用户名: 密码: 验证码:
反胶团萃取牛血清白蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对CTAB(十六烷基三甲基溴化铵)/异辛烷/正戊醇反胶团体系萃取牛血清白蛋白(BSA)的相关性能进行了研究,论文主要分三个方面进行。首先确定了反胶团萃取BSA的较优实验条件;然后研究了反胶团中BSA的反萃取情况;最后一部分考察了CTAB/异辛烷/正戊醇对BSA的特异选择性。
     萃取实验主要集中在以下两点。(1)考察了表面活性剂浓度、原料相pH、离子浓度和种类、助溶剂比例、萃取温度、搅拌速率和油水比对牛血清白蛋白萃取率的影响,找到了适合BSA萃取的较优实验条件。实验表明,静电作用力是该萃取过程的主要推动力,随原料相离子浓度增加,萃取率降低,这主要是因为离子在反胶团内核和BSA之间产生了屏蔽效应。适宜比例的正戊醇有助于BSA萃取率的提高。在表面活性剂(CTAB)浓度为0.02-0.04mol/L、pH 9.0-11.0、离子浓度KCl/NaCl 0.05-0.2mol/L、正戊醇比例0.2-0.4、室温、搅拌速率200-300rpm、油水比0.67-1.5时,BSA的萃取率较高,最高可达98%;(2)为进一步的实验,进行了简单的反萃实验,证明BSA反萃后仍保持较好的活性。
     BSA的反萃实验主要以萃取实验为依据,考察了反萃条件(反萃水相pH、离子浓度、反萃时油水比、反萃时间)对BSA反萃率的影响。通过实验得到,原料液中BSA浓度越低,其萃取率和反萃率越高。当反萃水相pH接近BSA等电点时,反萃率最高,这主要是由于该萃取过程受静电作用力控制。在条件选择适当的情况下,反萃率可达80%以上。并且通过实验可知,反萃水相离子浓度高时(>0.4mol/l),不仅无法提高反萃率,还会引起BSA的变性。
     论文的最后通过对α-淀粉酶的萃取实验和BSA、溶菌酶的混合物分离实验,说明在一定实验条件下,CTAB/异辛烷/正戊醇对BSA具有一定的特异选择性,可以根据等电点不同进行目标蛋白的提取和分离。牛血清是一种复杂的混合物,除含有主要成分牛血清白蛋白外,还含有球蛋白、激素、氨基酸、葡萄糖等多种成分,自制的反胶团体系可以从这种牛混合溶液中提取牛血清白蛋白,并能重复利用。
Using BSA as a model protein, the extraction of the protein by reversed micelles system of CTAB/isooctane/1-pentane was studied in this paper. The research is focused on the following three aspects. Firstly, the optimal conditions for extraction of BSA are investigated, and then, back-extraction of BSA in reversed micelles is studied. Finally, BSA is extracted from bovine blood serum according to selectivity of CTAB/isooctane/1-pentane to BSA.
    Extraction experiments include the two aspects. (1) Effect of some parameters, such as pH value, the type and concentration of ions in aqueous phase, the content of surfactant, proportion of co-solvent in reversed micelles, temperature, stirring velocity of extraction and ratio of oil to water, on extraction ratio of BSA was examined, and the optimal conditions for extraction of BSA ware obtained. Experimental results show that electrostatic interaction is the major driving force in the extraction process, the extraction ratio of BSA increased remarkably in the pH region higher than 5. For different kinds of ions, usually the extraction ratio of BSA decreased with increasing the ion concentration, such a decrease is due to electrostatic hindrance by the ions. Adding 1-pentane as co-solvent in the reversed micelles is beneficial to the extraction. The optimal conditions are as followings: CTAB 0.02-0.04mol/l, pH 9.0-11.0, ion concentration KCl/NaCl 0.05-0.2mol/l, proportion of co-solvent 0.2-0.4, room tempera
    ture, stirring velocity 200-300rpm, ratio of oil to water 0.67-1.5. Under the optimum conditions, the extraction ratio of BSA can reach as high as 98%. (2) Simply back-extraction experiments were done to prove that BSA'S activity is well kept.
    According to extraction conditions of BSA, the back-extraction is also investigated, the following parameters were examined, pH of back extraction aqueous phase, ion concentration, ratio of oil to water, back extraction time. According to the experiments, the lower concentration of BSA in the feed is, the higher extraction ratio and back extraction ratio would be obtained. The back extraction ratio can reach more than 80% as pH approaching to BSA'S pi. The main reason is that the process is controlled by electrostatic interaction. Increasing ion concentration is disadvantageous for BSA back extraction.
    Extraction of a -amylase and extraction of BSA from a mixture protein solution, proving that CTAB/isooctane/1-pentane has certain selectivity to BSA, target protein can be extracted by difference of their pI. The reversed micelles system also was reused to extraction BSA from bovine blood serum.
引文
[1] 沈忠耀.表面活性剂在生物工程中的应用之——反胶团萃取.日用化学工业,2001,31(1),23-26.
    [2] 吴金川,何志敏.反胶团萃取蛋白质技术.化学工业与工程,1997,14(3),50—54.
    [3] B.A. Andrews, D.L. Pyle,, and J.A. Asenjo. The effect of pH and ionic strength on the partitioning of four proteins in reversed micelles system. Biotech and Bioeng. 1994(43), 1052—1058.
    [4] Zhang T, Liu H, Chen J. Selective affinity separation of Yeast Alchol Dehydrogenase by reversed micelles with unbound triazine dye. Chinese J. Chem. Eng, 2001, 9(3), 314—318.
    [5] Keri G A, Hustedt H. Exraction of emzymes by reversed micelles. Chem. Eng. Sci, 1992, 47—99.
    [6] Kuboi R, Li D R, Yamada Y, Komasawa I. Effect of salt addition on hydrophobocity of reversed micelles partition system. Kagaku Kogaku Runbunshu, 1992, 18—66.
    [7] 孙彦,史清洪,赵黎明.反胶团萃取蛋白质的平衡模型:静电和疏水作用的贡献.化工学报,2003,54(6),796—801.
    [8] Goklen, K. E, Hatton, T. A. Protein extration using reversed micelles. Biotechno[J]. Prog, 1985, 1, 69—74.
    [9] Yasuhiro Nishii , et al. Transport behavior of protein in bulk liquid membrane using reversed micelles. Journal of Membrane Science. 2002, 195, 11—21.
    [10] Giordana Marcozzi. Protein extraction by reversed micelles : a study of the factors affecting the forward and backword transfer of α-chymotrypsin and its activity. Biotechnol and Bioeng. 1991(38), 1239—1246.
    [11] B.A. Andrews, D.L. Pyle,, and J.A. Asenjo. The effect of pH and ionic strength on the partitioning of four proteins in reversed micelles system. Biotech and Bioeng. 1994(43), 1052—1058.
    [12] Koichiro Shiomori, et al. Extraction of proteins and water with Bis(2-ethylhexyl) Suifosuccinate/long Chain Alkyl Amines mixed micelles system. Sep Sci and Eng of Japan. 1999(32), 177—183.
    [13] 严勇朝等,TRPO-AOT反胶团体系萃取牛血红蛋白的研究.生物工程学报,1997(13),430—432.
    [14] Tianxi Zhang, Huizhou Liu and Jiayong Chen. Affinity-based reversed micellar bovine serum albumin extraction with unbound reactive dye. Sep Sci and Tech. 2000(35), 143
    
    —151.
    [15] Motonari Adachi, et al. Selective separation of trypsin from pancreatin using bioaffinity in reversed micellar system composed of a nonionic surfactant. Biotech and Bioeng. 1998(58), 649—653.
    [16] JHY-Ping Chen, et al . Extraction of concanavalin A with affinity reversed micellar systems. Sep Sci and Techno. 1994(29), 1115—1132.
    [17] Brian D and Kelley, et al. Afficity-based reversed micellar protein extraction : I principles and protein-ligand systems. Biotechnol and Bioeng. 1993(42), 1199—1208.
    [18] Ludger H. Poppenborg, et al. The kinetic separation of protein mixtures using reverse micelles. Sep Sci and Tech. 2000(35), 843—858.
    [19] Nigel A Turner, Evgeny N Vulfson. At what temperature can enzymes maintain their catalytic activity ?. Enzyme and Microbial Technology. 2000(27), 108—113.
    [20] S.F Matzke , et al. Mechanisms of protein solubilization in reversed micelles. Biotechnol and Bioeng. 1992(40), 91—102.
    [21] Dong-Pyo Hong, Sung-Sik Lee, Ryoichi Kuboi. Conformational transition and mass transfer in extraction of proteins by AOT-alcohol-isoocante reverse micellar systems. Journal of Chromatography. 2000(743), 203—213.
    [22] Kazumitau Naoe, et al. Efficacy of guanidium salts in protein recovery from reversed micellar organic media. Biochemical Engineering Journal. 2002(10), 137—142.
    [23] Wei Zhang, ea al. Forward and backward of BSA using mixed reverse micellar system of CTAB and alkyl halides. Biochemical Engineering Journal. 2002(12), 1—5.
    [24] M Dekker, K. V. Riet , J.J. Van Der Pol, Chem Eng. J. 1994(46) B69.
    [25] M.E. Lesser, P L. Luisi. Application of reversed micelles for the extraction of amino and proteins. Biotechnol and Bioeng . 1990(41), 270—282.
    [26] R.B. Gupta, C.J. Han, K. P. Johnston. Recovery of proteins and amino acids from reversed micelles by dehydration with molecular sieves. Biotechnol. Bioeng. 1999(44), 830— 836.
    [27] 张彤,付进.,毛细管电泳在蛋白质分离分析中的应用.山东化工,1998(3),34.
    [28] Janson J C. lars Ryden. Protein purification: Principles , high resolution methods, and appalication. New York: VCH, 1898, 332.
    [29] 鲍时翔,姚汝华.蛋白质分离纯化与层析技术.华南理工大学学报(自然科学版),19(12),98—102.
    [30] Krishnakant Soni, Data, Madamwar. Reversed micelles extraction of an extracelluar acid and phosphatase from fermentation broth. Process Biochemistry. 2001, 297—301.
    
    
    [31] John M, Wencicek, Afzai, Nabi, Jim Hemoglobin extraction using cosurfactant-free nonionic microemulsions. Separation Sci and Techno. 1994, 923—929.
    [32] T. Nishiki, A. Muto, T Katako., D Kato. Back extraction of proteins from reversed micellesto aqueous phase: partitioning behaviour and enrichment. The Chemical Engineer Journal. 1995, 297—301.
    [33] Somunk Jarudilokkul, Ludger H, Poppenborg, and David C. Selective reversed micelles extraction of three proteins from filtered fermentation broth using response surface methodology. Srparation Science and Technology. 2000, 503—517.
    [34] Yashi Nishii, Takumi Kinugasa. Transport behavior of protein in bulk liquid membrane using reversed micelles. J of Membrane Science. 2002, 11—21.
    [35] Pires M J, Airea-Barras M R, Cabral J M S. Biotechnol Prog, 1996(12), 190.
    [36] Somunk Jarudilokkul, et al. Selective reverse micelles extraction of three proteins from filtered fermentation broth using response surface methodology. Sep Sci and Tech. 2000(35), 503—517.
    [37] Ludger H. Poppenborg, et al. The kinetic separation of protein mixtures using reverse micelles. Sep Sci and Tech. 2000(35), 843—858.
    [38] C. Regalado, J.A. Asenio, and D.L. Pyle. Studies on the purification of peroxidase from horseradish roots using reverse micelles. Enzyme and Microbial Technology. 1996(18), 332—339.
    [39] 昌庆龙,刘会洲,陈家镛.反胶团萃取蛋白质特性的研究.化工冶金,1995(16),150—156.
    [40] Long Rong, Takashi Yamane and Hiroshi Takeuchi. A new reversed micetles system from Di(2-Ethylhexyl)Phosphorothioic Acid: its application to extraction of hemoglobin. J of Chem. Eng of Japan. 1998(31), 434—439.
    [41] Koichiro Shiomori, et al. Extraction of proteins and water with Bis(2-ethylhexyl) Sulfosuccinate/long Chain Alkyl Amines mixed micelles system. Sep Sci and Eng of Japan. 1999(32), 177—183.
    [42] 于自然,黄熙泰.现代生物化学,化学工业出版社.2001,49—58.
    [43] Jones K .A review of biotechnology and large scale affinity Chromatography. Chromatographia. 1991,32,469—480.
    [44] Tiselius A, Trans. Faraday Soc, 1937, 33—523.
    [45] 张丹华.蛋白质、凝胶电泳及其分析应用,分析科学学报,1995(3),75—86.
    [46] Eiichiro Tanoue. Detection of dissolved protein molecules in oceanic waters. Marine Chemistry, 1995, 239—252.
    [47] Masamichi Oh-Ishi, Tadakazu Maeda. Separation techniques for high molecular-mass
    
    proteins. 2002, 49—66.
    [48] 李红旗,沈忠耀.高效毛细管在蛋白质分析上的应用,生物工程进展,1995(35),40—43.
    [49] Janson J C, Lars Ryden. Protein purification : principles, high resolution methods, and application ..New York: VCH, 1898, 332.
    [50] 邢海忠等.蛋白质电泳中常见问题及解决的办法,内蒙古农业科技,1999,12.
    [51] 赵明,孙册.牛血清白蛋白的纯化.生物化学与生物物理学报,1992(4),89—93.
    [52] 田荣华,嘉庆,易林等.直接加热处理法生产牛血清白蛋白的工艺研究.四川师范大学学报(自然科学版),2000(23),2,163—165.
    [53] 张浩.牛血清在细胞养中的作用及质量要求.科技情报开发与经济,2001(11),3,46—47.
    [54] 刘文静.保证牛血清质量促进生物制品品质的提高.科技情报开发与经济,2001(11),5,58—59
    [55] Ersoz M, VuralU. S, Transport studies C_e of amino acids through a liquid membrane system containing carboxylated poly(styrene) carrier. J. Membr. Sci. 1995, 104—263.
    [56] TsaiS. W.,WenC. L., Chen J.L., J.Membr. Sci. 1995, 100—87.
    [57] Voelkel W, Bosse J, Poope W,et, al. Development and design of liquid membrane enzyme reactor for the detoxification of blood. Chem Eng Comm, 1984, 30—55.
    [58] Jun Yah, Rajinder Pal. Isotonic swelling behavior of W/O/W emulsion liquid membranes under agitation conditions. Journal of Membrane Science, 2003(213), 1—12.
    [59] 丁暄才等.膜科学与技术.1990,10(2),21.
    [60] 万印华 王向德 张秀娟.乳化液膜用表面活性剂研究进展,化工进展,1998(5),12—15.
    [61] 朱澄云 莫凤奎 王晶.乳状液膜法提取青霉素及亮氨酸时溶胀现象的研究.沈阳药科大学学报,2001,18(6).
    [62] 李斯加.乳状液膜提取分离中溶胀现象的研究现状,矿冶工程,1996,16(3),41—44.
    [63] 程能林.溶剂手册,化学工业出版社,1994.
    [64] Reisinger H, Marr R. Comparison of the separation of lactic acid and L-leucine by liquid emulsion membranes. Journal of Membrane Science, 1993, 80:85.
    [65] 周忠清杨建强.液膜分离技术的进展.膜科学与技术,1990,10(1),54:59.
    [66] 李永胜等.乳化液膜分离清除胆红素的研究.离子交换与吸附,2000,16(6),508:513.
    [67] 沈力人 杨品钊 吉炜青 袁峰.液膜法萃取青霉素的研究.膜科学与技术,1997,17(1),24:28.
    [68] Lee S C, Lee W K. Extraction of penicillin G from simulated mediabyan emulsion liquid membrane procssss. J Chem Tech Biotchnol, 1992, 55:251.
    [69] 张亦飞,陈进波.反胶束萃取蛋白质的研究.烟台大学学报(自然科学与工程版),1997(10),154-156.
    
    
    [70] Giordana Marcozzi. Protein extraction by reversed micelles. A study of the factors affecting the forward and backword transfer of α-chymotrypsin and its activity. Biotechnol and Bioeng, 1991(38), 1239—1246.
    [71] B. A. Andrews, D.L. Pyle,, and J.A. Asenjo. The effect of pH and ionic strength on the partitioning of four proteins in reversed micelles system.Biotech and Bioeng. 1994(43), 1052—1058.
    [72] 陈少欣 林文銮.阳离子反胶团体系提取蛋白质.华侨大学学报(自然科学版),1998(19),3,304—307.
    [73] Yan Sun, S. Bai, L. Gu, X.D. Tong, S. Ichikawa, S. Furusaki. Effect of hexanol as a cosolvent on partitioning and mass transfer rate of protein extraction using reversed micelles of CB-modified lecithin. Biochemical Engineering J 1996(3). 9—16.
    [74] Dong-Pyo Hong, Sung-Sik Lee, Ryoichi Kuboi. Conformational transition and mass transfer in extraction of proteins by AOT-alcohol-isoocante reverse micellar systems. Journal of Chromatography. 2000(743), 203—213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700