用户名: 密码: 验证码:
非淀粉多糖酶谱优化及对肉鸡排泄物含氮物含量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验利用胃蛋白酶-胰液素两步酶水解法,分别筛选非淀粉多糖酶---木聚糖酶、β-葡聚糖酶、纤维素酶、果胶酶、β-甘露聚糖酶在玉米-豆粕和小麦-豆粕日粮中的最佳使用剂量,采用五元二次正交旋转试验设计优化5种NSP酶的最佳酶谱。通过AA肉鸡饲养试验,研究所筛选的酶谱对肉鸡生产性能和排泄物中几种含氮成分的影响,初步探讨非淀粉多糖酶对肉鸡舍环境的改善作用。
     试验一:探讨5种NSP酶对肉鸡2种日粮离体消化能的调控。选择木聚糖酶、β-葡聚糖酶、纤维素酶、果胶酶、β-甘露聚糖酶,添加剂量0-900μg/g,用胃蛋白酶-胰液素两步酶水解法,测定肉鸡玉米-豆粕、小麦-豆粕日粮的离体消化能,采用二次回归正交旋转组合试验设计,测定NSP酶作用规律和最佳酶谱。结果显示,5种NSP酶对离体消化能的调控效应显示规律性的“S”型曲线,在玉米-豆粕日粮中,五种酶对其离体消化能调控的主次效应为:木聚糖酶>β-甘露聚糖酶>β-葡聚糖酶>纤维素酶>果胶酶;小麦-豆粕日粮中五种酶对其离体消化能调控效应的主次顺序为木聚糖酶>果胶酶>β-葡聚糖酶>纤维素酶>β-甘露聚糖酶。木聚糖酶对玉米-豆粕、小麦-豆粕日粮的离体消化能提升程度较高,分别提高0.24MJ/kg和0.40MJ/kg。玉米-豆粕日粮在本试验条件下最佳酶谱为:木聚糖酶34836U/kg、β-葡聚糖酶6762U/kg、纤维素酶1159U/kg、果胶酶873U/kg、β-甘露聚糖酶24536U/kg;小麦-豆粕日粮在本试验条件下最佳酶谱为:木聚糖酶65406U/kg、β-葡聚糖酶10132U/kg、纤维素酶980U/kg、果胶酶502U/kg、β-甘露聚糖酶5141U/kg。
     试验二:以肉鸡为试验动物,分别在玉米-豆粕和小麦-豆粕基础日粮中添加试验一筛选的NSP复合酶,测定肉鸡生产性能,评估NSP复合酶的作用效果。同时测定肉鸡排泄物尿酸、尿素含量和氨气产生量,初步探讨NSP酶谱对肉鸡舍环境的影响。试验选用208只1日龄爱拨益加肉公鸡,分成4个处理,每个处理4个重复。处理组分别是:玉米-豆粕组,玉米-豆粕加酶组,小麦-豆粕组和小麦-豆粕加酶组。非淀粉多糖酶的添加剂量采用试验一的筛选剂量。在1-21日龄阶段,小麦-豆粕组肉鸡平均日增重显著低于小麦-豆粕加酶组(P<0.05);1-21、21-42、1-42日龄小麦-豆粕组肉鸡料重比分别显著(P<0.01,P<0.05,P<0.01)低于小麦-豆粕加酶组;1-21、21-42、1-42日龄玉米-豆粕加酶组料重比比玉米-豆粕组分别降低了6.6%、4.7%、5.3%,但是未达显著水平(P>0.05)。在肉鸡2-6周龄阶段,玉米-豆粕组和玉米-豆粕加酶组中氨气产生量均显著的高于小麦-豆粕组和小麦-豆粕加酶组;在3周龄时,小麦-豆粕加酶组氨气产生量极显著低于小麦-豆粕组(P<0.01)。在肉鸡3-6周龄时,玉米-豆粕加酶组、玉米-豆粕组尿酸含量均极显著高于小麦-豆粕加酶组、小麦-豆粕组(P<0.01)。在2、5周龄时玉米-豆粕加酶组尿素含量显著高于玉米-豆粕组(P<0.05)。
The study was to investigate the effect of non-starch polysaccharides(NSP) enzymes on in vitrodigestive energy(IVDE) of broiler diets by using a two step method with pepsin-pancreatin,then usedquadratic regress-orthogonal rotary design to screen the optimum enzyme combination,then toinvestigate the effects of enzyme combination on production performance and content of nitrogencontaining compounds of broilers to determine the feasibility of enzyme combination.
     The first experiment was conducted to discuss the effects of NSP enzymes on the in vitro digestiveenergy(IVDE) of broiler diets of different content of NSP. The first step investigated the dose-responseof the NSP enzymes on the IVDE in diets using one-way randomized experimental design. Five NSPenzymes-xylanase, β-glucanase, cellulose, pectinase, β-mannanase were added to corn-soybean dietand wheat-soybean diet, from0to900μg/g. The second step screened the optimum enzymecombination using quadratic regress-orthogonal rotary design. The method of test IVDE is two-stage invitro digestion assay. The IVDE of broiler diet regulating by NSP enzyme appeared “S” state diagram.The strength of NSP enzyme manipulation of IVDE in corn-soybean diet is:xylanase> β-mannanase>β-glucanase> cellulose> pectase,in wheat-soybean diet the sequence is: xylanase> pectase>β-glucanase> cellulose> β-mannanase. Xylanase had the most strong effect on IVDE on bothcorn-soybean and wheat-soybean diets, improved0.24MJ/kg,0.40MJ/kg, respectively. Incorn-soybean diet the optimum enzyme combination was xylanase34836U/kg, β-glucanase6762U/kg,cellulose1159U/kg, pectase873U/kg, β-mannanase24536U/kg; and in wheat-soybean diet theoptimum enzyme combination was xylanase65406U/kg, β-glucanase10132U/kg, cellulose980U/kg,pectase502U/kg, β-mannanase5141U/kg.
     The second experiment was to study the effect of non-starch polysaccharides enzyme onperformance, uric acid, urea and ammonia in manure of broilers.208one-day old Arbor Acres malebroilers were randomly divided into four groups(corn-soybean diet with NSP enzymegroup,corn-soybean diet group,wheat-soybean diet with NSP enzyme group,wheat-soybean dietgroup),each with4replicates. The composition and level of NSP enzyme in corn-soybean diet andwheat-soybean diet were from the first experiment. The results showed:, wheat-soybean diet group hadlower daily weight gain than wheat-soybean diet+E group during1-21days (P<0.05); wheat-soybeandiet+E group had lower F/G than wheat-soybean diet group during1-21(P<0.01)、21-42(P<0.05)、1-42(P<0.01) days respectively; the F/G of corn-soybean diet+E group was lower than corn-soybeandiet group by6.6%、4.7%、5.3%during1-21、21-42、1-42days,respectively (P>0.05). The manureammonia concentration of corn-soybean diet+E group and corn-soybean diet group were significantlyhigher than wheat-soybean diet+E group and wheat-soybean diet group (P<0.01) from2to6week age;the ammonia concentration of corn-soybean diet+E group was significantly higher than wheat-soybean diet group (P<0.01) at3week age. Compared with wheat-soybean diet+E group and wheat-soybean dietgroup, the uric acid content of corn-soybean diet+E group and corn-soybean diet group weresignificantly improved (P<0.01) in3to6week age. Compared with corn-soybean diet group, the ureacontent of corn-soybean diet+E group were significantly improved at2(P<0.05) and5(P<0.01) weekage,respectively.
引文
1.安永义.肉雏鸡消化道酶发育规律及外源酶添加效应的研究.中国农业大学硕士学位论文,1997.
    2.陈勇,张慧玲.饲用酶制剂的应用研究.粮食与饲料工业,1999,(8):35-37.
    3.陈晓春,陈代文.纤维素酶对肉鸡生产性能和营养物质消化利用率的影响.饲料研究,2005(011):7-9.
    4.程志斌,苏子峰,张红兵,等.复合非淀粉多糖酶制剂对肉鸡生长性能及肠道酶活性的影响.饲料工业,2011,32(16):26-30.
    5.邓君明,张曦.影响饲用酶制剂应用效果的因素.广东饲料,2003,12(001):32-35.
    6.丁雪梅,张克英.小麦-豆粕型日粮添加木聚糖酶对艾维茵肉鸡免疫指标、肠道形态和微生物茵群的影响.动物营养学报,2009,21(6):931-937.
    7.付生慧.非淀粉多糖酶谱筛选及酶制剂对肉仔鸡日粮代谢能调控效应的研究.华中农业大学硕士论文,2006.
    8.高峰,江芸,周光宏,等.小麦日粮添加非淀粉多糖酶制剂对雏鸡生长及血液中血糖、尿酸和某些激素水平的影响.养殖与饲料,2004,23(2):4-7.
    9.高峰,周光宏,韩正康.小麦基础日粮添加酶制剂对肉仔鸡生产性能和血液某些指标的影响.南京农业大学学报,2000,23(4):71-75.
    10.高峰,江芸,周光宏,等.小麦基础日粮添加酶制剂对断奶仔猪生长、代谢和血液ILΟ2水平的影响.南京农业大学学报,2002,25(1):57-60.
    11.龚敏,李铁军,杨淑林等.木聚糖酶对小麦中非淀粉多糖体外酶解效果的影响研究.饲料工业,2010,31(024):10-13.
    12.呙于明,彭玉麟.酶制剂的适当选择与高效使用.饲料广角,2001,18:1-4.
    13.韩正康.大麦日粮添加酶制剂影响家禽营养生理及改善生产性能的研究.畜牧与兽医,2000,32(001):1-4.
    14.侯小锋.非淀粉多糖酶制剂对肉仔鸡日粮能量代谢率的调控及其体外评定方法的研究.山西农业大学硕士论文,2005.
    15.黄燕华、冯定远.不同纤维素酶对鹅盲肠微生态及水解碳水化合物酶类的影响.中国畜牧兽医学会动物营养学分会——第九届学术研讨会论文集,2004.
    16.蒋桂韬,张石蕊,胡艳,等.不同来源木聚糖酶对黄羽肉鸡生长性能和养分利用率的影响.家畜生态学报,2010,31(3):50-55.
    17.蒋小红.非淀粉多糖酶制剂对樱桃谷鸭日粮能量代谢调控的研究.湖南农业大学硕士论文,2007.
    18.刘长忠,谢德华,贺永惠,等.高纤维基础日粮添加非淀粉多糖酶制剂对生长鹅生产性能及内分泌的影响.中国兽医学报,2008,28(9):1109-1112.
    19.刘强.我国麦类饲料中非淀粉多糖抗营养作用机理的研究,中国农业科学院博士学位论文.1998.
    20.李成良,张海燕.非淀粉多糖酶对肉鸡生产性能、养分利用率及盲肠微生物的影响.饲料工业,2009,30(006):11-14.
    21.吕秋凤,王振勇,张民,等.非淀粉多糖酶对肉鸡生长性能和养分代谢率的影响.中国畜牧杂志,2010,46(9):49-52.
    22.倪志勇,张克英.不同营养水平饲粮中添加饲用复合酶对肉鸡生产性能的影响研究.四川农业大学学报,2001,19(1):80-85.
    23.牛淑玲,刘静波,陈成功,等.酶制剂对尼克蛋鸡生产性能及蛋品质的影响.黑龙江畜牧兽医,1995.2:6-7.
    24.乔永,雷丽,程时军.非淀粉多糖酶制剂对动物肠道健康的影响.首届饲料酶制剂应用技术论坛暨饲料酶制剂大会论文集,2009.
    25.任美琦,颜瑞,安文俊,等.小麦日粮中添加NSP酶对肉鸭生长性能及血清生化指标的影响.畜牧与兽医,2011,43(1):53-56.
    26.孙哲,汪儆,雷祖玉,等.小麦可溶性非淀粉多糖对肉仔鸡小肠粘膜二糖酶活性的影响.动物营养学报,2003,15(1):26-30.
    27.谭权,张克英,丁雪梅,等.木聚糖酶对不同能量饲料的体外酶解效果研究.动物营养学报,2007,19(5):593-599.
    28.谭权,张克英,丁雪梅,等.木聚糖酶对肉鸡能量饲料养分利用率和表观代谢能值的影响.动物营养学报,2008,20(3):311-317.
    29.王恩玲.非淀粉多糖酶提高肉鸭日粮有效能潜力研究.中国农业科学院硕士学位论文,2008
    30.王纪亭.非淀粉多糖酶在奥尼罗非鱼饲料中的应用及其作用机理的研究.中国农业大学博士学位论文.2006
    31.王晓霞,易中华,计成,等.果寡糖和枯草芽孢杆菌对肉鸡肠道菌群数量、发酵粪中氨气和硫化氢散发量及营养素利用率的影响.畜牧兽医学报,2006,37(004):337-341.
    32.奚刚,许梓荣,钱利纯.添加外源性酶对猪、鸡内源消化酶活性的影响.中国兽医学报,1999.19(3):286-289.
    33.徐建雄,崔立.非淀粉多糖酶对仔猪早期生产性能和消化性能的影响.动物营养学报,2001.13(3):56-59.
    34.许梓荣,王振来.饲粮中添加复合酶制剂(GXC)对仔猪消化机能的影响.中国兽医学报,1999,19(001):84-88.
    35.于世浩,王宝维,范永存,等.益生素和酶制剂对鹅产肝性能与盲肠主要菌群的影响.动物营养学报,2008,20(2):211-216.
    36.曾容愚,张莉莉,王恬.不同能量水平小麦日粮添加非淀粉多糖酶制剂对肉鸡生产性能的影响.动物营养学报,2006,18(004):278-282.
    37.赵敏.非淀粉多糖酶对蛋鸡日粮能量代谢调控的研究.青海大学硕士学位论文,2007.
    38.周晓容.肉鸡饲粮中木聚糖与木聚糖酶关系的研究.四川农业大学硕士学位论文,2003.
    39. Almirall M, Francesch M, Perez-Vendrell A M, et al. The differences in intestinal viscosityproduced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilitiesmore in broiler chicks than in cocks. The Journal of Nutrition,1995,125(4):947-955. M Almirall,
    40. Annison G, Choct M. Anti-nutritive activities of cereal non-starch polysaccharides in broiler dietsand strategies minimizing their effects. World's Poultry Science Journal,1991,47(03):232-242.
    41. Bailey L D. Effects of potassium fertilizer and fall harvests on alfalfa grown on the easternCanadian Prairies. Canadian Journal Soil Science,1983,63:211-219.
    42. Bedford M R and Classen H L. An in vitro assay for prediction of broiler intestinal viscosity andgrowth when fed rye-based diets in the presence of exogenous enzymes. Poultry Science,1993,72(1):137-143.
    43. Bedford M R, Classen H L,Campbell G L. The effect of pelleting, salt, and pentosanase on theviscosity of intestinal contents and the performance of broilers fed rye. Poultry Science,1991,70(7):1571-1577.
    44. Bindelle J, Pieper R, Montoya C, et al. Nonstarch polysaccharide‐degrading enzymes alter themicrobial community and the fermentation patterns of barley cultivars and wheat products in an invitro model of the porcine gastrointestinal tract. Federation of European Microbiological Societiesmicrobiology ecology,2011,76:553-563.
    45. Bourdillon A, Carré B, Conan L, et al. European reference method for the in vivo determination ofmetabolisable energy with adult cockerels: reproducibility, effect of food intake and comparisonwith individual laboratory methods. British Poultry Science,1990,31(3):557-565.
    46. Brenes A, Slominski B A, Marquardt R R, et al. Effect of enzyme addition on the digestibilities ofcell wall polysaccharides and oligosaccharides from whole, dehulled, and ethanol-extracted whitelupins in chickens. Poultry Science,2003,82(11):1716-1725.
    47. Brufau J, Nogareda C, Perez-Vendrell A,et al. Effect of Trichoderma viride enzymes inpelleted broiler diets based on barley. Animal feed science and technology.1991,34(3):193-202
    48. Buchanan N P, Kimbler L B, Parsons A S, et al., The effects of nonstarch polysaccharide enzymeaddition and dietary energy restriction on performance and carcass quality of organic broilerchickens. The Journal of Applied Poultry Research,2007,16(1):1-12.
    49. Canh T T, Aarnink A J A, Bakker G C M, et al. Effect of dietary fermentable carbohydrates on thepH of and the ammonia emission from slurry of growing-finishing pigs. Journal of Animal Science,1996,74:191.
    50. Canh T T, Sutton A L, Aarnink A J, et al. Dietary carbohydrates alter the fecal composition and pHand the ammonia emission from slurry of growing pigs. Journal of Animal Science,1998,76(7):1887-1895.
    51. Canh T T, Verstegen M W, Aarnink A J, et al. Influence of dietary factors on nitrogen partitioningand composition of urine and feces of fattening pigs. Journal of Animal Science,1997,75(3):700-706.
    52. Choct M, Hughes R J, Wang J, et al. Increased small intestinal fermentation is partly responsiblefor the anti-nutritive activity of non-starch polysaccharides in chickens. British Poultry Science,1996,37(3):609-621.
    53. Choct M, Annison G. Anti-nutritive activity of wheat pentosans in broiler diets. British PoultryScience,1990,31(4):811-821.
    54. Choct M,Annison G. Anti-nutritive effect of wheat pentosans in broiler chickens: roles ofviscosity and gut microflora. British Poultry Science,1992,33(4):821-834.
    55. Choct M, Annison G, Trimble R P. Soluble wheat pentosans exhibit different anti-nutritiveactivities in intact and cecectomized broiler chickens. Journal of Nutrition,1992,122(12):2457-2465.
    56. Choct M, Hughes R J, Trimble R P, et al. Non-starch polysaccharide-degrading enzymes increasethe performance of broiler chickens fed wheat of low apparent metabolizable energy. Journal ofNutrition,1995,125(3):485-492.
    57. Choct M, Tukei A,Cadogan D J. Non-starch polysaccharides and enzyme application influence thenet energy value of broiler diets. Australian Poultry Science Symposium.2010:50.
    58. Clark O G, Edeogu I, Leonard J, et al. Manipulation of dietary protein and nonstarchpolysaccharide to control swine manure emissions. Journal of environmental quality,2005,34(5):1461-1466.
    59. Danicke S, Jeroch H, Simon O, et al. Interactions between dietary fat type and exogenous enzymesupplementation of broiler diets based on maize, wheat, triticale or barley. Journal of Animal andFeed Sciences.1999,8(3):467-483.
    60. Elwinger K and Saeterby B. Continued experiments with rapeseed meal of a Swedish lowglucosinolate type fed to poultry,1: Experiments with broiler chickens. Swedish Journal ofAgricultural Research,1986,16(1):27-34.
    61. Engberg R M, Hedemann M S, Steenfeldt S, et al. Influence of whole wheat and xylanase onbroiler performance and microbial composition and activity in the digestive tract. Poultry Science,2004,83(6):925-938.
    62. Englyst H N, Bingham S A, Runswick S A, et al. Dietary fibre (non‐starch polysaccharides) incereal products. Journal of Human Nutrition and Dietetics,1989,2(4):253-271.
    63. Friesen, O D, Guenter W, Marquardtet R R,et al. The effect of enzyme supplementation on theapparent metabolizable energy and nutrient digestibilities of wheat, barley, oats, and rye for theyoung broiler chick. Poultry Science,1992,71(10):1710-1721.
    64. Gilligan W, Reese E T. Evidence for multiple components in microbial cellulases. Canadianjournal of microbiology,1954,1(2):90-107.
    65. Hoberg A,Lindberg J E. Influence of cereal non-starch polysaccharides and enzymesupplementation on digestion site and gut environment in weaned piglets. Animal Feed Scienceand Technology,2004,116(1-2):113-128.
    66. Houdijk J, Bosch M W, Verstegen M W A, et al. Effects of dietary oligosaccharides on the growthperformance and faecal characteristics of young growing pigs. Animal Feed Science andTechnology,1998.71(1-2):35-48.
    67. Idouraine A, Hassani B Z, Claye S S, et al. In vitro binding capacity of various fiber sources formagnesium, zinc, and copper. Journal of agricultural and food chemistry,1995,43(6):1580-1584.
    68. Ikeda K, Kusano T. In vitro inhibition of digestive enzymes by indigestible polysaccharides.Cereal Chemistry,1983,60:260-263.
    69. Inborr J, Schmitz M and Ahrens F. Effect of adding fibre and starch degrading enzymes to abarley/wheat based diet on performance and nutrient digestibility in different segments of the smallintestine of early weaned pigs. Animal Feed Science and Technology,1993,44(1):113-127.
    70. Inborr J, Ogle R B. Effect of enzyme treatment of piglet feeds on performance and post weaningdiarrhoea. Swedish Journal of Agricultural Research,1988,18.(3):129-133.
    71. Irish G G, Balnave D. Non-starch polysaccharides and broiler performance on diets containingsoyabean meal as the sole protein concentrate. Australian Journal of Agricultural Research.1993,44:1483-1499.
    72. Jia W, Slominski B A, Bruce H L, et al. Effects of diet type and enzyme addition on growthperformance and gut health of broiler chickens during subclinical Clostridium perfringenschallenge. Poultry Science,2009,88(1):132-140.
    73. Knudsen K E B, Steenfeldt S, B rsting C F, et al. The nutritive value of decorticated mill fractionsof wheat.1. Chemical composition of raw and enzyme treated fractions and balance experimentswith rats. Animal feed science and technology,1995.52(3):205-225.
    74. Knudsen K E B. Carbohydrate and lignin contents of plant materials used in animal feeding.Animal feed science and technology,1997.67(4):319-338.
    75. Kocher A, Choct M, Porter M D, et al. Effects of feed enzymes on nutritive value of soyabean mealfed to broilers. British Poultry Science,2002,(43)1:54-63.
    76. Kreuzer M, Machmüller A, Gerdemann M M, et al. Reduction of gaseous nitrogen loss from pigmanure using feeds rich in easily-fermentable non-starch polysaccharides. Animal Feed Scienceand Technology,1998,73(1-2):1-19.
    77. Kyriazakis I, Oldham J D. Food intake and diet selection in sheep: the effect of manipulating therates of digestion of carbohydrates and protein of the foods offered as a choice. British Journal ofNutrition,1997,77(02):243-254.
    78. Liu Z, Wang L, Beasley D, et al.. Effect of moisture content on ammonia emissions from broilerlitter: A laboratory study. Journal of Atmospheric Chemistry,2007,58(1):41-53.
    79. Lin P H, Shih B L, Hsu J C. Effects of different sources of dietary non-starch polysaccharides onthe growth performance, development of digestive tract and activities of pancreatic enzymes ingoslings. British Poultry Science.2010,51(2):270-277.
    80. Malathil V, Devegowda G. In vitro Evaluation of Non-starch Polysaccharide Digestibility of FeedIngredients by Enzymes. Poultry Science,2001,80:302-305.
    81. Marquardt R R, Brenes A, Zhang Z, et al. Use of enzymes to improve nutrient availability inpoultry feedstuffs. Animal Feed Science and Technology,1996,60(3):321-330.
    82. Marquardt R R, Brenes A, Zhang Z, et al. Use of enzymes to improve nutrient availability inpoultry feedstuffs. Animal Feed Science and Technology,1996,60(3):321-330.
    83. Meng X, Slominski B A, Nyachoti C M, et al. Degradation of cell wall polysaccharides bycombinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chickenperformance. Poultry Science,2005,84(1):37-47.
    84. Metzler-Zebeli B U, Hooda S, Pieper R, et al. Nonstarch polysaccharides modulate bacterialmicrobiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in thepig gastrointestinal tract. Applied and environmental microbiology,2010,76(11):3692-3701.
    85. Misir R, Marquardt R R. Factors affecting rye (Secale cereale L.) utilization in growing chicks. I.The influence of rye level, ergot and penicillin supplementation. Canadian Journal of AnimalScience,1978,58(4):691-701.
    86. Mikkelsen L L, Jakobsen M, Jensen B B. Effects of dietary oligosaccharides on microbialdiversity and fructo-oligosaccharide degrading bacteria in faeces of piglets post-weaning. AnimalFeed Science and Technology,2003,109(1-4):133-150.
    87. Mock D W, Lamey T C, Ploger B J. Proximate and ultimate roles of food amount in regulatingegret sibling aggression. Ecology,1987:1760-1772.
    88. Nahm K E E H, Carlson C W. Effects of cellulase from Trichoderma viride on nutrient utilizationby broilers. Poultry Science,1985,64(8):1536-1540.
    89. Noy Y, Sklan D. Digestion and absorption in the young chick. Poultry Science,1995,74(2):366-373.
    90. O’Connell J M, Callan J J, O’Doherty J V. The effect of dietary crude protein level, cereal type andexogenous enzyme supplementation on nutrient digestibility, nitrogen excretion, faecal volatilefatty acid concentration and ammonia emissions from pigs. Animal feed science and technology,2006,127(1):73-88.
    91. Odetallah N H, Parks C W, Ferket P R. Effect of wheat enzyme preparation on the performancecharacteristics of Tom turkeys fed wheat-based rations. Poultry science,2002,81(7):987-994.
    92. O’Neill H V M, Liu N, Wang J P, et al. Effect of Xylanase on Performance andApparentMetabolisable Energy in Starter Broilers Fed Diets Containing One Maize Variety Harvested inDifferent Regions of China. Asian-Australasian Journal of Animal Sciences,2012,25(40):515-523.
    93. Philip J S, Gilbert H J, Smithard R R. Growth, viscosity and beta‐glucanase activity of intestinalfluid in broiler chickens fed on barley‐based diets with or without exogenous beta‐glucanase.British Poultry Science,1995,36(4):599-603.
    94. Rebole A, Rodriguez M L, Alzueta C, et al. A short note on effect of enzyme supplement on thenutritive value of broiler chick diets containing maize, soyabean meal and full-fat sunflower seed.Animal feed science and technology,1999,78(1-2):153-158.
    95. Roth-Maier D A, Machmüller A, Kreuzer M, et al. Effects of pectin supplementation on thedigestion of different structural carbohydrate fractions and on bacterial nitrogen turnover in thehindgut of adult sows. Animal feed science and technology,1993,42(3):177-191.
    96. Salih M E, Classen H L, Campbell G L. Response of chickens fed on hull-less barley to dietary[beta]-glucanase at different ages. Animal feed science and technology,1991,33(1-2):139-149.
    97. Saleh F, Tahir M, Ohtsuka A, et al. A mixture of pure cellulase, hemicellulase and pectinaseimproves broiler performance. British poultry science,2005,46(5):602-606.
    98. Scott M L, Nasheim M C,Young R J. Nutrition of the Chicken.3rd Edition. Ithaca,NY,CornellUniversity.1982.
    99. Selle P H, Ravindran V, Ravindran G, et al. Influence of phytase and xylanase supplementation ongrowth performance and nutrient utilisation of broilers offered wheat-based diets. AsianAustralasian Journal of Animal Sciences,2003,16(3):394-402.
    100.Simbaya J, Slominski B A, Guenter W,et al. The effects of protease and carbohydrasesupplementation on the nutritive value of canola meal for poultry: in vitro and in vivo studies.Animal Feed Science and Technology,1996,61(1-4):219-234.
    101.Smits C, Annison G. Non-starch plant polysaccharides in broiler nutrition–towards aphysiologically valid approach to their determination. World's poultry science journal,1996,52(02):203-221.
    102.Smits C H M, Annison G. Non-starch plant polysaccharides in broiler nutrition-towards aphysiologically valid approach to their determination. World's poultry science journal,1996,52(2):203-222.
    103.Saleh F, Tahir M, Ohtsuka A, et al. A mixture of pure cellulase, hemicellulase and pectinaseimproves broiler performance. British poultry science,2005,46(5):602-606.
    104.Van Der Klis J D, Van Voorst A,Van Cruyningen C. Effect of a soluble polysaccharide (carboxymethyl cellulose) on the physico‐chemical conditions in the gastrointestinal tract of broilers.British Poultry Science,1993,34(5):971-983.
    105.Wang Z R, Qiao S Y, Lu W Q, et al. Effects of enzyme supplementation on performance, nutrientdigestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilersfed wheat-based diets. Poultry science,2005,84(6):875-881.
    106.Yu B, Hsu J C, Chiou P W S. Effects of [beta]-glucanase supplementation of barley diets ongrowth performance of broilers. Animal Feed Sscience and Technology,1998,70(4):353-361.
    107.Zhou Y, Jiang Z, Lv D, et al. Improved energy-utilizing efficiency by enzyme preparationsupplement in broiler diets with different metabolizable energy levels. Poultry science,2009,88(2):316-322.
    108.Zanella I, Sakomura N K, Silversides F G, et al. Effect of enzyme supplementation of broiler dietsbased on corn and soybeans. Poultry Science,1999,78(4):561-568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700