用户名: 密码: 验证码:
超支化聚酰胺胺的合成及其功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类具有准球形结构的高度支化大分子,在其不规则的分子结构中含有大量内部空穴和末端官能团。由于超支化聚合物独特的结构和性能特点,目前它已成为高分子领域的研究热点。经过近20年的发展和探索,人们在超支化聚合物的合成、结构表征、功能化改性等方面已经取得了重要进展,尤其是超支化聚合物的合成方法已经趋于全面和成熟,这为超支化聚合物的应用开发奠定了坚实的基础。但是,在超支化聚合物的研究中还有许多问题亟待解决,如基础理论的完善、未知性能的挖掘、新颖现象的解释、应用领域的拓展等等。本文在综述前人有关超支化聚合物工作的基础上,在超支化聚合物的功能化方面做了一些新的探索和研究。基于本课题组有关官能团非等活性单体对的合成策略,设计合成了一类功能性的超支化聚酰胺胺,并且通过不同的改性手段得到了更多具有实际应用前景的功能材料。研究工作中,制备得到了超支化聚合物凝胶因子;将超支化聚酰胺胺用于复合自组装,并通过化学交联制备得到了结构稳定的功能性聚合物空心微球;将超支化聚合物同时作为稳定剂和还原剂,得到了具有高效抗菌性能的胶体金属纳米粒子水分散液;通过质子化、引入阴离子配体和交联改性,得到了具备一定强度的多功能聚合物膜材料,其表现出有趣的质子传导特性和独特的客体分子吸附性能。具体研究内容和主要结论概括如下:
     1.超支化聚酰胺胺凝胶因子的合成及物理凝胶的制备
     合成了一类新型的超支化聚合物凝胶因子,即由N,N-亚甲基双丙烯酰胺和1-(2-胺乙基)哌嗪通过迈克尔加成聚合得到的端氨基超支化聚酰胺胺。聚合过程中,1-(2-胺乙基)哌嗪中各类胺的非等活性是形成支化结构的关键因素,所得超支化聚合物的支化度借助二维核磁进行了系统表征。该超支化聚合物可在多种有机溶剂中组装形成稳定的物理凝胶,包括N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAC)、二甲亚砜(DMSO)、N-甲基吡咯烷酮(NMP)和吡啶等,其对DMF的凝胶化能力尤为强烈,临界凝胶浓度约为2.5 mg/mL。所形成的物理凝胶具有温度响应性,即在加热的条件下形成聚合物透明溶液,冷却形成非流动的固态凝胶,此过程可逆。冷冻透射电镜测试结果表明,所得物理凝胶的微结构由开放式的连续的聚合物网络构成。进一步研究表明,超支化聚合物分子之间的相互氢键作用是形成物理凝胶的驱动力。在溶液状态,聚合物分子间氢键较弱,随着温度降低,分子间氢键加强,导致分子相互插入、聚集,进而组装形成连续的聚合物网络,得到不可流动的物理凝胶,HPMA分子中的酰胺单元和各类胺单元都参与了氢键的形成。此外,所得凝胶还体现出了典型的物理凝胶特征动力学行为。
     2.超支化聚酰胺胺与聚丙烯酸的复合自组装及交联空心微球的制备
     采用超支化聚酰胺胺/线性聚丙烯酸聚合物对(h-PAMAM/l-PAA),在水溶液中进行复合自组装并采用壳层化学交联的手段,制备得到了一种新型的聚合物空心微球。通过调控组装溶液的pH值,可以得到形貌丰富的复合自组装体,包括纳米级的实心粒子和纳米至微米级的囊泡。当pH < 2.1时,形成了由无规堆积的l-PAA内核和质子化的h-PAMAM外层组成的实心球形粒子;当pH > 7.5时,形成了由无规堆积的h-PAMAM内核和溶剂化的l-PAA外层组成的实心球形粒子;而当组装溶液的pH在2.1 - 7.3范围内,复合组装体由实心粒子转变成囊泡中空聚集体,而且在pH = 4.6附近,囊泡内外壁结构发生了翻转。研究中采用光学显微镜、分光光度计、TEM以及zeta电位等测试手段,探索了复合体在水中的自组装行为及组装机理,其自组装的驱动力为疏水-亲水平衡作用以及h-PAMAM中各类胺单元与l-PAA中羧基的特殊相互作用。进一步采用交联剂戊二醛交联,可将所得囊泡的空心结构固定下来,得到稳定的PAMAM空心微球,该聚合物空心微球能同时作为模板剂和还原剂,在水溶液中与金属前驱体反应,制备得到负载有银、金或钯等贵重金属纳米粒子的杂化微球,其中金、银和钯的含量分别达到15.2 wt%、12.3 wt%和8.0 wt%,这类杂化微球在金属催化领域具有潜在的应用价值。在制备复合囊泡、交联空心微球和负载贵重金属纳米粒子的过程中,无需复杂的物理/化学过程,简便高效。
     3.超支化聚酰胺胺同时作为稳定剂和还原剂制备具有优异抗菌性能的胶体金属纳米粒子
     采用超支化聚合物(即端氨基超支化聚酰胺胺HPAMAM-NH2)同时作为稳定剂和还原剂,通过简便、有效、绿色的方法,制备得到了具有优异抗菌性能的胶体银纳米粒子,采用FTIR、UV-vis、TEM、EDS和XRD等表征手段证实了银纳米粒子的生成。本方法制备的银纳米粒子水分散性好且粒径小,平均粒径为4-15 nm,并且,通过改变聚合物的添加量(即N/Ag加料摩尔比)便可有效控制其粒径大小。进一步研究发现,聚合物中的超支化结构、酰胺单元、哌嗪环和叔胺单元在还原和稳定过程中起到了协同作用,它们的共存使得该超支化聚合物具备了优良的还原能力和稳定化作用。所得HPAMAM-NH2/Ag纳米复合物能够有效抑制多种革氏阳性和革氏阴性细菌的生长和繁殖,这些细菌包括Staphylococcus aureus、Bacillus subtilis、Escherichia coli和Klebsiella mobilis等,当银的浓度仅为2.7μg/mL时,其抑菌率能高达95%以上。所得金属纳米粒子的粒径小,从而具有较大的比表面积,显现出优异的抗菌效果;同时由于质子化超支化聚酰胺胺具有阳离子特性,其对抗菌效果也起到一定的协同作用。该方法还能进一步拓展,如采用端二甲胺基的超支化聚酰胺胺HPAMAM-N(CH3)2亦能制备稳定的胶体银或金纳米粒子,它们对细菌和真菌都具有高效的抗菌性能。所得纳米粒子的粒径可在1.0-8.5 nm范围内可调,当银的含量为2.0μg/mL或金的浓度为2.8μg/mL时,所得纳米复合物的抑菌率均能达到98%以上。
     4.通过改性超支化聚酰胺胺制备具有良好质子传导性的交联聚合物电解质膜
     采用质子化、引入三氟甲磺酸根(Tf2N-)和末端自交联的方法,对合成所得的端双键超支化聚酰胺胺进行改性,成功制备了一系列结构新颖的交联聚合物电解质膜。在聚合物交联网络的支化微区中,存在不同含量的质子产生位点(即质子化叔胺)和疏水性Tf2N-的自发聚集区。所得聚合物电解质膜具备良好的机械强度和热稳定性,吸水率为8.4-24.5%。在30-80℃的温度范围内,所得聚合物电解质膜的质子传导率在10-5-10-2 S/cm数量级范围,并且其质子传导率随质子化率的增加而提高。AFM结果表明,聚合物膜中亲水的质子产生位点和疏水的Tf2N-聚集区产生了微相分离,从而形成了局部连续的亲水簇,它们能够充当质子传输通道的作用,有利于产生良好的质子传导性。这种聚合物电解质膜在聚合物电解质燃料电池(PEFCs)和其它电化学领域有着潜在的应用。
     5.基于超支化聚酰胺胺改性制备具有独特吸附性能的交联聚合物膜主体材料
     通过对合成端双键超支化聚酰胺胺进行类似的改性,制备得到了具有一定机械强度的聚合物膜主体材料c-HP,它对客体染料分子和金属离子表现出独特的吸附性能。一方面,聚合物膜c-HP能够高效地吸附不同种类的水溶性染料。在每升染料溶液中,每克聚合物膜对染料的吸附能力能达到0.3 g/L,染料溶液的脱色率达98%以上。更重要的是吸附了染料的聚合物膜还可再生和重复使用,且可保持对染料的吸附效率不变。这种特性可归结于聚合物膜的特殊分子结构,如聚合物膜中的三维交联网络、支化微结构中的大量空穴、亲水性质子化叔胺单元和疏水性Tf2N-聚集区。另一方面,经碱处理后的聚合物膜c-HP不仅能从水溶液中吸附贵重金属离子,并可将其原位还原生成金属单质,得到含有银、金、钯或铂纳米粒子的聚合物杂化膜,膜中的纳米粒子分布均匀,尺寸小(几个纳米至几十个纳米),此吸附过程中,聚合物膜同时起到了模板剂和还原剂的作用。该聚合物膜主体材料的应用过程中,仅采用简便的水溶液浸泡法,因而在废水处理与金属催化等领域具有潜在的应用优势。
     总而言之,本论文中合成超支化聚酰胺胺的简便方法为超支化聚合物的规模化生产提供了可行方案,而且,基于该超支化聚合物改性制备不同种类功能性材料的探索与开发,为超支化聚合物的学术研究和实际应用提供了重要信息。
Hyperbranched polymers are a novel kind of three dimensional torispherical irregular macromolecules possessing highly branched architectures, many inner cavities and a large amount of terminal functional groups. Due to their unique molecular structures and properties, hyperbranched polymers have become the hot topics in many R&D fields. Up to date, the great progress has been made in the synthesis, characterization, modification, and application of hyperbranched polymers. Especially, various synthesis methodologies have been developed during the past two decades, which provide the promising chance for their applications. However, many problems still need to be resolved, such as how to perfect the theories, how to explore the unknown features, how to explain new phenomena and spread the application fields. In this dissertation, the previous studies of hyperbranched polymers are summarized firstly, including their synthesis, properties and applications. Based on them, some creative investigations are conducted in the synthesis and modification of hyperbranched polymers to obtain various functional materials. A novel kind of functional hyperbranched polyamidoamins are designed and synthesized via the A2+BB’2 strategy. Several interesting functional materials are further generated by the modification of the resulting hyperbranched polymers. In our research works, (1) the first hyperbranched polymer gelator, i.e., the amine-terminated hyperbranched polyamidoamine is investigated systematically. (2) The hyperbranched polyamidoamine is successfully used to form the hollow spheres (i.e., vesicles) via complex self-assembly, and the hollow spheres are further stabilized by chemical cross-linking. (3) Besides, the hyperbranched polyamidoamines are served as both reductants and stabilizers to prepare the stable colloid metal nanoparticles with highly antimicrobial activities. (4) In addition, the multifunctional polymer films with enough mechanical strength are prepared from modification of the hyperbranched polyamidoamines. The films show promising proton-conductive behavior and effective binding abilities to various guest molecules. The details and key conclusions are described as follows:
     1. Synthesis of the Amino-terminated Hyperbranched Polyamidoamine Gelator and the Formation of Physical Gel
     A novel kind of hyperbranched polymer gelator, i.e., the amino-terminated hyperbranched polyamidoamine, is obtainted successfully. It is synthesized by the Michael addition polymerization of N,N’-methylene bisacrylamide (MBA) and 1-(2-aminoethyl)piperazine (AEPZ). The unequal reactivity of the various amines in AEPZ leads to the formation of the hyperbranched structure in the polymerization. The degree of branching (DB) is characterized with the assistance of 2D NMR. The resulting polymer can self-assemble into the thermo-reversible physical gel in DMF, DMAC, pyridine, DMSO or NMP. Its gelation ability to DMF is the strongest among them, with the critical gelation concentration (CGC) being as low as 2.5 mg/mL. The microstructure of the gel consists of continuous and open network on the nano scale revealed by cryo-TEM. It is further revealed that the driving force of the gelation is ascribed to the hydrogen bonds among amide and amine groups in the highly branched macromolecules. Besides, the gels also exhibit the typical dynamic mechanical behavior of physical gels.
     2. Hollow Spheres Based on Complex Self-assembly of Hyperbranched PAMAM/Linear PAA Polymer Pair and Their Functionization
     A novel kind of polymer hollow spheres are prepared successfully based on the complex self-assembly of the hyperbranched PAMAM/linear PAA (h-PAMAM/l-PAA) polymer pair in aqueous solution. By adjusting the solution pH, the assembled aggregates of nanoparticles or vesicles are formed When the pH is lower than 2.1, the assembled aggregates are nanoparticles with l-PAA as the core and the prontonated h-PAMAM as the shell. On the contrary, when the pH is upper than 7.5, the resulting nanoparticles consist of the inner h-PAMAM and outer layer of the solvated l-PAA. When the pH is in the range from 2.1 to 7.3, the aggregates become into vesicles and exhibit the typical hollow structure. Interestingly, at ca. pH 4.6, the vesicle conversion happens. The optical microscopy, UV-vis spectrometer, TEM and zeta potential are adopted to investigate the behaviour and mechanism of the complex self-assembly. The driving forces of the complex self-assembly are ascribed to hydrophilic-hydrophobic balance and the specific interactions between the carboxylic acid groups of l-PAA and various amine units of h-PAMAM. Since the self-assembled vesicles are sensitive to the environment changes, we try to use glutaric dialdyde (GDA) as a cross-linker to stabilize their hollow structures. The resulting cross-linked hollow spheres are very stable and they can be used to encapsulate various noble metallic cations and reduce them into nanoparticles in situ. In the resulting hybrid hollow spheres, the content of Au, Ag or Pd reaches 15.2 wt%, 12.3 wt%, or 8.0 wt% respectively. Such hybrid materials may be suitable for the potential applications in metal catalysis.
     3. Hyperbranched Polyamidoamines as Both Reducing and Stabilizing Agents to Form Colloid Metal Nanoparticles Facilely and Their Highly Antimicrobial Activity
     A facile and green method is described to prepare the stable colloid silver nanoparticles in aqueous solution by utilizing the amine-terminated hyperbranched poly(amidoamine) (HPAMAM-NH2) both as stabilizer and reductant. The formation of silver nanoparticles is verified by FTIR, UV-vis, TEM, EDS and XRD measurements. The well-dispersed colloid silver nanoparticles with small particle sizes are obtained. And the average particle size can be controlled effectively from ca. 15 to 4 nm by simply adjusting the molar ratio of N/Ag in feed. The antibacterial activity of the HPAMAM-NH2/Ag nanocomposites is also investigated against Gram-positive and Gram-negative bacteria. They are able to inhibit the growth and multiplication of several kinds of bacteria efficiently, such as Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Klebsiella mobilis. The bacterial inhibition ratio reaches up to 95% at a low silver concentration of 2.7μg/mL. This method can also be extended to other derivative systems. Typically, a series of colloid silver or gold nanoparticles (AgNPs or AuNPs) are also successfully prepared by in situ reduction and stabilization of hyperbranched poly(amidoamine) with terminal dimethylamine groups (HPAMAM-N(CH3)2) in water, and they all exhibit highly antimicrobial activity. The particle size can be adjustable from ca. 8.5 and 1.0 nm. The bacterial inhibition ratio reaches up to ca. 98% at the low silver (or gold) content of 2.0μg/mL (or 2.8μg/mL). The resulting metal NPs with smaller particle size can provide much more effective contact surface with the bacteria, thus enhancing their antimicrobial efficiency. Besides, the cationic nature of the hyperbranched PAMAMs can also do some contribution to the antimicrobial activity. The coexistence of the amide moieties, piperazine rings and tertiary amine groups in the hyperbranched structure is important to their effective reducing and stabilizing abilities. Besides, it is note worthy that many terminal functional groups in the hyperbranched PAMAMs can be modified to fabricate series of promising antibacterial materials.
     4. The Polymer Electrolyte Film with Proton Conductive Properties by Modification of Hyperbranched Polyamidoamine
     A series of novel crosslinked polymer electrolyte membranes are successfully prepared based on the modification of a hyperbranched poly(amidoamine) with terminal vinyl groups. The membranes possess the different contents of proton-generating sites (i.e., protonated tertiary amine groups) and triflate (Tf2N-) in the crosslinked network. They show good mechanical and thermal stability. The water uptakes of them are ca. 8.4-24.5%. Their proton conductivity is in the order of ca. 10-5-10-2 S/cm from 30 to 80 oC, and it increase with improving the protonation ratio. AFM results disclose the micro-phase separation of the hydrophilic proton-generating sites and the hydrophobic domains of Tf2N- ions. The resulting locally continuous hydrophilic clusters provide proton transport channels to produce the high proton conductivity. This kind of polymer electrolyte membranes may have potential applications in PEFCs and other electrochemical fields.
     5. A Robust Film Generated from Hyperbranched Polyamidoamine as Host Material and Its Efficient Binding Abilities
     A functional film (named as c-HP) with enough mechanical strength is prepared by the modification of the hyperbranched polyamidoamine and it shows effective binding properties to dyes and metal cations. On the one hand, the film c-HP can encapsulate various water-soluble dyes efficiently, and it can be regenerated and used repeatedly without decreasing its binding efficiency. The effective dye encapsulation ability is attributed to its unique molecular structure, i.e., three dimensional cross-linked networks, the numerous cavities in the branched microstructure, the coexistence of the hydrophilic protonated tertiary amine groups and the hydrophobic assembly of triflate (Tf2N-). On the other hand, the base-treated film c-HP is also able to absorb silver cations (Ag+) from silver nitrate (AgNO3) aqueous solution and reduce Ag+ into Ag0 in situ, producing the hybrid films containing Ag nanoparticles. In this process, the film c-HP exhibits the self-reduction and stabilization role due to the numerous amino groups in the branched points. Furthermore, its binding properties can be extended to some other noble metals like gold (Au), palladium (Pd) and platinum (Pt). As a result, this kind of polymer film material may have promising applications in the fields of dye wastewater treatment and metal catalysis.
     In one word, the facile preparation of hyperbranched polyamdioamines pays the way for their large-scale production and wide applications. The modification exploring and studies on such kind of hyperbranched polymers to obtain various functional materials provide some important information for the academic researches and the applied fields.
引文
1. Kim YH. Highly branched Polymers. Adv. Mater. 1992, 4, 764-766
    2. Kim YH, Webster OW. Hyperbranched Polyphenylenes. Macromolecules 1992, 25, 5561-5572
    3. Kim YH, Beckerbauer R. Role of End Groups on the Glass Transition of Hyperbranched Polyphenylene and Triphenylbenzene Derivatives. Macromolecules 1994, 27, 1968-1971
    4. Flory PJ. Molecular Size Distribution in Three Dimensional Polymers. VI. Branched Polymers Containing A-R-Bf-1 Type Units. J. Am. Chem. Soc. 1952, 74, 2718-2723
    5. Flory PJ. In: Principle of Polymer Chemistry, Chap. 9. Ithaca, New York: Cornell University Press, 1953
    6. Kim YH. Hyperbranched polyarylene. 4857630. 1987
    7. Inoue K. Functional Dendrimers, Hyperbranched and Star Polymers. Prog. Polym. Sci. 2000, 25, 453-571
    8. Gao C, Yan DY. Hyperbranched Polymers: From Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183-275
    9. Frechet JMJ. Tomalia DA. Dendrimer and Other Dendritic Polymers. New York: John Wiley & Sons Ltd, 2002
    10.谭惠民,罗运军.超支化聚合物,北京:化学工业出版社, 2005
    11. Tomalia DA, Baker H, Dewald J, Hall M, Kallos M, Martin S, Roeck J, Ryder J, Smith P. A New Class of Polymers: Starburst-dendritic Macromolecules. Polym. J. 1985, 17, 117-132
    12. Newkome G R, Yao Z, Baker GR, Gupta VK. Micelles. Part 1. Cascade Molecules: a New Approach to Micelles. A [27]-arborol. J. Org. Chem. 1985, 50, 2003-2004
    13.谭惠民,运军等.枝形聚合物,北京:化学工业出版社, 2002
    14. Kim, YH, Webster OW. Water-soluble Hyperbranched Polyphenylene:“A Unimolecular Micelle”? J. Am. Chem. Soc. 1990, 112, 4592-4593
    15. Kim, YH. Hyperbranchecs Polymers 10 Years After. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1685-1698
    16. Hawker, CJ, Lee R, Frechet, JMJ. One-step Synthesis of Hyperbranched Dendritic Polyesters. J. Am. Chem. Soc. 1991, 113, 4583-4588
    17. Uhrich, KE, Hawker CJ, Frechet JMJ, Turner SR. One-pot Synthesis of Hyperbranched Polyethers. Macromolecules 1992, 25, 4583-4587
    18. Spindler R, Frechet JMJ. Synthesis and Characterization of Hyperbranched Polyurethanes Prepared from Blocked Isocyanate Monomers by Step-growth Polymerization. Macromolecules 1993, 26, 4809-4813
    19. Hult A, Malmstroem E, Johansson M. UV-curing of Acrylate Functional Hyperbranched Polyesters. Polym. Mater. Sci. Eng. 1995, 72, 528-529
    20. Malmstroem E, Johansson M, Hult A. Hyperbranched Aliphatic polyesters. Macromolecules 1995, 28, 1698-1703
    21. Hult A, Johansson M, Malmstrom E. Branched Polymers II: Hyperbranched Polymers. Adv. Polym. Sci. 1999, 143, 1-34
    22. Muller AHE, Yan DY, Wulkow M. Molecular Parameters of Hyperbranched Polymers Made by Self-condensing Vinyl Polymerization. 1. Molecular Weight Distribution. Macromolecules 1997, 30, 7015-7023
    23. Yan DY, Muller AHE, Matyjaszewski K. Molecular Parameters of Hyperbranched Polymers Made by Self-condensing Vinyl Polymerization. 2. Degree of Branching. Macromolecules 1997, 30, 7024-7033
    24. Yan DY, Zhou ZP, Muller AHE. Molecular Weight Distribution of Hyperbranched Polymers Generated by Self-condensing Vinyl Polymerization in Presence of a Multifunctional Initiator. Macromolecules 1999, 32, 245-250
    25. Litvinenko GI, Simon PFW, Muller AHE. Molecular Parameters of Hyperbranched Copolymers Obtained by Self-condensing Vinyl Copolymerization. 2. Non-equal Rate Constants. Macromolecules 2001, 34, 2418-2426
    26. Hawker CJ, Chu PK. Hyperbranched Poly(ether ketones): Manipulation of Structure and Physical Properties. Macromolecules 1996, 29, 4370-4380
    27. Hawker CJ, Frechet JMJ, Grubbs RB, Dao J. Preparation of Hyperbranched and Star Polymers by a Living, Self-condensing Free-radical Polymerization. J. Am. Chem. Soc. 1995, 117, 10763-10764
    28. Kumar A, Meijer EW. Novel Hyperbranched Polymer Based on Urea Linkages. Chem. Commun. 1998, 1629-1630
    29. Frey H, Holter D. Degree of Bnching in Hperbranched Plymers. 3. Copolymerization of AB(m)-monomers with AB and AB(n)-monomers. Acta Polym. 1999, 50, 67-76
    30. Voit B. Hyperbranched Polymers-All Problems Solved After 15 Years of Research? J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 2679-2699
    31. Jikei M, Kakimoto MA. Hyperbranched Polymers: A Promising New Class of Materials. Prog. Polym. Sci. 2001, 26, 1233-1285
    32. Yang G, Jikei M, Kakimoto MA. Synthesis and Properties of Hyperbranched Aromatic Polyamide. Macromolecules 1999, 32, 2215-2220
    33. Hao JJ, Jikei M, Kakimoto MA. Preparation of Hyperbranched Aromatic Polyimides via A2+B3 Approach. Macromolecules 2002, 35, 5372-5381
    34. Wooley KL, Hawker CJ, Frechet JMJ. Hyperbranched Macromolecules via a Novel Double-stage Convergent Growth Approach. J. Am. Chem. Soc. 1991, 113, 4252-4261
    35. Bolton DH, Wooley KL. Synthesis and Characterization of Hyperbranched Polycarbonates. Macromolecules 1997, 30, 1890-1896
    36. Cheng C, Wooley KL, Khoshdel E. Hyperbranched Fluorocopolymers by Atom Transfer Radical Self-condensing Vinyl Copolymerization. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 4754-4770
    37. Thompson DS, Markoski LJ, Moore JS, Sendijarevic I, Lee A, McHugh AJ. Synthesis and Characterization of Hyperbranched Aromatic Poly(ether imide)s with Varying Degrees of Branching. Macromolecules 2000, 33, 6412-6415
    38. Thompson DS, Markoski LJ, Moore JS. Rapid Synthesis of Hyperbranched Aromatic Polyetherimides. Macromolecules 1999, 32, 4764-4768.
    39. Yan DY, Zhou ZP. Molecular Weight Distribution of Hyperbranched Polymers Generated from Polycondensation of AB2 Type Monomers in the Presence of Multifunctional Core Moieties. Macromolecules 1999, 32, 819-824
    40. Yan DY, Gao C. Hyperbranched Polymers Made from A2 and BB’2 Type Monomers. 1. Polyaddition of 1-(2-Aminoethyl)piperazine to Divinyl Sulfone. Macromolecules 2000, 33, 7693-7699
    41. Gao C, Yan DY. Synthesis of Hyperbranched Polymers from Commercially Available A2 and BB’2 Type Monomers. Chem. Commun. 2001, 107-108
    42. Gao C, Yan DY. Polyaddition of B2 and BB’2 Type Monomers to A2 Type Monomer. 1. Synthesis of Highly Branched Copoly(sulfone-amine)s. Macromolecules 2001, 34, 156-161
    43. Gao C, Xu YM, Yan DY, Chen W. Water-soluble Degradable Hyperbranched Polyesters: Novel Candidates for Drug Delivery? Biomacromolecules 2003, 4, 704-712
    44. Wang D, Liu Y, Hong CY, Pan CY. Preparation and Characterization of Novel Hyperbranched Poly(amido amine)s from Michael Addition Polymerizations of Trifunctional Amines with Diacrylamides. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5127-5137
    45. Hong C-Y, You Y-Z, Wu D-C, Liu Y, Pan C-Y. Thermal Control over the Topology of Cleavable Polymers: From Linear to Hyperbranched Structures. J. Am. Chem. Soc. 2007, 129, 5354-5355
    46. Ba X, Wang H, Zhao M, Li M. Conversion Dependence of the Average Mean-Square Radii of Gyration for Hyperbranched Polymers Formed by ABg Type Monomers. Macromolecules 2002, 35, 3306-3308
    47. Ba X, Wang H, Zhao M, Li M. Conversion Dependence of the z-Average Mean Square Radii of Gyration for Hyperbranched Polymers with Excluded Volume Effect. Macromolecules, 2002, 35, 4193-4197
    48. Xu RL, Liu HW, Shi WF. Photofluorescence of Hyperbranched Poly(phenylene sulfide). J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 826-831
    49. Wei HY, Lu Y, Shi WF, Yuan HY, Chen YL. UV Curing Behavior of Methacrylated Hyperbranched Poly(amine-ester)s. J. Appl. Polym. Sci. 2001, 80, 51-57
    50. Yang JL, He QG, Lin HZ, Fan JJ, Bai FL. Characteristics of Twisted Intramolecular Charge-transfer State in a Hyperbranched Conjugated Polymer. Macromol. Rapid Commun. 2001, 22, 1152-1157
    51. Yang JL, Lin HZ, He QG, Ling LS, Zhu CF, Bai FL. Composition of Hyperbranched Conjugated Polymers with Nanosized Cadmium Sulfide Particles. Langmuir 2001, 17, 5978-5983
    52. Qiao J, Yang CH, He QG, Bai FL, Li YF. Hyperbranched Conjugated Polymers for Photovoltaic Applications. J. Appl. Polym. Sci. 2004, 92, 1459-1466
    53. Chen H, Yin J. Synthesis and Characterization of Hyperbranched Polyimides with Good Organosolubility and Thermal Properties Based on a New Triamine and Conventional Dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3804-3814
    54. Chen H, Yin J. Synthesis and Characterization of Negative-type Photosensitive Hyperbranched Polyimides with Excellent Organosolubility from an A2+B3 Monomer System. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 1735-1744
    55. Wang XL, Chen JJ, Hong L, Tang XZ. Synthesis and Ionic Conductivity of Hyperbranched Poly(glycidol). J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 2225-2230
    56. Hong L, Cui YJ, Wang XL, Tang XZ. Synthesis of a Novel One-pot Approach of Hyperbranched Polyurethanes and Their Properties. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 344-350
    57. Li M, Yang XH, Liu YH, Wang XL. Synthesis and Characterization of New Hyperbranched Polymers with Only Inner Functional Groups Modified. J. Appl. Polym. Sci. 2006, 101, 317-322
    58. Frechet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc MR, Grubbs RB. Self-condensing Vinyl Polymerization-An Approach to Dendritic Materials. Science 1995, 269, 1080-1083
    59. Chang HT, Frechet JMJ. Proton-transfer Polymerization: A New Approach to Hyperbranched Polymers. J. Am. Chem. Soc. 1999, 121, 2313-2314
    60. Suzuki M, Li A, Saegusa T. Multibranching Polymerization: Palladium-catalyzed Ring-opening Polymerization of Cyclic Carbamate to Produce Hyperbranched Dendritic Polyamine. Macromolecules 1992, 25, 7071-7072
    61. Bednarek M, Biedron T, Helinski J, Kaluzynski K, Kubisa P, Penczek S. Branched Polyether with Multiple Primary Hydroxyl Groups: Polymerization of 3-ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commun. 1999, 20, 369-372
    62. Jikei M, Chon SH, Kakimoto MA, Kawauchi S, Imase T, Watanebe J. Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid. Macromolecules 1999, 32, 2061-2064
    63. Emrick T, Chang HT, Frechet JMJ. An A2+B3 Approach to Hyperbranched Aliphatic Polyethers Containing Chain End Epoxy Substituents. Macromolecules 1999, 32, 6380-6382
    64. van Benthem RATM, Meijerink N, Gelade E, de Koster CG, Muscat D, Froehling PE, Hendriks PHM, Vermeulen, CJAA, Zwartkruis TJG. Synthesis and Characterization of Bis(2-hydroxypropyl)amide-based Hyperbranched Polyesteramides. Macromolecules 2001, 34, 3559-3566
    65. Kim YH, Webster OW. Hyperbranched Polyphenylenes. Polymer preprints 1988, 29, 310-311
    66. Magnusson H, Malmstrom E, Hult A. Structure Buildup in Hyperbranched Polymers from 2,2-bis(hydroxymethyl)propionic Acid. Macromolecules 2000, 33, 3099-3104
    67. Mock A, Burgath A, Hanselmann R, Frey H. Synthesis of Hyperbranched Aromatic Homo- and Copolyesters via the Slow Monomer Addition Method. Macromolecules 2001, 34, 7692-7698
    68. Zhai X, Peleshanko S, Klimenko NS, Genson KL, Vaknin D, Vortman MY, Shevchenko VV, Tsukruk VV. Amphiphilic Dendritic Molecules: Hyperbranched Polyesters with Alkyl-terminated Branches. Macromolecules 2003, 36, 3101-3110
    69. Jayakannan M, Ramakrishnan S. A Novel Hyperbranched Polyether by Melt Transetherification. Chem. Commun. 2000, 1967-1968
    70. Kumar A, Ramakrishnan S. A Novel One-Pot Synthesis of Hyperbranched Polyurethanes. Chem. Comm. 1993, 1453-1454
    71. Bruchmann B, Schrepp W. The AA* plus B*B2 approach-A simple and Convenient Synthetic Strategy Towards Hyperbranched Polyurea-urethanes. E-Polymers 2003
    72. Brenner AR, Schmaljohann D, Voit BI, Wolf D. Hyperbranched Polyesters and Polyamides by the ABx Polycondensation Process. Macromolecular Symposia 1997, 122, 217-222
    73. Feast WJ, Aldersley SJ, Findlay P, Rannard SP. Approaches to Water-soluble Aliphatic Hyperbranched Polyamides. Polymer preprints 2001, 42, 390-391
    74. Mathias LJ, Carothers TW. Hyperbranched Poly(siloxysilanes). J. Am. Chem. Soc. 1991, 113, 4043-4044
    75. Miravet JF, Frechet JMJ. New Hyperbranched Poly(siloxysilanes): Variation of the Branching Pattern and End-functionalization. Macromolecules 1998, 31, 3461-3468
    76. Voit B. New Developments in Hyperbranched Polymers. J. Polym. Sci., Part A: Polym. Chem., 2000 38, 2505-2525
    77. Gaynor SG, Edelman S, Matyjaszewski K. Synthesis of Branched and Hyperbranched Polystyrenes. Macromolecules 1996, 29, 1079-1081
    78. Grubbs RB, Liu MJ, Frechet JMJ. Cationic Self-Condensing Vinyl Polymerization: Hyperbranched Polystyrenes. Polym. Mat. Sci. Eng. 1997, 77, 197-198
    79. Sakamoto K, Aimiya T, Kira M. Preparation of Hyperbranched Polymethacrylates by Self-condensing Group Transfer Polymerization. Chemistry Letters 1997, 1245-1246
    80. Simon PFW, Radke W, Muller AHE. Hyperbranched Methacrylates by Self-condensing Group Transfer Polymerization. Macromol. Rapid Commun. 1997, 18, 865-873
    81. Jia Z, Chen H, Zhu X, Yan D. Backbone-Thermoresponsive Hyperbranched Polyethers. J. Am. Chem. Soc. 2006, 128, 8144-8145
    82. Gunatillake PA, Odian G, Tomalia DA. Thermal Polymerization of a 2-(Carboxyalkyl)-2-oxazoline. Macromolecules 1988, 21,1556-1562
    83. Liu MJ, Vladimirov N, Frechet JMJ. A New Aapproach to Hyperbranched Polymers by Ring-opening Polymerization of an AB Monomer: 4-(2-Hydroxyethyl)-epsilon-caprolactone. Macromolecules 1999, 32, 6881-6884
    84. Chen Y, Bednarek M, Kubisa P, Penczek S. Synthesis of Multihydroxyl Branched Polyethers by Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and 3-Ethyl-3-(hydroxymethyl)oxetane. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1991-2002
    85. Bednarek M, Kubisa P, Penczek S. Multihydroxyl Branched Polyethers. 2. Mechanistic Aspects of Cationic Polymerization of 3-Ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2001, 34, 5112-5119
    86. Magnusson H, Malmstrom E, Hult A. Influence of Reaction Conditions on Degree of Branching in Hyperbranched Aliphatic Polyethers from 3-Ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2001, 34, 5786-5791
    87. Magnusson H, Malmstrom E, Hult A. Synthesis of Hyperbranched Aliphatic Polyethers via Cationic Ring-opening Polymerization of 3-Ethyl-3-(hydroxymethyl)oxetane. Macromol. RapidCommun. 1999, 20, 453-457
    88. Yan DY, Hou J, Zhu XU, Kosman JJ, Wu HS. A New Approach to Control Crystallinity of Resulting Polymers: Self-condensing Ring Opening Polymerization. Macromol. Rapid Commun. 2000, 21, 557-561
    89. Chang HT, Frechet JMJ. Proton-transfer Polymerization: A New Approach to Hyperbranched Polymers. J. Am. Chem. Soc. 1999, 121, 2313-2314
    90. Gong CG, Frechet JMJ. Proton Transfer Polymerization in the Preparation of Hyperbranched Polyesters with Epoxide Chain-ends and Internal Hydroxyl Functionalities. Macromolecules 2000, 33, 4997-4999
    91. Emrick T, Chang HT, Frechet JMJ. The Preparation of Hyperbranched Aromatic and Aliphatic Polyether Epoxies by Chloride-catalyzed Proton Transfer Polymerization from ABn and A2+B3 Monomers. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 4850-4869
    92. Kadokawa J, Kaneko Y, Yamada S, Ikuma K, Tagaya H, Chiba K. Synthesis of Hyperbranched Polymers via Proton-transfer Polymerization of Acrylate Monomer Containing Two Hydroxy Groups. Macromol. Rapid Commun. 2000, 21, 362-368.
    93. Chen H, Yin J, Xu HJ. Synthesis of Arenesulfonated Hyperbranched Polyimide from A2 + B3 Monomers. Polym. J. 2003, 35, 280-285
    94. Fang JH, Kita H, Okamoto K. Hyperbranched Polyimides for Gas Separation Applications. 1. Synthesis and Characterization. Macromolecules 2000, 33, 4639-4646
    95. Gao C, Yan DY, Tang W. Hyperbranched Polymers Made from A2 and BB’2 Type Monomers. 3. N-methyl-1,3-propanediamine to Divinyl Sulfone. Macromolecular Chemistry and Physics 2001, 202, 2623-2629
    96. Gao C, Tang W, Yan DY. Synthesis and Characterization of Water-soluble Hyperbranched Poly(ester amine)s from Diacrylates and Diamines. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2340-2349
    97. Kambouris P, Hawker CJ. A Versatile New Method for Structure Determination in Hyperbranched Macromolecules. J. Chem. Soc., Perkin Trans. 1 1993, 2717-2727
    98. Feast WJ, Hamilton LM, Rannard S. The Influence of Laser Power on the Observed MALDI-TOF Mass Spectra of Poly(diethyl 3-hydroxyglutarate), an AB2 Hyperbranched Aliphatic Polyester; Mn from MALDI-TOF MS? Caveat Emptor. Polym. Bull., 1997, 39, 347-352
    99. Gooden JK, Gross ML, Mueller A, Stefanescu AD, Wooley KL. Cyclization in Hyperbranched Polymer Syntheses: Characterization by MALDI-TOF Mass Spectrometry. J. Am. Chem. Soc., 1998, 120, 10180-10186
    100. Whitesides GM, Grzybowski B. Self-assembly at All Scales. Science 2002, 295, 2418-2421
    101. Percec V, Glodde M, Bera TK, Miura Y, Shiyanovskaya I, Singer KD, Balagurusamy VSK, Heiney PA, Schnell I, Rapp A, Spiess HW, Hudson SD, Duan H. Self-organization of Supramolecular Helical Dendrimers into Complex Electronic Materials. Nature 2002, 419, 384-387
    102. Lehn JM. Toward Self-organization and Complex Matter. Science 2002, 295, 2400-2403
    103. Zhang SG. Fabrication of Novel Biomaterials through Molecular Self-assembly. Nat. Biotechnol. 2003, 21, 1171-1178
    104. Kong XX, Jenekhe SA. Block Copolymers Containing Conjugated Polymer and Polypeptide Sequences: Synthesis and Self-assembly of Electroactive and Photoactive Nanostructures. Macromolecules 2004, 37, 8180-8183
    105. Boker A, Lin Y, Chiapperini K, Horowitz R, Thompson M, Carreon V, Xu T, Abetz C, Skaff H, Dinsmore AD, Emrick T, Russell TP. Hierarchical Nanoparticle Assemblies Formed by Decorating Breath Figures. Nat. Mater. 2004, 3, 302-306
    106. Bullock SE, Kofinas P. Nanoscale Battery Materials Based on the Self-assembly of Block Copolymers. J. Power Sources 2004, 132, 256-260
    107. Antonietti M, Forster S. Vesicles and Liposomes: A Self-assembly Principle beyond Lipids. Adv. Mater. 2003, 15, 1323-1333
    108. Wong GCL, Tang JX, Lin A, Li YL, Janmey PA, Safinya CR. Hierarchical Self-assembly of F-actin and Cationic Lipid Complexes: Stacked Three-layer Tubule Networks. Science 2000, 288, 2035-2039
    109. Maruyama N, Koito T, Nishida J, Sawadaishi T, Cieren X, Ijiro K, Karthaus O, Shimomura M. Mesoscopic Patterns of Molecular Aggregates on Solid Substrates. Thin Solid Films 1998, 329, 854-856
    110. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA. Polymersomes: Tough Vesicles Made from Diblock Copolymers. Science 1999, 284, 1143-1146
    111. Ludwigs S, Boker A, Voronov A, Rehse N, Magerle R, Krausch G. Self-assembly of Functional Nanostructures from ABC Triblock Copolymers. Nat. Mater. 2003, 2, 744-747
    112. Widawski G, Rawiso M, Francois B. Self-organized Honeycomb Morphology of Star-polymer Polystyrene Films. Nature 1994, 369, 387-389
    113. Hudson SD, Jung HT, Percec V, Cho WD, Johansson G, Ungar G, Balagurusamy VSK. Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers. Science 1997, 278, 449-452
    114. Cho BK, Jain A, Nieberle J, Mahajan S, Wiesner U, Gruner SM, Turk S, Rader HJ. Synthesis and Self-assembly of Amphiphilic Dendrimers Based on Aliphatic Polyether-type Dendritic Cores. Macromolecules 2004, 37, 4227-4234
    115. Schenning APHJ, Elissen-Roman C, Weener JW, Baars MWPL, van der Gaast SJ, Meijer EW. Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies. J. Am. Chem. Soc. 1998, 120, 8199-8208
    116. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and Mineralization of Peptide-amphiphile Nanofibers. Science 2001, 294, 1684-1688
    117. Zhang LF, Eisenberg A. Multiple Morphologies and Characteristics of“Crew-cut”Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Slutions. J. Am. Chem. Soc. 1996, 118, 3168-3181
    118. Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE, Keser M, Amstutz A. Supramolecular Materials: Self-organized Nanostructures. Science 1997, 276, 384-389
    119. Onoshima D, Imae T. Dendritic Nano- and Microhydrogels Fabricated by Triethoxysilyl Focal Dendrons. Soft Matter 2006, 2, 141-148
    120. Yan DY, Zhou YF, Hou J. Supramolecular Self-assembly of Macroscopic Ttubes. Science 2004, 303, 65-67
    121. Zhou YF, Yan DY. Supramolecular Self-assembly of Giant Polymer Vesicles with Controlled Sizes. Angew. Chem. Int. Ed. 2004, 43, 4896-4899
    122. Zhou YF, Yan DY. Real-time Membrane Fission of Giant Polymer Vesicles. Angew. Chem. Int. Ed., 2005, 44, 3223-3226
    123. Mai YY, Zhou YF, Yan DY. Synthesis and Size-controllable Self-assembly of a Novel Amphiphilic Hyperbranched Multiarm Copolyether. Macromolecules 2005, 38, 8679-8686
    124. Jia ZF, Zhou YF, Yan DY. Amphiphilic Star-block Copolymers Based on a Hyperbranched Core: Synthesis and Supramolecular Self-assembly. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 6534-6544
    125. Ornatska M, Peleshanko S, Genson KL, Rybak B, Bergman KN, Tsukruk VV. Assembling of Amphiphilic Highly Branched Molecules in Supramolecular Nanofibers. J. Am. Chem. Soc. 2004, 126, 9675-9684
    126. Ornatska M, Peleshanko S, Rybak B, Holzmueller J, Tsukruk VV. Supramolecular Multiscale Fibers through One-dimensional Assembly of Dendritic Molecules. Adv. Mater. 2004, 16, 2206-2212
    127. Tian HY, Deng C, Lin H, Sun JR, Deng MX, Chen XS, Jing XB. Biodegradable Cationic PEG-PEI-PBLG Hyperbranched Block Copolymer: Synthesis and Micelle Characterization. Biomaterials 2005, 26, 4209-4217
    128. Ornatska M, Bergman KN, Rybak B, Peleshanko E, Tsukruk VV. Nanofibers from Functionalized Dendritic Molecules. Angew. Chem. Int. Ed. 2004, 43, 5246-5249
    129. Liu CH, Gao C, Yan DY. Honeycomb-Patterned Photoluminescent Films Fabricated by Self-Assembly of Hyperbranched Polymers. Angew. Chem. Int. Ed. 2007, 46, 6301-6304
    130. Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH. Unimolecular Micelles. Angew. Chem. Int. Ed. 1991, 30, 1178-1180
    131. Sunder A, Kramer M, Hanselmann R, Mulhaupt R, Frey H. Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. Angew. Chem. Int. Ed. 1999, 38, 3552-3555
    132. Kramer M, Stumbe JF, Turk H, Krause S, Komp A, Delineau L, Prokhorova S, Kautz H, Haag R. pH-responsive Molecular Nanocarriers Based on Dendritic Core-shell Architectures. Angew. Chem. Int. Ed. 2002, 41, 4252-4256
    133. Liu C, Gao C, Yan D. Synergistic Supramolecular Encapsulation of Amphiphilic Hyperbranched Polymer to Dyes. Macromolecules 2006, 39, 8102-8111
    134. Slagt MQ, Stiriba SE, Gebbink RJMK, Kautz H, Frey H, van Koten G. Encapsulation of Hydrophilic Pincer-platinum(II) Complexes in Amphiphilic Hyperbranched Polyglycerol Nanocapsules. Macromolecules 2002, 35, 5734-5737
    135. Zhao M, Sun L, Crooks RM. Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Soc. 1998, 120, 4877-4878
    136. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S. Hybrids of Silver Nanoparticles with Amphiphilic Hyperbranched Macromolecules Exhibiting Antimicrobial Properties. Chem. Commun. 2002, 3018-3019
    137. Liu HB, Farrell S, Uhrich K. Drug Release Characteristics of Unimolecular Polymeric Micelles. J. Control. Release 2000, 68, 167-174
    138. Kainthan RK, Mugabe C, Burt HM, Brooks DE. Unimolecular Micelles Based On Hydrophobically Derivatized Hyperbranched Polyglycerols: Ligand Binding Properties. Biomacromolecules 2008, 9, 886-895
    139. Johansson M, Malmstr?m E, Hult A. Synthesis, Characterization, and Curing of Hyperbranched Allyl Ether-maleate Functional Ester Resins. J. Pol. Sci: Part A: Polym. Chem. 1993, 31, 619
    140.施文芳.可光固化星形超支化聚酯的合成与表征.高分子学报1997, 10, 549-554
    141. van Benthem RATM. Novel Hyperbranched Resins for Coating Applications. Progress in Organic Coatings 2000, 40, 203-214
    142. Hong Y, Coombs SJ, Cooper-White JJ, Mackay ME, Hawker CJ, Malmstr?m E, Rehnberg N. Polymer 2000, 41, 7705-7713
    143. Mulkern TJ, Beck Tan N C. Processing and Characterization of Reactive Polystyrene/Hyperbranched Polyester Blends. Polymer 2000, 41, 3193-3203
    144. Burkinshaw SM, Froehling PE, Mignanelli M. The Effect of Hyperbranched Polymers on the Dyeing of Polypropylene Fibres. Dyes and Pigments 2002, 53, 229-235
    145. Gopala A, Wu H, Xu J, Heiden P. Investigation of Readily Processable Thermoplastic-toughened Thermosets: IV. BMIs Toughened with Hyperbranched Polyester. J. Appl. Polym. Sci. 1999, 71, 1809-1817
    146. Hawker CJ, Chu F, Pomery PJ, Hill DJT. Hyperbranched Poly(ethylene glycol)s: A New Class of Ion-conducting Materials. Macromolecules 1996, 29, 2831-2838
    147. Miller LL, Duan RG, Tully DC. Electrically Conducting Dendrimers. J. Am. Chem. Soc. 1997, 119, 1005-1010
    148. Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O. Blend-based Polymer Electrolytes of Poly(ethylene oxide) and Hyperbranched Poly[bis(triethylene glycol)benzoate] with Terminal Acetyl Groups. Solid State Ionics 2000, 134, 281-289
    149. Itoh T, Hirata N, Wen Z, Kubo M, Yamamoto O. Polymer Electrolytes Based on Hyperbranched Polymers. Journal of Power Sources 2002, 97-98, 637-640
    150. Hawker CJ, Chu F, Pomery PJ, Hill DJT. Hyperbranched Poly(ethylene glycol)s: A New Class of Ion-Conducting Materials. Macromolecules 1996, 29, 3831-3838
    151. He QG, Bai FL, Yang JL, Lin HZ, Huang HM, Yu G, Li YF. Synthesis and Properties of High Efficiency Light Emitting Hyperbranched Conjugated Polymers. Thin Solid Film 2002, 417, 183-187
    152. Wang F, Wilson MS, Rauh RD, Schottland P, Reynolds JR. Electroactive and Conducting Star-branched Poly(3-hexylthiophene)s with a Conjugated Core. Macromolecules 1999, 32, 4272-4278
    153. Sunder A, Quincy MF, Mulhaupt R, Frey H. Hyperbranched Polyether Polyols with Liquid Crystalline Properties. Angew. Chem. Int. Ed. 1999, 38, 2928-2930
    154. Frey H, Haag R. Dendritic Polyglycerol: A New Versatile Biocompatible Material. Reviews in Molecular Biotechnology 2002, 90, 257-267
    155. Liu HB, Uhrich KE. Hyperbranched Polymeric Micelles: Drug Encapsulation, Release and Polymer Degradation. Polymer Preprint 1997, 38, 582-583
    156. Lim Y-b, Kim S-M, Lee Y, Lee W-k, Yang T-g, Lee M-j, Suh H, Park J-s. Cationic Hyperbranched Poly(amino ester): A Novel Class of DNA Condensing Molecule with Cationic Surface, Biodegradable Three-Dimensional Structure, and Tertiary Amine Groups in the Interior. J. Am. Chem. Soc. 2001, 123, 2460-2461
    157. Knischka R, Lutz PJ, Sunder A, Mulhaupt R, Frey H. Functional Poly(ethylene oxide) Multiarm Star Polymers: Core-first Synthesis Using Hyperbranched Polyglycerol Initiators. Macromolecules 2000, 33, 315-320
    158. Burgath A, Sunder A, Neuner I, Mulhaupt R, Frey H. Multi-arm Star Block Copolymers Based on Epsilon-caprolactone with Hyperbranched Polyglycerol Core. Macromolecular Chemistry and Physics 2000, 201, 792-797
    159. Hou J, Yan DY. Synthesis of a Star-shaped Copolymer with a Hyperbranched Poly(3-methyl-3-oxetanemethanol) Core and Tetrahydrofuran Arms by One-pot Copolymerization. Macromol. Rapid Commun. 2002, 23, 456-459
    160. Kricheldorf HR, Stukenbrock T. New Polymer Syntheses. XC. A-B-A Triblock Copolymers with Hyperbranched Polyester A-blocks. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 31-38
    161. Iyer J, Fleming K, Hammond PT. Synthesis and Solution Properties of New Linear-Dendritic Diblock Copolymers. Macromolecules 1998, 31, 8757-8765
    162. Gao C, Yan D. Polyaddition of B2 and BB’2 Type Monomers to A2 Type Monomer. 1. Synthesis of Highly Branched Copoly(sulfone-amine)s. Macromolecules 2001, 34, 156
    163. Gao C, Yan D.“A2+CBn”Approach to Hyperbranched Polymers with Alternating Ureido and Urethano Units. Macromolecules 2003, 36, 613-620
    1. Terech P, Weiss RG. Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem. Rev. 1997, 97, 3133-3160
    2. Abdallah DJ, Weiss RG. Organogels and Low Molecular Mass Organic Gelators. Adv. Mater. 2000, 12, 1237-1247
    3. de Loos M, Feringa BL, van Esch JH. Design and Application of Self-Assembled Low Molecular Weight Hydrogels. Eur. J. Org. Chem. 2005, 3615-3631
    4. de Loos M, van Esch J, Stokroos I, Kellogg RM, Feringa BL. Remarkable Stabilization of Self-Assembled Organogels by Polymerization. J. Am. Chem. Soc. 1997, 119, 12675-12676
    5. van Esch JH, Feringa BL. New Functional Materials Based on Self-Assembling Organogels: From Serendipity towards Design. Angew. Chem., Int. Ed. 2000, 39, 2263-2266
    6. George SJ, Ajayaghosh A, Jonkheijm P, Schenning APHJ, Meijer EW. Coiled-Coil Gel Nanostructures of Oligo(p-phenylenevinylene)s: Gelation-Induced Helix Transition in a Higher-Order Supramolecular Self-Assembly of a Rigid -Conjugated System. Angew. Chem., Int. Ed. 2004, 43, 3422-3425
    7. Kishimura A, Yamashita T, Aida T. Phosphorescent Organogels via“Metallophilic”Interactions for Reversible RGB-Color Switching. J. Am. Chem. Soc. 2005, 127, 179-183
    8. Leclair S, Baillargeon P, Skouta R, Gauthier D, Zhao Y, Dory YL. Micrometer-Sized Hexagonal Tubes Self-Assembled by a Cyclic Peptide in a Liquid Crystal. Angew. Chem., Int. Ed. 2004, 43, 349-353
    9. van Bommel KJC, van der Pol C, Muizebelt I, Friggeri A, Heeres A, Meetsma A, Feringa BL, van Esch J. Responsive Cyclohexane-Based Low-Molecular-Weight Hydrogelators with Modular Architecture. Angew. Chem., Int. Ed. 2004, 43, 1663-1667
    10. Yamaguchi S, Yoshimura I, Kohira T, Tamaru S, Hamachi I. Cooperation between Artificial Receptors and Supramolecular Hydrogels for Sensing and Discriminating Phosphate Derivatives. J. Am. Chem. Soc. 2005, 127, 11835-11841
    11.顾雪蓉,朱育平,凝胶化学,北京:化学工业出版社,2004
    12. Jeong Y, Hanabusa K, Masunaga H, Akiba I, Miyoshi K, Sakurai S, Sakurai K. Solvent/Gelator Interactions and Supramolecular Structure of Gel Fibers in Cyclic Bis-Urea/Primary Alcohol Organogels. Langmuir 2005, 21, 586-594
    13. Bossard F, Sfika V, Tsitsilianis C. Rheological Properties of Physical Gel Formed by Triblock Polyampholyte in Salt-Free Aqueous Solutions. Macromolecules 2004, 37, 3899-3904
    14. Sugihara S, Kanaoka S, Aoshima S. Double Thermosensitive Diblock Copolymers of Vinyl Ethers with Pendant Oxyethylene Groups: Unique Physical Gelation. Macromolecules 2005, 38, 1919-1927
    15. Sugihara S, Hashimoto K, Okabe S, Shibayama M, Kanaoka S, Aoshima S. Stimuli-Responsive Diblock Copolymers by Living Cationic Polymerization: Precision Synthesis and Highly Sensitive Physical Gelation. Macromolecules 2004, 37, 336-343
    16. Bossard F, Aubry T, Gotzamanisb G, Tsitsilianis C. pH-Tunable Rheological Properties of a Telechelic Cationic Polyelectrolyte Reversible Hydrogel. Soft Matter. 2006, 2, 510-516
    17. Ma Y, Tang Y, Billingham NC, Armes SP. Synthesis of Biocompatible, Stimuli-Responsive, Physical Gels Based on ABA Triblock Copolymers. Biomacromolecules 2003, 4, 864-868
    18. Jang W-D, Jiang D-L, Aida T. Dendritic Physical Gel: Hierarchical Self-Organization of a Peptide-Core Dendrimer to Form a Micrometer-Scale Fibrous Assembly. J. Am. Chem. Soc. 2000, 122, 3232-3233
    19. Jang W-D, Aida T. Dendritic Physical Gels: Structural Parameters for Gelation with Peptide-Core Dendrimers. Macromolecules 2003, 36, 8461-8469
    20. Partridge KS, Smith DK, Dykes GM, McGrail PT. Supramolecular Dendritic Two-component Gel. Chem. Commun. 2001, 319
    21. Hirst AR, Smith DK, Feiters MC, Geurts HPM, Wright AC. Two-Component Dendritic Gels: Easily Tunable Materials. J. Am. Chem. Soc. 2003, 125, 9010-9011
    22. Dykes GM, Smith DK. Supramolecular Dendrimer Chemistry: Using Dendritic Crown Ethers to Reversibly Generate Functional Assemblies. Tetrahedron 2003, 59, 3999-4009
    23. Love CS, Hirst AR, Chechik V, Smith DK, Ashworth I, Brennan C. One-Component Gels Based on Peptidic Dendrimers: Dendritic Effects on Materials Properties. Langmuir 2004, 20, 6580-6585
    24. Marmillon C, Gauffre F, Gulik-Krzywicki T, Loup C, Caminade A-M, Majoral J-P, Vors J-P, Rump E. Organophosphorus Dendrimers as New Gelators for Hydrogels. Angew. Chem., Int. Ed. 2001, 40, 2626-2629
    25. Zhang W, Gonzalez SO, Simanek, EE. Structure-Activity Relationships in Dendrimers Based on Triazines: Gelation Depends on Choice of Linking and Surface Groups. Macromolecules 2002, 35, 9015-9021
    26. Kim C, Kim KT, Chang Y, Song HH, Cho T-Y, Jeon H-J. Supramolecular Assembly of Amide Dendrons. J. Am. Chem. Soc. 2001, 123, 5586-5587
    27. Gao C, Yan D. Hyperbranched Polymers: from Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183-275
    28. Yan D, Zhou Y, Hou J. Supramolecular Self-assembly of Macroscopic Tubes. Science 2004, 303, 65-67
    29. Ornatska M, Peleshanko S, Genson KL, Rybak B, Bergman KN, Tsukruk VV. Assembling of Amphiphilic Highly Branched Molecules in Supramolecular Nanofibers. J. Am. Chem. Soc. 2004, 126, 9675-9684
    30. Zhou Y, Yan D. Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes. Angew. Chem., Int. Ed. 2004, 43, 4896-4899
    31. Zhou Y, Yan D. Real-Time Membrane Fission of Giant Polymer Vesicles. Angew. Chem., Int. Ed. 2005, 44, 3223-3226
    32. Hawker CJ, Lee R, Frechet JMJ. One-Step Synthesis of Hyperbranched Dendritic Polyesters. J. Am. Chem. Soc. 1991, 113, 4583-4588
    33. Yan D, Muller AHE, Matyjaszewski K. Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization. 2. Degree of Branching. Macromolecules 1997, 30, 7024-7033
    34. Brinksma J, Feringa BL, Kellogg RM, Vreeker R, van Esch J. Rheology and Thermotropic Properties of Bis-Urea-Based Organogels in Various Primary Alcohols. Langmuir 2000, 16, 9249-9255
    35. Bossard F, Sfika V, Tsitsilianis C. Rheological Properties of Physical Gel Formed by Triblock Polyampholyte in Salt-Free Aqueous Solutions. Macromolecules 2004, 37, 3899-3904
    36. Bossard F, Tsitsilianis C, Yannopoulos SN, Petekidis G, Sfika V. A Novel Thermothickening Phenomenon Exhibited by a Triblock Polyampholyte in Aqueous Salt-Free Solutions. Macromolecules 2005, 38, 2883-2888
    37. Stiakakis E, Vlassopoulos D, Roovers J. Thermal Jamming in Colloidal Star-Linear Polymer Mixtures. Langmuir 2003, 19, 6645-6649
    38. Stiakakis E, Vlassopoulos D, Roovers J. Double Thermosensitive Diblock Copolymers of Vinyl Ethers with Pendant Oxyethylene Groups: Unique Physical Gelation. Macromolecules 2005, 38, 1919-1927
    39. El Ghzaoui A, Gauffre F, Caminade A-M, Majoral J-P, Lannibois-Drean H. Self-Assembly of Water-Soluble Dendrimers into Thermoreversible Hydrogels and Macroscopic Fibers. Langmuir 2004, 20, 9348-9353
    1. Muthukumar M, Ober CK, Thomas EL. Competing Interactions and Levels of Ordering in Self-organizing Polymeric Materials. Science 1997, 277, 1225-1232
    2. Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE, Keser M, Amstutz A. Supramolecular Materials: Self-organized Nanostructures. Science 1997, 276, 384-389
    3. Caruso F, Caruso RA, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science 1998, 282, 1111-1114
    4. Klok HA, Lecommandoux S. Supramolecular Materials via Block Copolymer Self-assembly. Adv. Mater. 2001, 13, 1217-1229
    5.江明,A.艾森伯格,刘国军,张希,大分子自组装,北京:科学出版社,2006
    6. Bergbreiter DE. Self-assembled, Sub-micrometer Diameter Semipermeable Capsules. Angew. Chem. Int. Ed. 1999, 38, 2870-2872
    7. Liu XK, Jiang M. Optical Switching of Self-assembly: Micellization and Micelle-hollow-sphere Transition of Hydrogen-bonded Polymers. Angew. Chem. Int. Ed. 2006, 45, 3846-3850
    8. Lattuada M, Hatton TA. Preparation and Controlled Self-assembly of Janus Magnetic Nanoparticles. J. Am. Chem. Soc. 2007, 129, 12878-12889
    9. Zhang L, Eisenberg A. Multiple Morphologies of“Crew-Cut”Aggregates of Polystyrene-b-poly (acrylic acid) Block Copolymers. Science 1995, 268, 1728-1731
    10. Zhang L, Eisenberg A. Ion-Induced Morphological Changes in“Crew-Cut”Aggregates of Amphiphilic Block Copolymers. Science 1996, 272, 1777-1779
    11. Discher BM, Won Y-Y, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA. Polymersomes: Vesicles Made from Diblock Copolymers. Science 1999, 284, 1143-1146
    12. Discher BM, Hammer DA, Bates FS, Bates FS, Discher BM, Hammer DA, Bates FS, Discher DE. Polymer Vesicles in Various Media. Curr. Opin. Colloid Interface Sci. 2000, 5, 125-131
    13. Liu SY, Billingham NC, Armes SP. A Schizophrenic Water-soluble Diblock Copolymer. Angew. Chem. Int. Ed. 2001, 40, 2328-2331
    14. Gohy J, Antoun S, Jerome R. pH-dependent Micellization of Poly(2-vinylpyridine)- block-poly((dimethylamino)ethyl methacrylate) Diblock Copolymers. Macromolecules 2001, 34, 7435-7440
    15. Discher DE, Eisenberg A. Polymer Vesicles. Science 2002, 297, 967-973
    16. Mao ZW, Ma L, Gao CY, Shen JC. Preformed Microcapsules for Loading and Sustained Release of Ciprofloxacin Hydrochloride. J. Control. Release 2005, 104, 193-202
    17. Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML, Minko T, Discher DE. Shrinkage of a Rapidly Growing Tumor by Drug-loaded Polymersomes: pH-triggered Release through Copolymer Degradation. Molecular Pharmaceutics 2006, 3, 340-350
    18. Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A. Spontaneous Formation of Vesicles from Complexes of Block Ionomers and Surfactants. J. Am. Chem. Soc. 1998, 120, 9941-9942
    19. Butun V, Armes SP, Billingham NC. Selective Quaternization of 2-(dimethylamino)ethyl Methacrylate Residues in Tertiary Amine Methacrylate Diblock Copolymers. Macromolecules2001, 34, 1148-1159
    20. Won Y-Y, Brannan AK, Davis HT, Bates FS. Cryogenic Transmission Electron Microscopy (cryo-TEM) of Micelles and Vesicles Formed in Water by Poly(ethylene oxide)-based Block Copolymers. J. Phys. Chem. B. 2002, 106, 3354-3364
    21. Wu J, Eisenberg A. Proton Diffusion across Membranes of Vesicles of Poly(styrene-b-acrylic Acid) Diblock Copolymers. J. Am. Chem. Soc. 2006, 128, 2880-2884
    22. Liu XY, Wu J, Kim J-S, Eisenberg A. Self-Assembly of Mixtures of Block Copolymers of Poly(styrene-b-acrylic acid) with Random Copolymers of Poly(styrene-co-methacrylic acid). Langmuir 2006, 22, 419-424
    23. Du J, Armes SP. pH-Responsive Vesicles Based on a Hydrolytically Self-Cross-Linkable Copolymer. J. Am. Chem. Soc. 2005, 127, 12800-12801
    24. Du J, Tang Y, Lewis AL, Armes SP. pH-Sensitive Vesicles Based on a Biocompatible Zwitterionic Diblock Copolymer. J. Am. Chem. Soc. 2005, 127, 17982-17983
    25. Dai C-A, Yen W-C, Lee Y-H, Ho C-C, Su W-F. Facile Synthesis of Well-Defined Block Copolymers Containing Regioregular Poly(3-hexyl thiophene) via Anionic Macroinitiation Method and Their Self-Assembly Behavior. J. Am. Chem. Soc. 2007, 129, 11036-11038
    26. Vanhest JCM, Delnoye DAP, Baars MWPL, Van Genderen MHP, Meijer EW. Polystyrene-Dendrimer Amphiphilic Block Copolymers with a Generation-Dependent Aggregation. Science 1995, 268, 1592
    27. Schenning APHJ, Elissen-Roman C, Weener J-W, Baars MWPL, van der Gaast SJ, Meijer EW. Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies. J. Am. Chem. Soc. 1998, 120, 8199-8208
    28. Bosman AW, Janssen HM, Meijer EW. About Dendrimers: Structure, Physical Properties, and Applications. Chem. Rev. 1999, 99, 1665-1688
    29. Tsuda K, Dol GC, Gensch T, Hofkens J, Latterini L, Weener JW, Meijer EW, de Schryver FC. Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. J. Am. Chem. Soc. 2000, 122, 3445-3452
    30. Donath E, Sukhorukov GB, Caruso F, Davis S. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew. Chem. Int. Ed. 1998, 37, 2201-2205
    31. Caruso F, Mohwald H. Protein Multilayer Formation on Colloids through a Stepwise Self-Assembly Technique. J. Am. Chem. Soc. 1999, 121, 6039-6046
    32. Jenekhe SA, Chen XL. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 1999, 283, 372
    33. Gao C, Donath E, Mohwald H, Shen C. Spontaneous Deposition of Water-Soluble Substances into Microcapsules: Phenomenon, Mechanism, and Application. Angew. Chem. Int. Ed. 2002, 41, 3789-3793
    34. Bronich TK, Ouyang M, Kabanov VA, Eisenberg A, Szoka FC, Kabanov AV. Synthesis of Vesicles on Polymer Template. J. Am. Chem. Soc. 2002, 124, 11872-11873
    35. Zha LS, Zhang Y, Yang WL, Fu SK. Monodisperse Temperature-Sensitive Microcontainers. Adv. Mater. 2002, 14, 1090-1092
    36. Kamata K, Lu Y, Xia Y. Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores. J. Am. Chem. Soc.2003, 125, 2384-2385
    37. Breiteukamp K, Emrick T. Novel Polymer Capsules from Amphiphilic Graft Copolymers and Cross-Metathesis. J. Am. Chem. Soc. 2003, 125, 12070-12071
    38. Jungmann W, Schmidt M, Ebenhoch J, Weis J, Maskos M. Dye Loading of Amphiphilic Poly(organosiloxane) Nanoparticles. Angew. Chem. Int. Ed. 2003, 42, 1714-1717
    39. Beil JB, Zimmerman SC. Synthesis of Nanosized“Cored”Star Polymers. Macromolecules 2004, 37, 778-787
    40. Duan HW, Chen DY, Jiang M, Gan WJ, Li SJ, Wang M, Gong J. Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J. Am. Chem. Soc. 2001, 123, 12097-12098
    41. Kuang M, Duan H, Wang J, Jiang M. Structural Factors of Rigid-Coil Polymer Pairs Influencing Their Self-Assembly in Common Solvent. J. Phys. Chem. B 2004, 108, 16023-16029
    42. Luo LB, Eisenberg A. One-Step Preparation of Block Copolymer Vesicles with Preferentially Segregated Acidic and Basic Corona Chains. Angew. Chem. Int. Ed. 2002, 41, 1001-1004
    43. Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K. Encapsulation of Myoglobin in PEGylated Polyion Complex Vesicles Made from a Pair of Oppositely Charged Block Ionomers: A Physiologically Available Oxygen Carrier. Angew. Chem. Int. Ed. 2007, 46, 6085-6088
    44. Yuan XF, Jiang M, Zhao HY, Wang M, Wu C. Noncovalently Connected Polymeric Micelles in Aqueous Medium. Langmuir 2001, 17, 6122-6126
    45. Wang M, Zhang GZ, Chen DY, Jiang M, Liu SY. Noncovalently Connected Polymeric Micelles Based on a Homopolymer Pair in Solutions. Macromolecules 2001, 34, 7172-7178
    46. Wang M, Jiang M, Ning FL, Chen DY, Liu SY, Duan HW. Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene. Macromolecules 2002, 35, 5980-5989
    47. Liu XY, Jiang M, Yang SL, Chen MQ, Chen DY, Yang C, Wu K. Micelles and Hollow Nanospheres Based onε-Caprolactone-Containing Polymers in Aqueous Media. Angew. Chem. Int. Ed. 2002, 41, 2950-2953
    48. Ilhan F, Galow TH, Gray M, Clavier G, Rotello VM. Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymers. J. Am. Chem. Soc. 2000, 122, 5895-5896
    49. Thibault Jr RJ, Galow TH, Turnberg EJ, Gray M, Hotchkiss PJ, Rotello VM. Specific Interactions of Complementary Mono- and Multivalent Guests with Recognition-Induced Polymersomes. J. Am. Chem. Soc. 2002, 124, 15249-15254
    50. Li Y, Lokitz BS, McCormick CL. Thermally Responsive Vesicles and Their Structural“Locking”through Polyelectrolyte Complex Formation. Angew. Chem. Int. Ed. 2006, 45, 5792 -5795
    51. Rodriguez-Hernandez J, Babin J, Zappone B, Lecommandoux S. Preparation of Shell Cross-Linked Nano-Objects from Hybrid-Peptide Block Copolymers. Biomacromolecules 2005, 6, 2213-2220
    52. Shi ZQ, Zhou YF, Yan DY. Preparation of Robust Poly(-caprolactone) Hollow Spheres with Controlled Biodegradability. Macromol. Rapid Commun. 2006, 27, 1265-1270
    53. Gao C, Yan DY. Hyperbranched Polymers: from Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183-275
    54. Yan DY, Zhou YF, Hou J. Supramolecular Self-Assembly of Macroscopic Tubes. Science 2004, 303, 65
    55. Zhang, YW, Huang W, Zhou YF, Yan DY. A Physical Gel Made from Hyperbranched Polymer Gelator. Chem. Commun. 2007, 2587
    56. Ornatska M, Peleshanko S, Genson KL, Rybak B, Bergman KN, Tsukruk VV. Assembling of Amphiphilic Highly Branched Molecules in Supramolecular Nanofibers. J. Am. Chem. Soc. 2004, 126, 9675-9684
    57. Zhou YF, Yan DY. Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes. Angew. Chem. Int. Ed. 2004, 43, 4896-4899
    58. Zhou, YF, Yan DY. Real-Time Membrane Fission of Giant Polymer Vesicles. Angew. Chem. Int. Ed. 2005, 44, 3223-3226
    59. Mai YY, Zhou YF, Yan DY. Synthesis and Size-Controllable Self-Assembly of a Novel Amphiphilic Hyperbranched Multiarm Copolyether. Macromolecules 2005, 38, 8679-8686
    60. Zhou Y, Yan D, Dong W, Tian Y. Temperature-Responsive Phase Transition of Polymer Vesicles: Real-Time Morphology Observation and Molecular Mechanism. J. Phys. Chem. B. 2007, 111, 1262-1270
    61. Mai YY, Zhou YF, Yan DY. Real-Time Hierarchical Self-Assembly of Large Compound Vesicles from an Amphiphilic Hyperbranched Multiarm Copolymer. Small 2007, 3, 1170-1173
    62. Shi Z, Zhou Y, Yan D. Facile Fabrication of pH-Responsive and Size-Controllable Polymer Vesicles from a Commercially Available Hyperbranched Polyester. Macromol. Rapid Commun. 2008, 29, 412-418
    63. Luo YY, Duan GT, Ye M, Zhang YX, Li GH. Poly(ethylene glycol)-Mediated Synthesis of Hollow ZnS Microspheres. J. Phys. Chem. C. 2008, 112, 2349-2352
    64. Mangeney C, Bousalem S, Connan C, Vaulay M-J, Bernard S, Chehimi MM. Latex and Hollow Particles of Reactive Polypyrrole: Preparation, Properties, and Decoration by Gold Nanospheres. Langmuir 2006, 22, 10163-10169
    65. Khanal A, Inoue Y, Yada M, Nakashima K. Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure. J. Am. Chem. Soc. 2007, 129, 1534-1535
    66. Murthy VS, Cha JN, Stucky GD, Wong MS. Charge-Driven Flocculation of Poly(L-lysine)-Gold Nanoparticle Assemblies Leading to Hollow Microspheres. J. Am. Chem. Soc. 2004, 126, 5292-5299
    67. Meng F, Hiemstra C, Engbers GHM, Feijen J. Biodegradable polymersomes. Macromolecules 2003, 36, 3004-3006
    68. Mu MF, Ning, FL, Jiang M, Chen DY. Giant vesicles based on self-Assembly of a polymeric complex containing a rodlike oligomer. Langmuir 2003, 19, 9994-9996
    69. Kuo PL, Chen C-C, Jao M-W. Effects of Polymer Micelles of Alkylated Polyethylenimines on Generation of Gold Nanoparticles. J. Phys. Chem. B 2005, 109, 9445-9450
    70. Chen C-C, Hsu C-H, Kuo P-L. Effects of Alkylated Polyethylenimines on the Formation of Gold Nanoplates. Langmuir 2007, 23, 6801-6806
    71. Selvakannan PR, Kumar PS, More AS, Shingte RD, Wadgaonkar PP, Sastry M. One Pot, Spontaneous and Simultaneous Synthesis of Gold Nanoparticles in Aqueous and Nonpolar Organic Solvents Using a Diamine-Containing Oxyethylene Linkage. Langmuir 2004, 20, 295-298
    72. Selvan ST. Novel Nanostructures of Gold–polypyrrole Composites. Chem. Commun. 1998, 351-352
    73. Dai J, Bruening ML. Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films. Nano Lett. 2002, 2, 497-501
    74. Lazareva NF, Vakul'skaya, TI, Albanov AI, Pestunovich VA. Appl. The Reduction of Ag(I) byα-silylamines R2NCH2SiX3. Organometal. Chem. 2006, 20, 696-705
    75. Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y. Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a -Conjugated Polymer. Langmuir 2002, 18, 277-283
    76. Wang XQ, Naka K, Itoh H, Park S, Chujo Y. Synthesis of Silver Dendritic Nanostructures Protected by Tetrathiafulvalene. Chem. Commun., 2002, 1300-1301
    77. Keki S, Torok J, Deak G, Daroczi L, Zsuga M. Silver Nanoparticles by PAMAM-assisted Photochemical Reduction of Ag+. J. Colloid Interface Sci. 2000, 229, 550-553
    78. Matrices.Rifai S, Breen CA, Solis DJ, Swager TM. Facile in Situ Silver Nanoparticle Formation in Insulating Porous Polymer. Chem. Mater. 2006, 18, 21-25
    79. Manna S, Batabyal SK, Nandi AK. Preparation and Characterization of Silver-Poly(vinylidene fluoride) Nanocomposites: Formation of Piezoelectric Polymorph of Poly(vinylidene fluoride). J. Phys. Chem. B. 2006, 110, 12318-12326
    80. Perkin KK, Turner JL, Wooley KL, Mann S. Fabrication of Hybrid Nanocapsules by Calcium Phosphate Mineralization of Shell Cross-Linked Polymer Micelles and Nanocages. Nano Lett. 2005, 5, 1457-1461
    1. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT. Dendrimer-Silver Complexes and Nanocomposites as Antimicrobial Agents. Nano Lett. 2001, 1, 18-21
    2. Xu H, Xu J, Zhu Z, Liu H, Liu S. In-Situ Formation of Silver Nanoparticles with Tunable Spatial Distribution at the Poly(N-isopropylacrylamide) Corona of Unimolecular Micelles. Macromolecules 2006, 39, 8451-8455
    3. Zhao M, Crooks RM. Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. Angew. Chem. Int. Ed. 1999, 38, 364-366
    4. Oh S-K, Kim Y-G, Ye H, Crooks RM. Synthesis, Characterization, and Surface Immobilization of Metal Nanoparticles Encapsulated within Bifunctionalized Dendrimers. Langmuir 2003, 19,10420-10425
    5. Scott RWJ, Ye H, Henriquez RR, Crooks RM. Synthesis, Characterization, and Stability of Dendrimer-Encapsulated Palladium Nanoparticles. Chem. Mater. 2003, 15, 3873-3878
    6. Yeung LK, Crooks RM. Heck Heterocoupling within a Dendritic Nanoreactor. Nano Lett. 2001, 1, 14-17
    7. Kim Y-G, Oh S-K, Crooks RM. Preparation and Characterization of 1-2 nm Dendrimer-Encapsulated Gold Nanoparticles Having Very Narrow Size Distributions. Chem. Mater. 2004, 16, 167-172
    8. Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M. Synthesis and Morphology of Star-Shaped Gold Nanoplates Protected by Poly(N-vinyl-2-pyrrolidone). Chem. Mater. 2005, 17, 5391-5393
    9. Zhao M, Sun L, Crooks RM. Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Chem. Soc. 1998, 120, 4877-4878
    10. Lemon BI, Crooks RM. Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots. J. Am. Chem. Soc. 2000, 122, 12886-12887
    11. Tabuani D, Monticelli O, Chincarini A, et al. Palladium Nanoparticles Supported on Hyperbranched Aramids: Synthesis, Characterization, and Some Applications in the Hydrogenation of Unsaturated Substrates. Macromolecules 2003, 36, 4294-4301
    12. Trakhtenberg LI, Gerasimov GN, Aleksandrova LN, Potapov VK. Photo and Radiation Cryochemical Synthesis of Metal-polymer Films: Structure, Sensor and Catalytic Properties. Radiat. Phys. Chem. 2002, 65, 479-485
    13. Gao Y, Jiang P, Song L, Wang JX, Liu LF, Liu DF, Xiang YJ, Zhang ZX, Zhao XW, Dou XY, Luo SD, Zhou WY, Xie SS. Studies on Silver Nanodecahedrons Synthesized by PVP-assisted N,N-dimethylformamide (DMF) Reduction. J. Cryst. Growth 2006, 289, 376-380
    14. Kidambi S, Bruening ML. Multilayered Polyelectrolyte Films Containing Palladium Nanoparticles: Synthesis, Characterization, and Application in Selective Hydrogenation. Chem. Mater. 2005, 17, 301-307
    15. Esumi K, Isono R, Yoshimura T. Preparation of PAMAM- and PPI-Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol.Langmuir 2004, 20, 237-243
    16. Chou KS, Lu YC, Lee HH. Effect of Alkaline Ion on the Mechanism and Kinetics of Chemical Reduction of Silver. Mater. Chem. Phys. 2005, 94, 429-433
    17. Shchukin DG, Radtchenko IL, Sukhorukov GB. Photoinduced Reduction of Silver inside Microscale Polyelectrolyte Capsules. Chem. Phys. Chem. 2003, 4, 1101-1103
    18. Khanna PK, Subbarao VVVS. Nanosized Silver Powder via Reduction of Silver Nitrate by Sodium Formaldehydesulfoxylate in Acidic pH Medium. Mater. Lett. 2003, 57, 2242-2245
    19. Sun XP, Dong SJ, Wang EK. One-step Synthesis and Characterization of Polyelectrolyte-protected Gold Nanoparticles through a Thermal Process. Polymer 2004, 45, 2181-2184
    20. Sun X, Dong S, Wang E. High-Yield Synthesis of Large Single-Crystalline Gold Nanoplates through a Polyamine Process. Langmuir 2005, 21, 4710-4712
    21. Kuo PL, Chen C–C, Jao M-W. Effects of Polymer Micelles of Alkylated Polyethylenimines on Generation of Gold Nanoparticles. J. Phys. Chem. B 2005, 109, 9445-9450
    22. Chen C-C, Hsu C-H, Kuo P-L. Effects of Alkylated Polyethylenimines on the Formation of Gold Nanoplates. Langmuir 2007, 23, 6801-6806
    23. Gao C, Yan DY. Hyperbranched Polymers: from Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183-275
    24. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S. Hybrids of Silver Nanoparticles with Amphiphilic Hyperbranched Macromolecules Exhibiting Antimicrobial Properties. Chem. Commun. 2002, 3018-3019
    25. Ho BCH, Tobis J, Sprich C, Thomann R, Tiller JC. Nanoseparated Polymeric Networks with Multiple Antimicrobial Properties. Adv. Mater. 2004, 16, 957-961
    26. Bao CY, Jin M, Lu R, Zhang TR, Zhao YY. Hyperbranched Poly(amine-ester) Templates for the Synthesis of Au Nanoparticles. Mater. Chem. Phys. 2003, 82, 812-817
    27. Fu GF, Vary PS, Lin CT. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B 2005, 109, 8889-8898
    28. Hsiao MT, Chen SF, Shieh DB, Yeh CS. One-Pot Synthesis of Hollow Au3Cu1 Spherical-like and Biomineral Botallackite Cu2(OH)3Cl Flowerlike Architectures Exhibiting Antimicrobial Activity. J. Phys. Chem. B 2006, 110, 205-210
    29. Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T. Ciprofloxacin-Protected Gold Nanoparticles. Langmuir 2004, 20, 1909-1914
    30. Gu HW, Ho PL, Tong E, Wang L, Xu B. Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. Nano Lett. 2003, 3, 1261-1263
    31. Selvakannan PR, Kumar PS, More AS, et al. Free-Standing Gold Nanoparticle Membrane by the Spontaneous Reduction of Aqueous Chloroaurate Ions by Oxyethylene-Linkage-Bearing Diamine at a Liquid-Liquid Interface. Adv. Mater. 2004, 16, 966-971
    32. Li P, Li J, Wu CZ, Wu QS, Li J. Synergistic Antibacterial Effects ofβ-lactam Antibiotic Combined with Silver Nanoparticles. Nanotechnology 2005, 16, 1912-1917
    33. Jain P, Pradeep T. Potential of Silver Nanoparticle-coated Polyurethane Foam as an Antibacterial Water Filter. Biotechnol. Bioeng. 2005, 90, 59-63
    34. Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial Effect of Surgical Masks Coated withNanoparticles. J. Hosp. Infec. 2006, 62, 58-63
    35. Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K. Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 2003, 24, 2759-2765
    36. Melaiye A, Sun ZH, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ. Silver(I)-Imidazole Cyclophane gem-Diol Complexes Encapsulated by Electrospun Tecophilic Nanofibers: Formation of Nanosilver Particles and Antimicrobial Activity. J. Am. Chem. Soc. 2005, 127, 2285-2291
    37. Ray S, Mohan R, Singh JK, Samantaray MK, Shaikh MM, Panda D, Ghosh P. Anticancer and Antimicrobial Metallopharmaceutical Agents Based on Palladium, Gold, and Silver N-Heterocyclic Carbene Complexes. J. Am. Chem. Soc. 2007, 129, 15042-15053
    38. Lee HY, Park HK, Lee YM, Kim K, Park SB. A Practical Procedure for Producing Silver Nanocoated Fabric and Its Antibacterial Evaluation for Biomedical Applications. Chem. Commun. 2007, 2959-2961
    39. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346-2353
    40. Feng QL, Wu J, Chen GQ, et al. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662-668
    41. Sondi I, Salopek-Sondi B. Silver Nanoparticles as Antimicrobial Agent: a Case Study on E. coli as a Model for Gram-negative Bacteria. J. Colloid Interface Sci. 2004, 275, 177-182
    42. Shanmugam S, Viswanathan B, Varadarajan TK. A Novel Single Step Chemical Route for Noble Metal Nanoparticles Embedded Organic–inorganic Composite films. Mater. Chem. Phys. 2006, 95, 51-55
    43. Tokar R, Kubisa P, Penczek S. Cationic Polymerization of Glycidol: Coexistence of the Activated Monomer and Active Chain End Mechanism. Macromolecules 1994, 27, 320-322
    44. Wu DC, Liu Y, He CB, Goh SH. Blue Photoluminescence from Hyperbranched Poly(amino ester)s. Macromolecules 2005, 38, 9906-9909
    45. Swami A, Selvakannan PR, Pasricha R, Sastry M. One-Step Synthesis of Ordered Two-Dimensional Assemblies of Silver Nanoparticles by the Spontaneous Reduction of Silver Ions by Pentadecylphenol Langmuir Monolayers. J. Phys. Chem. B 2004, 108, 19269-19275
    46. Sambhy V, MacBride MM, Peterson BR, Sen A. Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials. J. Am. Chem. Soc. 2006, 128, 9798-9808
    47. Yu HJ, Xu XY, Chen XS, Lu TC, Zhang PB, Jing XB. Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver Nanoparticles. J. Appl. Polym. Sci. 2007, 103, 125-133
    48. Selvakannan PR, Kumar PS, More AS, Shingte RD, Wadgaonkar PP, Sastry M. One Pot, Spontaneous and Simultaneous Synthesis of Gold Nanoparticles in Aqueous and Nonpolar Organic Solvents Using a Diamine-Containing Oxyethylene Linkage. Langmuir 2004, 20,295-298
    49. Selvan ST. Novel Nanostructures of Gold-polypyrrole Composites. Chem. Commun. 1998, 351-352
    50. Dai J, Bruening ML. Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films. Nano Lett. 2002, 2, 497-501
    51. Lazareva NF, Vakul'skaya, TI, Albanov AI, Pestunovich VA. Appl. The Reduction of Ag(I) byα-silylamines R2NCH2SiX3. Organometal. Chem. 2006, 20, 696-705
    52. Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y. Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a -Conjugated Polymer. Langmuir 2002, 18, 277-283
    53. Wang XQ, Naka K, Itoh H, Park S, Chujo Y. Synthesis of Silver Dendritic Nanostructures Protected by Tetrathiafulvalene. Chem. Commun., 2002, 1300-1301
    54. Keki S, Torok J, Deak G, Daroczi L, Zsuga M. Silver Nanoparticles by PAMAM-assisted Photochemical Reduction of Ag+. J. Colloid Interface Sci. 2000, 229, 550-553
    55. Maillard M, Huang P, Brus L. Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+]. Nano Lett. 2003, 3, 1611-1615
    56. Swami A, Selvakannan PR, Pasricha R, Sastry M. One-Step Synthesis of Ordered Two-Dimensional Assemblies of Silver Nanoparticles by the Spontaneous Reduction of Silver Ions by Pentadecylphenol Langmuir Monolayers. J. Phys. Chem. B 2004, 108, 19269-19275
    57. Jin RH, Yuan JJ. Fabrication of Silver Porous Frameworks Using Poly(ethyleneimine) Hydrogel as a Soft Sacrificial Template. J. Mater. Chem. 2005, 15, 4513-4517
    58. Yan DY, Gao C. Hyperbranched Polymers Made from A2 and BB’2 Type Monomers. 1. Polyaddition of 1-(2-Aminoethyl)piperazine to Divinyl Sulfone. Macromolecules 2000, 33, 7693-7699
    59. Miyama T, Yonezawa Y. Aggregation of Photolytic Gold Nanoparticles at the Surface of Chitosan Films. Lagmuir 2004, 20, 5918-5923
    60. Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T. Ciprofloxacin-Protected Gold Nanoparticles. Langmuir 2004, 20, 1909-1914
    61. Thiel J, Pakstis L, Buzby S, Raffi MNC, Pochan DJ, Shah SI. Antibacterial Properties of Silver-Doped Titania. Small 2007, 3, 799-803
    62. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Appl. Environ. Microbiol. 2003, 69, 4278-4281
    63. Ye WJ, Leung MF, Xin J, Kwong TL, Lee DKL, Li P. Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 2005, 46, 10538-10543
    64. Lenoir S, Pagnoulle C, Detrembleur C, Galleni M, Jerome R. New Antibacterial Cationic Surfactants Prepared by Atom Transfer Radical Polymerization. J. Polym. Sci. Pol. Chem. 2006, 44, 1214-1224
    1. Alloin F, Sanchez JY. Electrochemical Comparison of Several Cross-linked Polyethers. Electrochimica Acta 1998, 43, 1199-1204
    2. Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M. High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains. Macromolecules 1999, 32, 1541-1548
    3. Tiyapiboonchaiya C, MacFarlane DR, Sun JZ, Forsyth M. Polymer-in-ionic-liquid Electrolytes. Macromol. Chem. Phys. 2002, 203, 1906-1911
    4. Davidson MG, Raithby PR, Johnson AL, Bolton PD. Structural Diversity in Lewis-Base Complexes of Lithium Triflamide. Eur. J. Inorg. Chem. 2003, 18, 3445-3452
    5. Florjanczyk Z, Zygadlo-Monikowska E, Wieczorek W, Ryszawy A, Tomaszewska A, Fredman K, Golodnitsky D, Peled E, Scrosati B. Polymer-in-Salt Electrolytes Based on Acrylonitrile/Butyl Acrylate Copolymers and Lithium Salts. J. Phys. Chem. B 2004, 108, 14907-14914
    6. Rodgers M, Yang Y, Holdcroft S. A Study of Linear versus Angled Rigid Rod Polymers for Proton Conducting Membranes Using Sulfonated Polyimides. Eur. Polym. J. 2006, 42, 1075-1085
    7. He RH,Li QF, Bach A, Jensen JO, Bjerrum NJ. Physicochemical Properties of Phosphoric Acid Doped Polybenzimidazole Membranes for Fuel Cells. J. Membr. Sci. 2006, 277, 38-45
    8. Wang L, Meng YZ, Wang SJ, Li XH, Xiao M. Synthesis and Properties of Sulfonated Poly(arylene ether) Containing Tetraphenylmethane Moieties for Proton-exchange Membrane. J. Polym. Sci. Part A 2005, 43, 6411-6418
    9. Won J, Park HH, Kim YJ, Choi SW, Ha HY, Oh I-H, Kim HS, Kang YS, Ihn KJ. Fixation of Nanosized Proton Transport Channels in Membranes. Macromolecules 2003, 36, 3228-3234
    10. Jorissen L, Gogel V, Kerres J, Garche J. New Membranes for Direct Methanol Fuel Cells. J. Power Sources 2002, 105, 267-273
    11. Gao C, Yan DY. Hyperbranched Polymers: from Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183-275
    12. Ye L, Feng Z-G, Zhao YM, Wu F, Chen S, Wang GQ. Synthesis and Application as Polymer Electrolyte of Hyperbranched Polyether Made by Cationic Ring-opening Polymerization of 3-{2-[2-(2-hydroxyethoxy)ethoxy]ethoxymethyl}-3’-methyl-oxetane. J. Polym. Sci. Part A 2006, 44, 3650
    13. Hong L, Shi LY, Tang XZ. Conductivities and Spectroscopic Studies of Polymer Electrolytes Based on Linear Polyurethane and Hybrid and Copolymer of Linear and Hyperbranched Polyurethanes. Macromolecules 2003, 36, 4989-4994
    14. Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O. Composite Polymer Electrolytes Based on Poly(ethylene oxide), Hyperbranched Polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ionics 2003, 156, 393-399
    15. Itoh T, Hamaguchi Y, Uno T, Kubo M, Aihara Y, Sonai A. Synthesis, Ionic Conductivity, and Thermal Properties of Proton Conducting Polymer Electrolyte for High Temperature Fuel Cell. Solid State Ionics 2006, 177, 185-189
    16. Xu HJ, Chen KC, Guo XX, Fang JH, Yin J. Synthesis of Hyperbranched Polybenzimidazoles and Their Membrane Formation. J. Membr. Sci. 2007, 288, 255-260
    17. Wu DC, Liu Y, Chen L, He CB, Chung TS, Goh SH. 2A2 + BB’B’’Approach to Hyperbranched Poly(amino ester)s. Macromolecules 2005, 38, 5519-5525
    18. Hawker CJ, Chu F, Pomery PJ, Hill DJT. Hyperbranched Poly(ethylene glycol)s: A New Class of Ion-Conducting Materials. Macromolecules 1996, 29, 3831-3838
    19. Depre L, Kappel J, Popall M. Inorganic-Organic Proton Conductors Based on Alkylsulfone Functionalities and Their Patterning by Photoinduced Methods. Electrochimica Acta 1998, 43, 1301-1306
    20. Zou HH, Zhao YB, Shi WF. Preparation and Properties of Proton Conducting Organic-Inorganic Hybrid Membranes Based on Hyperbranched Aliphatic Polyester and Phosphoric Ccid. J. Membr. Sci. 2004, 245, 35-40
    21. Kim YS, Hickner MA, Dong LM, Pivovar BS, McGrath JE. Sulfonated Poly(arylene ether sulfone) Copolymer Proton Exchange Membranes: Composition and Morphology Effects on the Methanol Permeability. J. Membr. Sci. 2004, 243, 317-326
    22. Li XF, Zhao CJ, Lu H, Wang Z, Na H. Direct Synthesis of Sulfonated Poly(ether ether ketone ketone)s (SPEEKKs) Proton Exchange Membranes for Fuel Cell Application. Polymer 2005, 46, 5820-5827
    1. Maurice WPL, Meijer BEW. in Host-Guest Chemistry of Dendritic Molecules, Springer-Verlag, Berlin Heidelberg 2000, 210
    2. Hapiot F, Tilloy S, Monflier E. Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chem. Rev. 2006, 106, 767-781
    3. Shivaiah V, Das SK. Fivefold Coordination of a CuII-Aqua Ion: A Supramolecular Sandwich Consisting of Two Crown Ether Molecules and a Trigonal-Bipyramidal [Cu(H2O)5]2+ Complex Angew. Chem. Int. Ed. 2006, 45, 245-248
    4. Shimizu T, Masuda M, Minamikawa H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401-1444
    5. Zeng F, Zimmerman SC. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. Chem. Rev. 1997, 97, 1681-1712
    6. Liu CH, Gao C, Yan DY. Synergistic Supramolecular Encapsulation of Amphiphilic Hyperbranched Polymer to Dyes. Macromolecules 2006, 39, 8102-8111
    7. Felekis T, Tziveleka L, Tsiourvas D, Paleos CM. Liquid Crystals Derived from Hydrogen-Bonded Supramolecular Complexes of Pyridinylated Hyperbranched Polyglycerol and Cholesterol-Based Carboxylic Acids. Macromolecules 2005, 38, 1705-1710
    8. Shen Z, Chen Y, Frey H, Stiriba SE. Complex of Hyperbranched Polyethylenimine with Cuprous Halide as Recoverable Homogeneous Catalyst for the Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules 2006, 39, 2092-2099
    9. Chen L, Zhu XY, Yan DY, Chen Y, Chen Q, Yao YF. Controlling Polymer Architecture through Host-Guest Interactions. Angew. Chem. Int. Ed. 2006, 45, 87-90
    10. Zhu XY, Chen L, Yan DY, Chen Q, Yao YF, Xiao Y, Hou J, Li JY. Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins. Langmuir 2004, 20, 484-490
    11. Chen Y, Shen Z, Pastor-Perez L, Frey H, Stiriba S-E. Role of Topology and Amphiphilicity for Guest Encapsulation in Functionalized Hyperbranched Poly(ethylenimine)s. Macromolecules 2005, 38, 227-229.
    12. Perignon N, Mingotaud AF, Marty JD, Rico-Lattes I, Mingotaud C. Formation and Stabilization in Water of Metal Nanoparticles by a Hyperbranched Polymer Chemically Analogous to PAMAM Dendrimers. Chem. Mater. 2004, 16, 4856
    13. Kharlampieva E, Sukhishvili SA. Release of a Dye from Hydrogen-Bonded and Electrostatically Assembled Polymer Films Triggered by Adsorption of a Polyelectrolyte. Langmuir 2004, 20, 9677-9685
    14. Shi W, Fang C, Xu Z, Pan Q, Gu Q, Xu D, Wei H, Yu J. Investigation on the Nonlinear Optical Properties of the DCNP/PEK-c Guest-Host Polymer Films. Appl. Phys. A 2000, 71, 185-191
    15. Qin Z, Fang C, Pan, Gu, Wu X, Yu J. Determination of the Absorption for Incident Light Propagating Parallel through the Guest-Host Polymer Film Waveguide. Optics & Lasers in Engineering 2004, 41, 139-146
    16. Li C, Hatano T, Takeuchi M, Shinkai S. Facile Design of Poly(3,4-ethylenedioxythiophene)-tris(2,2’-bipyridine)ruthenium (II) Composite Film Suitable for a Three-dimensional Light-harvesting System. Tetrahedron 2004, 60, 8037-8041
    17. Nicolas M, Fabre B, Marchand G, Simonet J. New Boronic-Acid- and Boronate-Substituted Aromatic Compounds as Precursors of Fluoride-Responsive Conjugated Polymer Films. Eur. J. Org. Chem. 2000, 9, 1703-1710
    18. Yang JS, Swager TM. Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120, 11864-11873
    19. Duffy DJ, Das K, Hsu SL, Penelle J, Rotello VM, Stidham HD. Binding Efficiency and Transport Properties of Molecularly Imprinted Polymer Thin Films. J. Am. Chem. Soc. 2002, 124, 8290-8296
    20. Wu DC, Liu Y, Chen L, He CB, Chung TS, Goh SH. 2A2 + BB’B’’Approach to Hyperbranched Poly(amino ester)s. Macromolecules 2005, 38, 5519
    21. Yu ZS, Wen XH. Screening and Identification of Yeasts for Decolorizing Synthetic Dyes in Industrial Wastewater. Int. Biodeterior. Biodegrad. 2005, 56, 109-114
    22. Huang J, Luo H, Liang C, Sun I, Baker GA, Dai S. Hydrophobic Brnsted Acid-Base Ionic Liquids Based on PAMAM Dendrimers with High Proton Conductivity and Blue Photoluminescence. J. Am. Chem. Soc. 2005, 127, 12784-12785
    23. Beezer AE, King ASH, Martin IK, Mitchel JC, Twyman LJ, Wain CF. Dendrimers as Potential Drug Carriers; Encapsulation of Acidic Hydrophobes within Water Soluble PAMAM Derivatives. Tetrahedron 2003, 59, 3873-3880
    24. Baars MWPL, Kleppinger R, Koch MHJ, Yeu SL, Meijer EW. The Localization of Guests in Water-Soluble Oligoethyleneoxy-Modified Poly(propylene imine) Dendrimers. Angew. Chem. Int. Ed. 2000, 39, 1285-1288
    25. Sunder A, Kramer M, Hanselmann R, Mulhaupt R, Frey H. Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. Angew. Chem. Int. Ed. 1999, 38, 3552-3555
    26. Garcia-Bernabe A, Kramer M, Olah B, Haag R. Synthesis and phase-transfer properties of dendritic nanocarriers that contain perfluorinated shell structures. Chem. Eur. J. 2004, 10, 2822-2830
    27. Santra S, Kumar A. Facile Synthesis of Aliphatic Hyperbranched Polyesters Based on Diethyl Malonate and Their Irreversible Molecular Encapsulation. Chem. Commun. 2004, 2126-2127
    28. Chen Y, Shen Z, Pastor-Perez L, Frey H, Stiriba S-E. Role of Topology and Amphiphilicity for Guest Encapsulation in Functionalized Hyperbranched Poly(ethylenimine)s. Macromolecules 2005, 38, 227-229
    29. Guldi DM, Rahman GMA, Prato M, Jux N, Qin SH, Ford W. Single-Wall Carbon Nanotubes as Integrative Building Blocks for Solar-Energy Conversion. Angew. Chem. Int. Ed. 2005, 44, 2015-2018
    30. Bao CY, Jin M, Lu R, Zhang TR, Zhao YY. Hyperbranched Poly(amine-ester) Templates for the Synthesis of Au Nanoparticles. Mater. Chem. Phys. 2003, 82, 812-817
    31. Ye HC, Scott RWJ, Crooks RM. Synthesis, Characterization, and Surface Immobilization of Platinum and Palladium Nanoparticles Encapsulated within Amine-Terminated Poly(amidoamine) Dendrimers. Langmuir 2004, 20, 2915-2920
    32. Grohn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ. Dendrimer Templates for the Formation of Gold Nanoclusters. Macromolecules 2000, 33, 6042-6050
    33. Lang HF, Maldonado S, Stevenson KJ, Chandler BD. Synthesis and Characterization of Dendrimer Templated Supported Bimetallic Pt-Au Nanoparticles. J. Am. Chem. Soc. 2004, 126, 12949-12956
    34. Lu HW, Liu SH, Wang XL, Qian XF, Ying J, Zhu ZK. Silver Nanocrystals by Hyperbranched Polyurethane-assisted Photochemical Reduction of Ag+. Mater. Chem. Phys. 2003, 81, 104-107
    35. Jin RH, Yuan JJ. Fabrication of Silver Porous Frameworks Using Poly(ethyleneimine) Hydrogel as a Soft Sacrificial Template. J. Mater. Chem. 2005, 15, 4513-4517
    36. Kidambi S, Bruening ML. Multilayered Polyelectrolyte Films Containing Palladium Nanoparticles: Synthesis, Characterization, and Application in Selective Hydrogenation. Chem. Mater. 2005, 17, 301-307
    37. Xu H, Xu J, Zhu Z, Liu H, Liu S. In-Situ Formation of Silver Nanoparticles with Tunable Spatial Distribution at the Poly(N-isopropylacrylamide) Corona of Unimolecular Micelles. Macromolecules 2006, 39, 8451-8455
    38. Zhao M, Crooks RM. Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. Angew. Chem. Int. Ed. 1999, 38, 364-366
    39. Kuo PL, Chen CC, Jao MW. Effects of Polymer Micelles of Alkylated Polyethylenimines on Generation of Gold Nanoparticles. J. Phys. Chem. B 2005, 109, 9445-9450
    40. Chen CC, Hsu CH, Kuo PL. Effects of Alkylated Polyethylenimines on the Formation of Gold Nanoplates. Langmuir 2007, 23, 6801-6806
    41. Selvakannan PR, Kumar PS, More AS, Shingte RD, Wadgaonkar PP, Sastry M. One Pot, Spontaneous and Simultaneous Synthesis of Gold Nanoparticles in Aqueous and Nonpolar Organic Solvents Using a Diamine-Containing Oxyethylene Linkage. Langmuir 2004, 20, 295-298
    42. Selvan ST. Novel Nanostructures of Gold-Polypyrrole Composites. Chem. Commun. 1998, 351-352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700