vaughan Beck.Application of Field Model and Two-zone Model to Flashover Fires in a Full-scale Multi-room Single Level Building.Fire Safety Journal 29(1997)1-25
    [1.3]Yaping He,Anthony Fernando,Mingchun Luo.Determination of Interface Height from Measured Parameter Profile in Enclosure Fire Experiment.Fire Safety Journal 31(1998)
    [1.4]Mingchun Luo,Yaping He,and Vaughan Beck.A Comparison of Existing Fire Model Prediction with Experimental Results from Real Fire.Scenarios Journal of Applied Fire Science.Volume 6,Number4-1996-97
    [1.5]S.J.Melinek.The Distribution of Fire Load.Fire Safety Journal.20(1993)83-88
    [1.6]Progress and Problems of Fire Protection in Chine.Fire Safety Journal.28(1997)191-205
    [1.7]W.G.B.Phillips.Simulation Models for Fire Risk Assessment.Fire Safety Journal.23(1994)159-169
    [1.8]Vytenis Babrauskas & Richard D.Peacock.Heat Release Rate:The Single Most Important Variable in Fire Hazard.Fire Safety Journal.18(1992)255-272
    [1.9]Fire Safety Design Based on Calculations:Uncertainty Analysis and Safety Verification.Fire Safety Journal.27(1996)305-334
    [1.10]Armin Wolski,Nicholas A.Dembsey,Brian J.Meacham.Accommodating perceptions of risk in performance-based building fire safety code development.Fire Safety Journal.34(2000)297-309
    [1.11] David GPlatt. A Probabilistic Model of Fire Spread with Time Effects. Fire Safety Journal. 22(1994)367-398
    [1.12] Francis Noonan and Robert Fitzgerald. On the Role of Subjective Probabilities in Fire Risk Management Studies. Fire Protection Engineering
    [1.14] M.Fontana, J.P.Favre, C.Fetz .A survey of 40,000 building fires in Switzerland. Fire Safety Journal. 32(1999)137-158
    [1.15] GCox. 1997 Fire Research Lecture Fire research in the 21~(st) century. Fire Safety Journal 32(1999)203-219
    [1.16] George Grant & Dougal Drysdale. Numerical Modelling of Early Flame Spread in Warehouse Fires. Fire Safety Journal. 24(1995)247-278
    [1.17] K MURAOKA,M HONMA and Y. MIYAGAWA. Development of Fire-Resistant Screens for Large Spaces. Technical Research Institute Obayashi Corporation
    [1.18] Tommy Rosenberg. Statistics for fire prevention in Sweden. Fire Safety Journal.33(1999)283-294
    [1.19] P.G.Holbom, S.R.Bishop. Experimental and Theoretical Models of Flashover. Fire Safety Journal. 21(1993)257-266
    [1.20] C.Guedes Soares, A.P.Teixeira. Probabilistic modeling of offshore fires. Fire Safety Journal. 34(2000)25-45
    [1.21] J.I.Ghojel. A new approach to Modeling Heat Transfer in Compartment. Fire Safety Journal. 31(1998)227-237
    [ 1.22] Predicting Time of Flashover. BHP Research-Melbourne Laboratories
    
    [1.23] R.F.Richards, R.T.Ribail, A.W.Bakkom & O.A.Plumb. Fire Detection,Location and Heat Release Rate Through Inverse Problem Solution. Part II :Experiment. Fire Safety Journal. 28(1997)351-378
    
    [1.24] Alan N.Beard. Fire Models and Design. Fire Safety Journal. 28(1997)117-138
    
    [ 1.25] A Stochastic Model for Compartment Fires. Fire Safety Journal. 28(1997)207-225
    
    [1.26] S.Jolly & K..Saito. Scale Modeling of Fires with Emphasis on Room Flashover Phenomenon. Fire Safety Journal. 18(1992)139-182
    [1.27] D.M.Brani & W.Z.Black. Two-Zone Model for a Single-Room Fire. Fire Safety Journal. 19(1992)189-216
    [ 1.28] Frederick W. Mowrer & Robert Brady Williamson. Methods to Characterize Heat Release Rate Data. Fire Safety Journal. 16(1990)367-387
    [ 1.29] R.F.Richards, B.N.Munk & O. A. Plumb Fire Detection Location and Heat Release Rate Through Inverse Problem Solution. Part I : Theory. Fire Safety Journal. 28(1997)323-350
    [1.30] P.H.Thomas,C.Ian Smith. A note on fully developed fires in large compartments. Fire Safety Journal. 35(2000)67-69
    [1.31] Frederick W.Mowrer. Enclosure smoke filling revisited. Fire Safety Journa 133(1999)93-114
    [1.32] G.Cox. Fire research in the 21~(st) century. Fire Safety Journal32( 1999)203-219
    [1.33] Zhongcheng Ma. ParametricTemperature-time Curves of Medium Compartment Fires for Structural Design. Fire Safety Journal. 34(2000)361-375
    [1.34] Revised by John A. Campbell Confinement of Fire in Buildings
    
    [1.35] P.Lamuth Heat Loss Phenomena Inside a Fire Compartment
    
    [1.36] Edward K. Budnick, David D. Evans and Harold E. Nelson. Simplified Fire Growth Calculations. Fire Prot. Handbook 1997 Section 11 /Chapter 10
    [1.37] Ken Matsuyama. A Simple Predictive Method For Room Fire Behavior. Fire Science &Technology. Vol.18 No.1(23-32) 1998
    [1.38] William D. Davis. Comparison of Algorithms to Calculate Plume Centerline Temperature and Ceiling Jet Temperature With Experiments. NISTIR 6448
    [1.39] Yaping He, Jian Wang, Zhenkum. Smoke Venting and Fire Safety in an Industrial Warehouse. Fire Safety Journal. 37(2002)191-215
    [1.40] Yang Lizhong, Zhou Xiaodong, Deng Zhihua. Fire Situation and Fire Characteristic Analysis Based on Fire Statistics of China. Fire Safety Journal. 37(2002)785-802
    [1.41] Silva, Valdir Pignatta, Faknry, Ricardo Hallal. Brazilian standards for steel structures fire design. Fire Safety Journal. 37(2002)pp.217-227
    [1.42] Marcelo M.Hirschler. Survey of American Test Methods Associated with Fire Performance of Materials or Products Polymer. Degradation and Stability. 1996
    [1.43] Eurocode 3: Design of steel structures Part1.2:General rules structural fire design 2002
    
    [1.44] BS 5950:Structural use of steel work in building Part 8:Code of Practice for fire resistant design
    [1.45] Relationships for smoke control calculations Technical Memoranda TM 19:1995
    
    [1.46] John H.Klote. Method of Predicting Smoke Movement in atria With Application to smoke management. NISTIR 5516 1994
    [1.47] Jerome J. Connor. Analysis of Structural Member Systems. The Ronald Press Company. 1976
    [1.48] Andrew H, Buchanan. Structural Design for Fire Safety. 2001.
    
    [1.49] John H. Klote. NISTIR 5516 Method of Predicting Smoke Movement in Atria With Application to Smoke Management
    [1.50] M.B.Wong. Graphical Method for Design of Steel Structure in Fire. Advances in Steel Structure. Volume 11,2002
    [1.51] J.Y.R.Liew and H.X.Yu. Assessment of Structures for Fire Safety-Insights on Current Methods and Trends. Advances in Steel Structure. Volume II ,2002
    [1.52] J.M.Franssen. Natural Fire Safety Concept. Proceedings of the International Seminar On Steel Structures in Fire,2001
    [1.53] S.Lamont. Structural Behaviour in Fire and Real Design. Designing Structures for Fire,2003
    [1.54] W.Zhang, D.J .Carpenter, R.J.Roby, D.Viehe and A.Hamer. The Prediction of Thermal Loading for Structural Analysis under Fire Exposure. Designing Structures for Fire,2003
    [1.55] Bin Zhao, Joel Kruppa. Numerical Modeling of Structural Behaviour of Open Car Parks under Natural Fire. Structures in Fire,2002
    [1.56] M.A.Delichatsios, X.Liu, Brescianini. Propagation of Axisymmetric Ceiling Jet Front Produced by Power Llaw Time Growing Fires. Fire Safety Journal. 38(2003)535-551
    [1.57] Michael A.Delichatsios. Closed from Approximate Solutions for Smoke Filling in Enclosures Including the Volume Expansion Term. Fire Safety Journal. 38(2003)97-101
    [1.58] J. S. Newman, Y. Xin. Characterization of Room Environments in Growing Enclosure Fires. Fire Safety Journal. 39(2004)239-253
    [1.59] Kirby BR, et al. Natural Fires in Large Scale Compartments. A British Steel Technical,Fire Research Station Collaborative Report, British Steel Technical, Swinden Laboratories,UK, 1994
    [1.60] Magnusson SE, Helandersson S. Temperature-time Curves of Complete Process of Fire Development-theoretical Study of Wood Fuel Fires in Enclosed Spaces. Civil Engineering and Building Construction Series No. 65, Division of Structural Mechanics and Concrete Construction, 1970
    [1.61] Law M, O'Brien T. Fire Safety of Bare External Structural Steel. Constrado,1986
    
    [1.62] Barnett CR. Fire Code Review-New Zealand's Performance Based Fire code.Proceedings, Asiaflam Conference, Hongkong, 1995.
    [1.63] FIREESYS. Simple Fires Engineering Computer Programs. C.R. Barnett, Macdonald Bamett Partners Ltd., Auckland, New Zealand, Ver 1999.01
    [1.64] FPETOOL. Fire engineering computer programs. Center for Fire Research, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1994
    [1.65] National Fire Protection Association. Smoke management systems in Malls, Atria and large areas. 92B, Quincy, MA, USA, NFPA, 1995.
    [1.66] Wang Y.C, Lennon T, Moore DB. The Behavior of Steel Frames Subject to Fire. J Construct Steel Res,1995;35(3):291-322.
    [1.67] Franssen JM, Cooke GME, Latham DJ. Numerical Simulation of a Full Scale FireTest on a Loaded Steel Framework. J Construct Steel Res, 1995;35(3):377-408.
    [1.68] Britter RE. The Spread of a Negatively Buoyant Plume in a Calm Environment. Atmos Environ 1979;13:1241-7.
    [1.69] Delichatsios MA. A Scientific Analysis of Stored Plastic Fire Tests. Fire Sci Technol 1983;3(2):73.
    [1.70] Delichatsios MA. Fire Growth in Wood Cribs. Combust Flame 1976;27:276.
    
    [1.71] Wang YC, Lennon T, Moore DB. The Behavior of Steel Frames Subject to Fire. J construct Steel Res 1995;35(3):291-322.
    [1.72] Franssen JM, Cooke GME, Latham DJ. Numerical Simulation of a Full Scale Fire Test on a Loaded Steel Framework. J Construct Steel Res, 1995;35(3):377-408.
    [1.73] Anderberg Y. European Experience in Fire Design of Structural Steel. Proceedings of the 24~(th) Structure Congress on "Building an International Community of Structural Engineers", American Society of Civil Engineers, NY, Part 1,1998. p.357-64.
    [1.74] Jeans DC. The performance of a large scale structural steel frame during exposure to fire environment. Internal Report, Building Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 1986.
    [1.75]Becker R.Effects of Heat Sinks on Evolution on Longitudinal Temperature Distributions in Steel Structures.Fire Safety J 2002;37:1-20.
    [1.76]Franssen JM,Schleich JB,Cajot LG.A Simple Model for the Fire Resistance of Axially Loaded Members According to Eurocode 3.J Construct Steel Res 1995;35:46-49.
    [1.77]Magnusson SE,Thelandersson S.Temperature-time Curves for the Complete Process of Fire Development A theoretical Study of Wood Fuel Fires in Enclosed Spaces.Acta Polytechnica Scandinavica,Ci65,Stockholm,1970.
    [1.78]Eurocodel Basis foe Design and Actions on Structures.Part2.2.Actions on structures exposed to fire.DD ENV 1991-2-2,1996.
    [1.79]Smith,E.A..Space Trusses Nonlinear Analysis.Journal of the Structural Division,ASCE,April,1984.
    [1.80]Smith,E.A.and Smith G.A..Collape Analysis of Space Trusses.Proc of Sympositm on Long Span Roof Strutures,ASCE,Oct,1981.
    [1.81]Saka T.and Heki K..The Effect of Joints on the Strength of Space Trusses.3~(rd)Int.Conf.Space Strut..1984.9,pp.417-422.
    [1.82]Simitses G.J..An Introduction to the Elastic Stability of Structures.Prentice Hall New Jensey,1976,pp14-17
    [1.83]T.H.Buleala,J Krippers.Stability of Grid Shell.Compt.struct.,Vol79,2001,1161-1174.
    [1.84]Feng Y.T.,Peric D.& Owen D.R.J..A New Criterion for the Efficient Solution of Nonlinear Finite Element Equations.Computer & Structures,1987,26(1/2),pp99-110.
    [1.85]Gioncu V.,Lenza P..Propagation of Local Buckling in Reticulated Shells.Space Structure(edt.G.A.Oarke,C.M.Howard),Conf.Guildford,Spet.1993,th.Telford Publ.,London,1993,pp147-155.
    [1.86]J.L.Meek,H.S.Tan.Geometrically Non-linear Analysis of Space Frames by An Incremental Iterative Technique.Comput.Meth.for Appl.Mech.Engng.,Vo.47,1984,pp261-282.
    [1.87]R.Strilard.Critical Load and Post-Buckling Analysis of Space Frances by Finite Element Method Using Energy balancing Technique.Comput.Struct.,Vol.20,No.1-3,1985,pp277-296.
    [1.88]G.Shi & S.N.Atluri.Elasto-Plastic Large Deformation Analysis of Space- Frames:A Plastic-Hinge and Stress-based Explicit Derivation of Tangent Stiffnes.International Journal for Numerical Methods in Engineering,Vol.26,1988,pp589-615.
    [1.89]Kiyohiro Iniai,Dan M.Frangopol.Geometrically Nonlinear Finite Element Reliability Analysis of Structural Systems I:theory.Computers & Structures,Vol.77pp.677-691(2000).
    [1.90]Z.S.Makowski.Space Structures-A Review of the Developments within the Last Decade.Space Structures,Bpl.10 No.1,1995,pp1-46.
    [1.91]Bergan P.G.et al.Solution Techniques for Nonlinear Finite Element Problems.International Journal of numerical methods in Engineering,Vol.12,1978,pp1677-1699.
    [1.92]Victor Gioncu.Buckling of Reticulated Shells:State-of-the-Art.International Journal of Space Structures,Vol.10,pp1-46.
    [1.93]李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社.1996.
    [1.94]范维澄,王清安,张人杰,霍然等.火灾科学导论.湖北科学技术出版社.1993
    [1.95]路春森等.建筑结构耐火设计.中国建材工业出版社.1995.
    [1.96]李引擎等.建筑结构防火设计计算和构造处理.中国建筑工业出版社.1991
    [1.97]网架结构设计与施工规程(JGJ7-91)中国建筑工业出版社,1991.
    [1.98]中华人民共和国国家标准.建筑设计防火规范(GBJ16-87).条文说明,1996.
    [1.99]网架结构设计与施工规程编著组编制.网架结构设计与施工规程应用指南.中国建筑工业出版社,1995.
    [1.100]李辛夷,付祥钊,林夏国,廖曙江.中庭火灾模型数值与实验研究.消防科学与技术,2003年第22卷,第4期
    [1.101]廖曙江,林夏国,付祥钊.大空间建筑物内扩展型火源的燃烧实验研究.消防科学与技术,2002年第7卷,第4期
    [1.102]高洪菊,姜明理.影响建筑火灾增长的基本要素.消防技术与产品信息,2003年第8期
    [1.103]沈祖炎等编著.空间网架结构.贵州人民出版社,1987
    [1.104]沈祖炎,陈扬骥编著.网架与网壳.同济大学出版社,1997
    [1.105]田玉敏.论“性能化”防火设计中的“设计火灾场景”.火灾科学,2003年第12卷,第1期
    [1.106]胡隆华,霍然,李元洲,王浩波.大尺度空间中烟气运动工程分析的多单元区域模拟方法.中国工程科学,2003年第5卷,第8期
    [1.107]李国强,沈祖炎.高温下轴心受压钢构件的极限承载力.建筑结构,1993年第9期
    [1.108]刘开国.正交正放网架的弹塑性分析.空间结构,Vol.9 No.1,2003
    [1.109]刘京红,杜守军,王蕾,李红梅,刘燕,刘晓华.四角锥体系三层网架的结构特性分析.河北农业大学学报,Vol.25 No.4,2002
    [1.110]贾凡,徐国彬.北方交大礼堂多功能网架屋盖设计方案.钢结构,Vol.16 No.04,2001
    [1.111]刘殿魁,崔洪伟.网架结构计算的超级元法.哈尔滨工程大学学报,Vol.22 No.03,2001
    [1.112]张小明,马政纲,沈雁彬,曹立岭,罗尧治.大跨交叉网架拱结构的稳定性分析.建筑结构,Vol.31 No.02,2001
    [1.113]韩庆华,纪刚,尹越.波浪形网架与下部结构的整体分析及设计.天津大学学报(英文版),Vol.7 No.01,2001
    [1.114]祁伟林,卫常革,张文革.网架结构可靠性鉴定分析.钢结构,Vol.15 No.02,2000
    [1.115]约翰.奇尔顿.空间网格结构.中国建筑工业出版社,2004.8
    [1.116]楼国彪.钢结构高强度螺栓外伸式端板连接抗火性能研究.博士学位论文,2005,1
    [2.1]吴波.火灾后钢筋混凝土结构的力学性能.科学出版社,北京,2003.5
    [2.2]李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社,北京1996.18-26
    [2.3]程远平,陈亮,张孟君.火灾过程中羽流模型及其评价.火灾科学,2002年7月,第11卷第3期
    [2.4]刘方,胡斌,付祥钊.中庭烟气流动与烟气控制分析.暖通空调,2000年第30卷第6期
    [2.5]刘应中,缪国平.高等流体力学.上海交通大学出版社,上海,2000
    [2.6]John H.Klote.Method of predicting smoke movement in atria with application to smoke management.NISTIR 5516,-November 1994
    [2.7]陶文铨.数值传热学.西安交通大学出版社,西安,2001
    [2.8]John H.Klote.Method of predicting smoke movement in atria with application to smoke management.NISTIR 5516
    [2.9]Nelson HE.An engineering analysisi of the early stages of fire development-the fire at the Du Pont Plaza hotel and casino.US National Bureau of Standards,December 31 1986,NBSIR 87-3560,Washington DC,1987
    [2.10]Andrew H.Buchanan.Structural Design for Fire Safety.2001
    [2.11]GBJ16-87(修订本).建筑设计防火规范.中国计划出版社,北京,1995.
    [2.12]李引擎.建筑防火性能化设计.化学工业出版社,北京,2005
    [3.1]Andrew H.Buchanan Structural Design for Fire Safety.2001:179
    [3.2]李国强,杜咏.实用大空间建筑火灾空气升温曲线.消防科学与技术,2005,4(3):283-288
    [3.3]李国强,杜咏.大空间建筑顶部火灾空气升温的参数分析.消防科学与技术,2005,24(1):19-21
    [3.4]李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社.1998.
    [3.5]陆大有.工程辐射传热.国防工业出版社.1988.57-58,411-417
    [3.6]余其铮.辐射换热基础.高等教育出版社,1990,45.
    [3.7]霍然.姜冯辉.袁理明.室内火灾.中国科技大学工程热物理系自编,1990
    [3.8]杨贤荣.马庆芳.辐射换热角系数手册.国防工业出版社,1982,102
    [3.9]《建筑钢结构防火技术规范》CECS200:2006
    [4.1]Urich Schneider.Concrete at high Temperature-A General Review.Fire Safety Journal,13(1988)
    [4.2]CEN:Design of Concrete Structures.Eurocode 2 Part 10:Structure Fire Design.Commission of European Communities,April,1990
    [4.3]T.T.Lie,Fire Resistance of Circular Steel Columns Filled with Bar-Reinforced Concrete.Journal of Structural Engineering,Vol.120 No.8,August 1993
    [4.4]李引擎,马道贞,徐坚:建筑结构防火设计计算和构造处理,中国建筑工业出版社,北京,1991年
    [4.5]陆洲导:钢筋混凝土梁对火灾反应的研究,同济大学博士学位论文,上海,1989年10月
    [4.6]过镇海:钢筋混凝土原理,清华大学出版社,北京,1999年
    [4.7]李卫 过镇海:高温下混凝土的强度和变形性能试验研究,建筑结构学报,Vol.14No.1,1993年
    [4.8]时旭东:高温下钢筋混凝土杆系结构试验研究和非线性有限元分析,清华大学博士学位论文,北京,1992年7月
    [4.9]过镇海 李卫:混凝土在不同应力—温度途径下的变形试验和本构关系,土木工程学报,Vol.37 No.6,1997年
    [4.10]蒋首超:钢—混凝土组合楼盖抗火性能理论与试验研究,同济大学博士学位论文,上海,2001年6月
    [4.12]丁军:耐火钢构件抗火计算和设计的实用方法,同济大学硕士学位论文,上海,2002年十二月
    [4.13]李明菲:带墙扳约束钢柱抗火设计研究,同济大学硕士学位论文,上海,2003年3月
    [4.14]钮宏,陆洲岛,陈磊.高温下钢材与混凝土本构关系的实验研究,同济大学学报,1990,18(1):8-16
    [4.15]孙金香 高伟 译,建筑物综合防火设计,天津科技翻译出版公司,天津,1994
    [4.16]BSI.Structural Use of Steelwork in Building,Part 8.Code of Practice for Fire Resistance Design,1990
    [4.17]CEN(European Committee for Standardization).DAFT ENV 1993.Eurocode 3:Design of steel structures.July 1995
    [4.18]ECCS.European Recommendations for the Fire Safety of Steel Structures,1983
    [4.19]D.A.Crozier & M.B.Wong.Elastoplastic Analysis of Steel Frames at Elevated Temperatures.13th Australian Conference on the Mechanicsof Structures and Materials,University of Wollongong,1993
    [4.20]吕彤光:高温下钢筋的强度和变形试验研究,清华大学硕士学位论文,1996年2月
    [4.21]陈凯,变截面门式钢刚架结构抗火性能及实用设计方法研究,同济大学硕士学位论文,上海:2000年3月
    [4.22]张晓进:薄壁钢构件抗火计算理论及实用设计方法研究,同济大学硕士论文,上海,2000年1月
    [4.23]Yngue Anderberg:Modelling Steel Behaviour.Fire Safety Journal,13(1988)
    [4.24]ASCE.Manuals and Reports on Engineering Practice No.78,Structural Fire Protection,Published by ASCE,New York
    [4.25]殷颖智:钢结构高强度螺栓受拉及受剪连接在高温(火灾)下的性能,同济大学硕士学位论文,上海,2000年12月
    [4.26]南建林 过镇海 时旭东:混凝土的温度—应力耦合本构关系,清华大学学报(自然科学版),Vol.37 No.6,1997年
    [4.27]B.R.Kirby&R.Preston,High Temperature Properties of Hot-rolled,Structural Steels for Use in Fire Engineering Design Studies,Fire Safety Journal,13(1988)
    [4.28]Achim Rubert & Peter Schaumann,Structural Steel and Plane Frame Assemblies under Fire Action,Fire Safety Journal,10(1986)
    [4.29]《建筑钢结构防火技术规范》CECS 200:2006
    [5.1]《钢结构设计规范》GB50017
    [5.2]刘涛 杨凤鹏.精通ANSYS.清华大学出版社,北京,2002年
    [5.3]沈祖炎 陈扬骥.网架与网壳.同济大学出版社,上海,1997年
    [5.4]沈祖炎.钢结构学.中国建筑工业出版社,北京,2004年
    [6.1]刘锡良.平板网架设计与施工图集.天津大学出版社,天津,2000年
    [6.2]《建筑钢结构防火技术规范》CECS200:2006
    [6.3]唐瑞森.网架结构简化计算手册.中国建筑工业出版社,北京,1989年
    [6.4]网架结构设计与施工规程JGJ7-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700