用户名: 密码: 验证码:
金刚石绳索取心钻杆接头螺纹的优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Optimization Study of the Joint-thread of Diamond Wire-line Taking-coring Drill Pole
  • 作者:苏继军
  • 论文级别:博士
  • 学科专业名称:地质工程
  • 学位年度:2005
  • 导师:殷琨
  • 学科代码:081803
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-12-15
摘要
金刚石绳索取心钻进技术在我国已有30 多年的应用历史,已经形成了一套较完整的钻进工艺和操作规程。但绳索取心钻具的结构及强度基本保持原有水平,钻杆强度低、使用寿命短、工作可靠性差,深孔钻进事故率高,钻杆折断事故时有发生,不能满足矿产勘探绳索取心钻进的需要。为适应矿产勘探及未来发展的需要,缩小与国外的差距,我们以金刚石绳索取心钻杆柱和接头螺纹为研究对象,对其结构尺寸、螺纹几何参数等方面进行了深入的理论分析,建立力学模型实现仿真优化设计,力求使我国的绳索取心钻杆设计和应用达到一个较高水平。
    运用静力学有限元理论,借助于目前国际上通用的大型有限元分析软件ANSYS 对绳索取心钻杆建立结构三维静力学有限元分析模型。定性模拟计算钻杆和接头螺纹在工作状态下的应力场、应变位移场等的分布状况。通过结构静力学研究探索制约钻杆寿命的主要因素。
    以接触非线性有限元理论为基础,对钻杆接头的连接螺纹进行细致的理论分析,建立接头螺纹非线性有限元分析的力学模型,得出接头螺纹关键区域的应力场、应变位移场等的分布情况,分析了螺纹变形、破坏及失效的主要形式。在此基础上,对接头螺纹的牙型参数进行了全面优化,对优化后的接头螺纹试件进行了极限强度对比试验。结果表明接头螺纹的连接强度和可靠性得到了显著提高,与仿真计算结果也有较好的吻合。
    通过本课题的研究工作,完成了对金刚石绳索取心钻具的理论分析和仿真优化设计,建立了一套对钻杆柱整体强度的分析方法,构建了接头螺纹接触非线性有限元分析模型,实现了运用现代先进CAE 技术对金刚石绳索取心钻具的结构优化,改进型钻具成功地应用于生产实践并产生了显著的经济效益。此系列研究工作在国内还未见报道,尚属于一种开拓性的工作。
The technique of diamond wire-line taking -coring drill has been applied in China for more than 30 years. The drill process and operation rules have been formed completely. But the construction and strength of the wire-line taking -coring drill (for convenient, it will be called W.T. Drill) are kept original level:low strength of the drilling pole, short life of application, bad reliability, high accident rate in deep drilling, occurrence of drilling pole breaking accident. It can't satisfy mineral exploring drilling. For adapting the demand of the mineral exploration and the future development, reducing the difference with the developed country, we applied the pole and joint thread of W.T. Drill as our study objectives, studied theoretically and experimentally of their construction dimension and geometrical parameters, established the mechanics model, realized the optimized designation, applied and extended our research results into engineering, made designation and application of W.T. Drill in our country to be a higher level.
    (一)、Main content and achievement of this study
    The pole and joint thread were studied deeply based on static Finite Element theory. The boundary condition of the FE model was defined, and then external load were calculated under the real work conditions. On base of these conditions, static 3D Finite Element model was built. The
    construction characters and failure modes of three joint modes between the pole and joint of the W.T. drill (include the integrated type with coarse ends of drill pole, both ends with thread joint type, both ends with friction or electric welding type, illustrated in figure 1.1) were analyzed and compared. The construction dimension of the real model for the Finite Element analysis was defined. Stress, strain and displacement field of the drill pole and joint thread under the working condition were simulated. The factors of life -limit of the pole were found. The joint thread of the drill pole was analyzed elaborately based on nonlinear contact Finite Element theory. The international FE software was applied, nonlinear FE model was built, the stress and strain of joint thread with different construction parameters were simulated and calculated, the distribution of the stress field and stress displacement field of the key part were obtained, deformation, destroy and failure of the thread were analyzed. On base of all of these studies, the formation parameters of the joint thread were optimized. The Von Mises Stress in the forth strength theory was regarded as the standard target, and the most optimized parameters were found in these way. The strength of the drill pole and the reliability of the joint thread were improved. The construction parameters of the joint thread include pitch of the screw, outer diameter of the screw thread, height of the thread and the taper. The samples of the optimized joint thread were checked by the limit –strength comparison experiments. The results show that the joint strength and reliability are improved obviously. The experimental results match the simulated results very well. The formation of the thread and the construction parameters were defined depend on our simulation, optimization and experiments at last.
    (二)、Main conclusions of this study The distribution of the stress field and strain of the joint thread and drill pole area were observed and analyzed. The stress and strain with different construction parameters were simulated and analyzed at the same time. The Von-Mises stress in the forth strength theory was the main standard to define the most optimized parameters, following conclusions were obtained: 1. The main life-limit factor of the drill pole is that the local area of the joint thread area is under the high stress situation obviously at the normal work condition. The local area of the joint thread should be regarded as the key point in the following study. 2. The maximum stress was reduced 27 percent by optimizing the thread construction parameters (pitch of the screw and the total distance); the optimized parameters are: the pitch of the screw 10mm, the total distance 57mm. 3. The external diameter of the thread was changed from 90mm to 92mm, the maximum stress was reduced 26%. 4. The relationship between the height of the thread and the maximum stress is quite complex. The maximum stress is increased irregularly with the increase of the height of the thread. The maximum stress become stable with the decrease of the height of the thread; the height of the thread was confirmed as 0.85mm or 1.0mm according to the FE simulation results and the evaluation of the effect factors of the thread stress. 5. The effect of the taper alteration on the strength is very light. When the taper increased to 1/15, the maximum stress increased, which lead to the decrease of the construction strength, and possible decrease of the life of joint thread; the value of the taper
    should be keep in a relative reasonable range; the range of the taper should be 1/30 ~1/22. (三)、The application, extend and significant of this study Construction parameters of the W.T. Drill were defined finally, which depend on strength design theory of the drill pole cross -section, simulated analysis results by applying the Finite Element Method and our mechanical experimental on joint thread. The blueprint of W.T. Drill samples were designed and drawn, the samples of the W.T. Drill were trial manufactured. The samples were checked by different experiments, such as manufacture experiment, reliability experiment, application life experiments and so on. All the targets were satisfied or exceeded our demands. The company who applied the samples gave us a very high evaluation. Five sets of S95 W.T. Drill were trial manufactured and applied. The total quantity of experimental drill was 4600m, 10 exploring hole and 6500m were drilled accumulatively. The results of the experiments show that the strength and the life of the drill were improved and reached our optimized targets. The results of this study was applied and expended by Wuxi Ore Exploration Tool Factory Of The Ministry Of Land And Resource from March to October 2005. The new increased production value is 2 million Yuan, and new profit tax is 400 thousand Yuan. Simulated computational model was built basically in this study. The model can be applied in simulation and optimization of the W.T. Drill, and the results are exactitude. It can be applied in manufacture to create more profits. This study shows: to choose the different parameters of the joint thread is the best and the most economic method to improve the strength of the
    drill pole. This study combined the modern CAE and testing technology, it can reduce the period of the research and optimization, improve the cognition of the failure mechanism of the drill pole. The perspective application and field are broad. In this study, the theoretical analysis and the simulated optimization on the designation were completed. The completed methods to analyze the integrated drill pole were built. The modern CAE were applied in construction optimization of the W.T. Drill. The improved drills were applied in real manufacture. We didn’t find this kind of series studies domestically. This study is creative. The theoretical study here is elementary, more questions need to be discussed and researched more deeply. This study of the strength of the drill pole is based on structure statics. But the work condition of the drill pole is very complex in the real case. It is affected by alterative stress and fatigue. If the real work conditions are expected to be simulated, we need to build precise mathematic model to realize the numerical calculation. More precise studies need to be made deeply, and more scientists need persevere to put their efforts.
引文
[1]. 张永勤,刘辉等. 复杂地层钻进技术的研究与应用. 探矿工程,2001 增刊.
    [2]. 刘广志. 中国非开挖技术发展迅速,成绩斐然,前景广阔.探矿工程,2001, (03):1-2.
    [3]. 刘振铎等. 刘广志文集[M]. 北京:地质出版社,2003.
    [4]. 耿瑞伦,陈星庆等. 多工艺空气钻探[M]. 北京:地质出版社,1998.
    [5]. C.L William. Air and Gas Drilling Manual [M]. Huston: Galf Publishing Co., 1984.
    [6]. 蒋荣庆等. 冲击回转多工艺钻进方法的新发展. 长春地质学院建院40 周年科学研究论文集(勘察技术与方法I)[C]. 长春:吉林科学技术出版社,1992.
    [7]. 王人杰,蒋荣庆等. 液动冲击回转钻进技术. 北京:地质出版社,1988.
    [8]. 王人杰,苏长寿. 我国液动冲击回转钻探的回顾与展望[J]. 探矿工程[岩土钻掘工程]增刊,1999(zl).
    [9]. 郑新权等. 中国石油钻井技术现状及需求[J]. 石油钻采工艺,2003, 25(2):1-4.
    [10]. 何爱国等. 进口大尺寸? 444.5mm 钻头在两口科探井中的应用[J]. 石油钻采工艺,1999, 21(05):27-31.
    [11]. 王关清等. 深探井和超深探井钻井的难点分析和对策探讨[J]. 石油钻采工艺,1998, 20(01):1-7.
    [12]. 王关清,李克向,陈元顿,周煜辉. 中国陆上石油钻井科技发展回顾与展望[J]. 2000, 22(01):1-6.
    [13]. 唐继平等. 塔里木山前复杂地层钻头使用技术[J].石油钻采工艺,2003, 25(02):39-43.
    [14]. 王同良等. 中国钻井技术经济指标的发展规律研究[J]. 石油钻采工艺,2001, 23(01):1-8.
    [15]. 高德利. 油气钻井技术展望[J]. 石油大学学报(自然科学版),2003, 27(02):29-32.
    [16]. 高德利. 21 世纪油气钻井技术展望[J]. 石油化工动态,2000, 8(02):31-34.
    [17]. 王同良等. 世界石油钻井科技发展水平与展望[J]. 石油钻采工艺,2000, 22(02):1-7.
    [18]. 苏长寿. 液动潜孔锤的现状及用于石油钻井应注意的几个问题[J]. 探矿工程[岩土钻掘工程],2002, (06):30-31.
    [19]. 苏长寿. 液动潜孔锤技术现状及发展设想[J].探矿工程[岩土钻掘工程], 2003, (01):28-30.
    [20]. 谢文卫等. YZX127 型液动潜孔锤的研究及应用[J].探矿工程[岩土钻掘工程]增刊, 2003(zl).
    [21]. 李传武,李发东,任海军. 液动锤在科钻一井先导孔钻井中的应用[J]. 石油钻探技术,2002, 30(05):12-14.
    [22]. 陶兴华. 提高深井钻井速度的有效技术方法[J]. 石油钻采工艺,2001, 23(05):4-8.
    [23]. 张云连. 冲击旋转钻井工具的发展现状及应用研究[J]. 石油矿场机械,2001, 30(05):12-14.
    [24]. 耿瑞伦,冯国强. 液动锤技术及其应用前景[J]. 探矿工程[岩土钻掘工程],2001, (01):32-33.
    [25]. 张伟. 2001 年中国大陆科学钻探工程取得重要进展[J]. 探矿工程[岩土钻掘工程],2002, (01):63.
    [26]. 殷琨,蒋荣庆. 潜孔锤反循环钻进技术及其应用[J]. 探矿工程[岩土钻掘工程],1996(5):13-15.
    [27]. 殷琨,蒋荣庆. 发展中的冲击回转钻进技术[J]. 探矿工程[岩土钻掘工程],1997, (05):53-55.
    [28]. 蒋荣庆,殷琨. 气动贯通式潜孔锤反循环连续取心(样)钻具系统研制及使用效果[J]. 地质与勘探. 1996, (03):55-60.
    [29]. 蒋荣庆,殷琨. FGC—15 型大直径单头潜孔锤钻具系统研制[J]. 探矿工程[岩土钻掘工程],1995(5):17-19.
    [30]. 蒋荣庆,殷琨. 潜孔锤多工艺钻进在水文水井及工程中的应用[J]. 水文地质工程地质,1998(6):51-54.
    [31]. 蒋荣庆等. 潜孔锤钻进在复杂地层中应用[J]. 地质与勘探, 1999, 35(06):83-87.
    [32]. 张晓西,杨甘生,朱永宜等. 大口径硬岩钻探技术在中国大陆科学钻探工程中的应用[J]. 探矿工程[岩土钻掘工程],2003, (01):23-27.
    [33]. 殷琨,蒋荣庆. 科学深钻用射流式液动锤研制报告,2000.4.
    [34]. 菅志军,殷琨等. 增大液动射流式冲击器单次冲击功的试验研究[J]. 长春科技大学学报,2000, 30(03):303-306.
    [35]. 殷琨,菅志军,蒋荣庆. 大冲击功液动锤的研究及其应用[J]. 探矿工程[岩土钻掘工程],1996, (04):8-10.
    [36]. 菅志军等. 石油钻井液动射流式冲击器的研究[D]. 长春科技大学博士学位论文, 1999.
    [37]. 菅志军,桑路,王保丰,王清. 液动射流式冲击器性能参数影响规律的研究[J]. 煤田地质与勘探,2002, 30(05):58-60.
    [38]. 菅志军,桑路,胡国清,张文华. DGSC-203 型液动射流冲击器在地热井的试验[J]. 地质与勘探,2002, 38(05):92-93.
    [39]. 菅志军,辜华良,侯传彬,王茂森. 石油钻井液动射流式冲击器的设计[J]. 石油矿场机械,2002, 31(06):40-43.
    [40]. 谭凡教,王如生,蒋荣庆. 射流式液动锤回转冲击孕镶金刚石钻头钻进的实践与分析[J]. 吉林大学学报(地球科学版),2003, 33(04):564-567.
    [41]. 谭凡教,祁宏军,殷琨,王如生. 地热井射流式冲击器冲击回转钻进的分流试验研究[J]. 煤矿机械,2003, (12):29-30.
    [42]. 詹军,殷琨,于清杨. 钻探机具的有限元分析[J].吉林大学学报:地球科学版,2002,32(2):203-206.
    [43]. 蒋荣庆,殷琨,王茂森.无钻杆冲击挤密用穿孔器的研制[J].长春科技大学学报,2001,31(3):265-267.
    [44]. 何清华等. 液压冲击机构研究?设计[M].长沙:中南工业大学出版社, 1995.
    [45]. 田树军,杨国权等. 液压冲击机构动力学建模问题探讨[J]. 液压与气动,1994, (02):12-14.
    [46]. Hacker industries. Flex-Steel Horizontal Drill pipe.
    [47]. Ishikawa, Kuniteru. Strength of threaded connection for lifting pipes,Proceedings of the Third (1993) International Offshore and Polar Engineering Conference Jun 6-11 1993.
    [48]. Fukuoka, Toshimichi. Mechanical properties of threaded regions in an eyebolt and an eyenut JSME International Journal, Series 1.
    [49]. M. Guagliano. Fatigue failure of a bar of a twin-screw extruder for plastics [J].Engineering Failure Analysis, Volume 12, Issue 6, December 2005, Pages 950-962.
    [50]. 苏兵. 尝试内锥螺纹的数控加工[J]. 机械研究与应用,2005, 18(01):70-71.
    [51]. 郭庆海,王娜君,鄂蕊. 钻杆锥螺纹加工专用机床[J]. 机械工程师,2004, (11):65.
    [52]. 田红军,韩金亭,付殿军. ? 50 反丝钻杆滚丝机的研制[J]. 山东煤炭科技,2002, (02):49-50.
    [53]. 张耀辉,王秀梅,王启民,王士立. 石油钻杆接头螺纹的数控修复加工系统[J].装甲兵工程学院学报,2001, 15(01):27-41.
    [54]. 沈克光. 对绳索取心钻杆螺纹手拧紧密距的看法[J].探矿工程(岩土钻掘工程),2001, (04):54-55.
    [55]. 左求明. CD-360 潜孔钻机用钻杆的改进[J]. 有色设备,2001, (03):29-30.
    [56]. 闫铁,范森,石德勤. 钻铤螺纹连接处载荷分布规律研究[J].石油学报,1996, 17(03):116-122.
    [57]. 张焱,陈平,施太和. 深井中钻铤螺纹联接的强度研究[J]. 探矿工程(岩土钻掘工程),1998, (05):21-23.
    [58]. 吕建国,桂暖银,胡远彪. 钻杆失效理论分析方法初探[J].探矿工程(岩土钻掘工程),2001, (05):55-57.
    [59]. 王琍,臧勇,邹家祥. 8 牙圆螺纹套管接头应力分析[J].北京科技大学学报,1997,18(S1):18-21.
    [60]. 王治国,张毅. API 圆螺纹油管接头上扣与拉伸过程的有限元应力分析[J]. 钢管,2001, 30(03):20-25.
    [61]. 王琍,陈兆能,佟德纯,邹家祥,臧勇. 套管接头螺纹滑脱失效有限元模拟[J].北京科技大学学报,2001, 23(02):137-139.
    [62]. 李润方,林腾蛟,唐倩,施太和. 石油钻杆联接螺纹弹塑性接触有限元分析[J]. 石油矿场机械,1998, 27(06):44-46.
    [63]. 王慧艺,李从心,阮雪榆,王瑞和. 径向井钻杆截面变形模型及实验分析[J]. 石油矿场机械,2001,30(04):27-29.
    [64]. 马善洲,韩志勇. 轴力及重力作用下钻杆最大弯曲应力计算[J]. 石油大学学报(自然科学版),2001, 25(02):6-8.
    [65]. 张根旺,党兰焕,罗冰. 钻杆内螺纹接头失效分析[J]. 钢管,2004, 33(06):27-31.
    [66]. 吕拴录,许友林. ? 12 ×9.19mmG105 钻杆NC50 内螺纹接头直角台肩根部裂纹原因分析[J]. 石油工业技术监督,2004,.20(05):13-15.
    [67]. 吕拴录,骆发前,周杰,苏建文,卢强. 双台肩NC50 钻杆内螺纹接头纵向开裂原因分析[J]. 石油工业技术监督,2004, 20(08):5-7.
    [68]. 解仲英,冯耀荣. 钻杆内螺纹接头纵裂与刺穿失效分析[J]. 石油机械,1996, 20(03):14-17.
    [69]. 王新虎,韩晓毅,陈宏达. 钻杆接头水眼结构及其疲劳强度研究[J]. 石油机械,2004, 32(09):4-6.
    [70]. 李庆光,聂荣国,吴晓明,石晓兵. 深井、超深井钻柱失效的力学机理分析及预防对策[J]. 西部探矿工程,2004, 16(06):64-66.
    [71]. 李顺来,朱立志,任素青. 大口径管道定向钻穿越中钻杆断裂原因及预防措施[J]. 石油工程建设,2003, 29(04):46-48.
    [72]. 董智广,常喜顺. 复杂地层金刚石钻进钻杆折断原因初探[J]. 煤田地质与勘探,1994, 22(03):63-65.
    [73]. 易松林,张来斌,李雪辉,周立人,陈秉衡,许守凡. 运用ANSYS5.4 作水平井钻杆转向轨迹参数试验[J].石油机械,2000, 28(05):1-4.
    [74]. 金晓宏,杨奇. 复合载荷下钻杆的力学分析[J]. 矿山机械,1997, (02):16-18.
    [75]. 于新奇,蔡仁良,翟建华,崔海亭. 高压管道螺纹连接强度的实验研究[J]. 石油化工设备,1996, 25(02):31-33.
    [76]. 徐思浩,罗娜. 高压容器主螺栓的有限元应力分析[J]. 化工设备与管道,2000, 37(04):8-9.
    [77]. 杨晓翔,尚福林,李中华,张毅,李鹤林. SL450 水龙头中心管螺纹齿根表面裂纹应力强度因子三维有限元分析[J]. 机械强度, 1996, 23(02):19-23.
    [78]. 李进兰,崔希海,梁效华. 非对称牙型螺纹副的应用及防松机理和强度分析[J]. 山东农机,1998, (05):6-7.
    [79]. 张春波等. 绳索取心金刚石钻进技术. 北京:地质出版社,1985.
    [80]. 长春地质学院. 金刚石钻进技术[M]. 北京:地质出版社,1985.
    [81]. 田志坤译. 袖珍钻探手册[M]. 北京:地质出版社,1988.
    [82]. 王伯雄等. 测试技术基础[M]. 北京:清华大学出版社, 2003.
    [83]. 地质矿产部. 金刚石岩心钻探操作规程[M]. 北京:地质出版社,1987.
    [84]. 国家地质总局. 金刚石钻探操作规程[M]. 北京:地质出版社,1977.
    [85]. 李震. 金刚石钻进参数的选择[M]. 北京:《探矿工程》,1985.
    [86]. 刘广志. 岩心钻探事故预防与处理[M]. 北京:地质出版社,1986.
    [87]. 刘广志. 关于金刚石钻进中钻柱动平衡的问题[M]. 北京:《探矿工程》,1981.
    [88]. 赵尔信等. 金刚石钻头与扩孔器[M]. 北京:地质出版社,1982.
    [89]. T.坦奈特.钻杆质量的不断改进.岩土钻凿工程,2000,CSTT.
    [90]. 许明清,李乐,陈永刚. AutoCAD 2002 建筑图纸绘制方法及应用实例[M]. 北京:人民邮电出版社,2003.
    [91]. 王国强. 实用工程数值模拟技术及其在ANSYS上的实践.西安:西安工业大学出版社,1999.
    [92]. 小飒工作室. 最新经典ANSYS 及Workbench 教程[M]. 北京:电子工业出版社,2004.
    [93]. 美国ANSYS 公司北京办事处.ANSYS 非线性分析指南[M].北京: 美国ANSYS 公司北京办事处,1998
    [94]. 张国明. ANSYS 应用技术指导[M]. 北京:美国ANSYS 公司北京办事处,1996.
    [95]. 张汝清,詹先义. 非线性有限元分析[M]. 重庆:重庆大学出版社,1990.
    [96]. 王勋成,邵敏. 有限元基本原理和数值方法.北京:清华大学出版社,1995.
    [97]. 龙驭球. 有限元法概论.北京:人民教育出版社,1978.
    [98]. 程耿东等译,R.D.库克. 有限元分析的概念和应用.北京:科学出版社,1989.
    [99]. 高秀华等. 结构力学与有限单元法原理. 长春:吉林科学技术出版社,1995.
    [100]. 博弈创作室. APDL 参数化有限元分析技术及其应用实例. 北京:中国水利水电出版社,2004.
    [101]. Saeed Moaveni. 著. 有限元分析—ANSYS 理论与应用. 北京,电子工业出版社,2003.
    [102]. 肖亚民、李良淦、张俊森、贾真、高玉华.GB3423-82 中华人民共和国国家标准-“标准管材尺寸系列”.金刚石岩芯钻探用无缝钢管[S].北京:地质出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700