用户名: 密码: 验证码:
贯通式潜孔锤钻进过程优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贯通式潜孔锤反循环钻进技术是一种先进的钻探方法,适用于复杂地层中的地质勘探以及各类钻孔工程。本文采用理论研究和生产性试验相结合的研究方法,建立了该方法钻进过程中的数学模型以及在钻进过程中的合理控制方法。
     首先,通过分析各种加载条件下岩石的破坏特征、动力学分析、裂纹扩展、破岩体积以及累积损伤与冲击次数关系等,确定了贯通式潜孔锤反循环钻进技术的破岩机理、以及各种因素对钻速的影响。
     其次,利用扫描电子显微镜(SEM)对风动潜孔锤钻井的硬质合金钻头柱齿的磨损状况进行了详细观察,并综合以往的研究结果,提出了风动潜孔锤钻井钻头球齿的新的磨损机理和劣化机理。
     根据钻头磨损机理,对于合理控制实际钻进,论文以可控制钻进参数建立了钻头磨损函数和钻进过程的数学模型,讨论每个优化指标的钻进参数之间的关系。
     根据对影响风动潜孔锤钻速的主要因素的详细分析和神经网络基础理论研究,利用野外生产性试验资料,建立了预测风动潜孔锤钻速的BP神经网络。
     最后,在利用神经网络法预测钻速和钻头磨损函数基础上,分析了钻进参数对钻井技术-经济指标的影响,提出了合理控制钻进过程的指标参数。
     总之,论文给出了一种优选钻进参数的方法,旨在将贯通式潜孔锤反循环钻进技术引入油气勘探开发钻井领域,为解决当前油气勘探开发领域所面临的低压、低渗、低产油气藏的高效开发问题和提高复杂地层、深井硬岩地层钻进速度等难题提供有利技术支持。
The hollow-through type DTH hammer drilling has an incomparably priority to traditional rotary drilling methods in the aspect of penetration efficiency. It was also called down-the hole hammer rock drilling tolls which possessed with the special structure form. The hollow- -through type DTH hammer with the whole process into the reverse circulation drilling craft, which was relative to the hollow-trough type DTH hammer,was a high technology combined with three techniques-DTH hammer impacting breaking rock,fluid medium full hole reverse circulation and continuous obtaining rock core sample-into one system, and had got more widely applied in the solid mineral exporation and hydrology water well drill. At present, the DTH hammer has been formed into a specification series. The drilling process and the outfitting tools gradually become maturation, so the application area is continuously extended and has a broad prospect. The hollow-through type DTH hammer drilling technique with its own unique technique advantages, could supply for the favorable technical support to solve the efficient development problems of the low-pressure, low permeability and low yield reservoir faced in the oil and gas exploration drill field currently, and to enhance the drill speed of the complex strata and the deep well ground consisted of hard rock.
     The paper supported by the project of“feasible research on air reverse circulation drilling system”, carried out the technique research on the establishment of mathematical model for the hollow-through type DTH hammer drilling process. On the way of combining the test data got from productibility field test with the numerical simulation and the theoretic research, the paper established a wearing function of drill bit and the mathematical model of drilling process, and carried out the technique research on the method for selecting optimal drilling parameters of the hollow-through type DTH hammer drilling process, as a result it could be the a guide of the practical drilling operation.
     The main research contents and conclusions are as following:
     (1) Based on the analysis of the hollow-through type DTH drill technology’s characteristics and on the analysis of technical problem for importing the hollow-through type DTH drill technology into the deep well drill especially, the paper presented the implementation of optimal control of the hollow-through type DTH drilling process, so as to apply the hollow-through type DTH hammer drilling crafts of the whole process reverse circulation for the oil and gas exploration successfully.
     (2) The paper discussed the destruct character, dynamic analysis, crack expanding, destruct volume and the relation between the cumulate damage and the impact number of rock under many kinds of loading condition. Some conculsions got from theoretic analysis could be gave as a basis for selecting optimal drilling parameters: The time of loading the impact energy when the both of a static pressure and a impact cooperate, is the moment of that the rock breaks in solid, the rock debris are out and the compact entity is pressed fully. The point is in the sect of load–incursive depth curve which a slope is negative, and the best loading range can be confirmed by an experiment. This loading rule has important directive function for selecting the drilling parameter. The cut-in force composes by the both of a static pressure and an impact, and has a direct ratio with them. Impact energy in the cut-in force is in the pattern of wave which can be influenced by rock’s character and parameter of breaking rock, so the perfect effect of breaking rock in different kinds of rock need different breaking rock parameter.
     (3) The paper observed the condition of worn cemented carbide-drill bit buttons by a scanning electron microscopy (SEM) for the DTH hammer drilling carefully, conbined it with previous papers, and presented both of the new five classes of deterioration mechanism and the five calsses of material removal mechanism of drill bit buttons for DTH hammer drilling. The deterioration mechanism includes the five classes: Composite-scale crack formation;WC grain-scale crack formation; Oxidation and corrosion of WC grains;Embrittlement and degradation of the binder phase;and rock cover formation, rock intermixing and rock penetraion. Wear mechanism includes the five classes: Crushing of WC grains and release of fragments; Detachment of whole or parts of WC grains; Crushing and removal of bineder/rock mixture; Tribochemical wear of the carbides; Detachment of composite-scale fragments.
     (4) In accordance with the demand of the reasonable controlling of real drilling process, the paper established a wearing function of drill bit and the mathematical model of drilling process as a function of controllable parameters, and typically by exemplifying the traditional rotary drilling methods of the diamond impregnated drilling bit, discussed the relationship between optimal drilling parameters of the every optimization goals. Under the normal condition of the rate of penetration (ROP) value varing as time increases, the four optimal goals (ex. maxium ROP, maxium drill velocity per round trip, maxium drill length per drill bit and minium drilling cost per meter) and their optimal drilling parameters could be selected. From qmin-goal, in the case of a shallow drill depth, the difference of drilling parameters between the qmin-goal and the Vmax is not so cosiderable, but as a drill depth increases, the difference also increases.
     (5) According to detailed analysis of the principal infulence factors to the ROP and the basic theoretic research of the artificial neural network, two multilayer neural networks with back propagation algorithm(BPNN), i.e Feedforward BP network and Cascade feedfoward network have been employed to predict the ROP of the hollow-through type DTH hammer drilling process, and the number of hidden layers and the number of neural cells in the neural network have been defined, so as to carry out trainning and testing by the established neural network. At the same time, drilling parameters have been optimized to guide the penetration operation based on the prediction results.
     (6) Based on the wearing function of drill bit and the predicted ROP value by neural network,the infulence of drilling parameters to the drilling technology- economical indices has been analyzed. In the case of a shallow drill depth ( tBC / t≦), the goal of the minimum drilling cost per meter(qmin)and the goal of the maximum ROP(Vmax)are basically equal, so to increase ROP is a resonable drilling method. But in the deep well drilling process, goal of the Vmax is not so reasonabe, and either the goal of the qmin or the goal of the hmax is reasonable.
     The main creative point in this paper includes:
     (1) The condition of worn cemented carbide-drill bit buttons by a scanning electron microscopy (SEM) for the DTH hammer drilling has been observed cautiously and conbined with previous research, and the new five classes of deterioration mechanism and the five classes of material removal mechanism of drill bit buttons for DTH hammer drilling have been presented.
     (2) In accordance with the demand of the reasonable controlling of real drilling process, a wearing function of drill bit and the mathamatical model of drilling process have been established as a function of controllable parameters.
     (3) Based on the wearing function of drill bit and the prediction of the ROP value by a neural network, a new selecting method of optimal parameters for the DTH hammer drilling process has been established.
     Now, for the purpose of increasing the drilling technology-economic indices of the hollow-through type DTH hammer drilling and applying it to a deep well drill, by using the diamond-enhanced tungsten carbide composite button bits, a professional reverse circulation drill bit is designed, the pratical test of its drilling efficiency is going to be taken, and we must research it further.
引文
[1]殷琨.深化反循环工艺研究,促进钻探科技快速发展[J].探矿工程(岩土钻掘工程). 2006(03): 2.
    [2]蒋荣庆,殷琨,王茂森等.潜孔锤钻进理论与实践的新进展[J].探矿工程(岩土钻掘工程),2001增刊:179-183.
    [3]蒋荣庆,殷琨.反循环钻进的拓展应用[J].探矿工程,1997(5):13-15.
    [4]殷琨,蒋荣庆.潜孔锤反循环钻进技术及应用[J].探矿工程,1996(5):13-15.
    [5]范强,谢宇静.降低钻井成本的优化钻井方法[J].机械,2000,(27)增刊191-192.
    [6]黎家安.温泉六井优化钻井措施降低钻井成本的探讨[J].钻采工艺,2002,25(1):105-106.
    [7]刘权萍,孟英峰,梁红.空气锤在石油钻井中的应用前景[J].天然气工业,2006,26(4):50-53.
    [8]杨振平,蒋宏伟,王少春,等.欠平衡钻井技术的优势和挑战[J].内蒙古石油化工, 2006(8):74-76.
    [9]王波.欠平衡钻井流体动力学参数计算理论及方法研究[D].成都:西南石油学院,2005.
    [10]罗世应,孟英峰,李允.欠平衡钻井的应用前景[J].天然气工业,1999,19(4): 55-58.
    [11]张军,孟英峰,叶何茜等.欠平衡钻井技术研究现状[J].南方油气,2005,18(5): 54-56.
    [12]周英操,高德利等.欠平衡钻井参实时数据分析处理系统的研发与应用[J].天然气工业,2005(7):47-49.
    [13] William C L.Air and Gas Drilling Manual(Second Ediction).New York(USA): McGraw_Hill Companies,2001.
    [14]赵业荣,孟英峰,雷桐等.气体钻井理论与实践[M].北京:石油工业出版社,2007-09.
    [15]朱江,王萍,蔡利山,常连玉.空气钻井技术及其应用[J].钻采工艺, 2007,30(2): 145-148.
    [16]陈志学.气体钻井工艺技术理论及应用研究[D].南充:西南石油大学,2006.
    [17]任双双,刘刚,沈飞.空气钻井的应用发展[J].断块油气田,2006,13(6):62-64.
    [18]许爱.气体钻井技术及现场应用[J].石油钻探技术,2006,34(4):16-19.
    [19]刘建林.气体钻井用贯通式潜孔锤关键技术研究[D].长春:吉林大学博士学位论文,2009,179.
    [20] Mackay P,徐合献.反循环钻井避免损害低压气层[J],国外油田工程,2003,vol(19),19-20.
    [21]刘广志.特种钻探工艺学[M].北京:中国地质大学出版社,1991.
    [22]何宜章.反循环中心取样钻探的发展和趋势[J].国外地质科技。1993(1):57-63.
    [23]任红.贯通式潜孔锤反循环连续取心钻进取心机理研究[D].长春:吉林大学博士学位论文,2008.
    [24]博坤.贯通式潜孔锤反循环钻进技术钻具优化及应用研究[D].长春:吉林大学博士学位论文,2009,155.
    [25]陈丽霞,刘清友,单代伟.气动冲击器研究现状及发展趋势[J].石油矿场机械,2007, 36(6):19~22.
    [26]颜纯文,乔峰. Samplex贯通式潜孔锤钻进装置[J].国外探矿工程情报. 1992(1): 80-86.
    [27]谭凡教.射流式冲击器改型设计及MATLAB仿真计算[D].长春:吉林大学建设工程学院, 2005.
    [28]刘海翔. Bulroc反循环潜孔锤[J].国外地质勘探技术. 1990(12): 14-15.
    [29]颜纯文. Halco-Lister-DTH反循环取样装置[J].国外探矿工程情报. 1992(1): 96-97.
    [30]耿瑞伦,陈星庆,耿燕婷等.推广应用多工艺空气钻进技术成效显著[J].探矿工程(岩土钻掘工程). 1998(03): 3-6.
    [31]殷琨,王茂森. FGC-15型大直径单头潜孔锤钻具系统研制[J].探矿工程(岩土钻掘工程). 1995(05): 17-19.
    [32]彭枧明,殷琨,陈家旺等.新一代大直径气动潜孔锤钻进系统的研制与应用[J].工程机械. 2007,38(02): 36-38.
    [33]陈家旺,殷琨,彭枧明等.大直径潜孔锤在海底嵌岩锚链灌注桩工程中的应用[J].施工技术. 2007,36(01): 86-88.
    [34]蒋荣庆,殷琨.贯通式气动潜孔锤反循环连续取心(样)钻进在水文水井钻中的应用[J].探矿工程(岩土钻掘工程). 1991(06).
    [35]殷琨,王茂森,彭枧明等.水文水井潜孔锤反循环钻进技术[J].探矿工程(岩土钻掘工程). 2003(S1).
    [36] Shale L. Underbalanced drilling with air offers many pluses[J]. Oil and Gas Journal. 1995, 93(26): 33-39.
    [37] Li Z, Yanshan U, Guo B. Analysis of longitudinal vibration of drillstring in air and gas drilling[C]. Denver: Society of Petroleum Engineers, 2007.
    [38]晁文学,林勇.国外空气钻井钻头的研究与应用[J].石油钻探技术,2001,29(1):39-40.
    [39]郭文才,刘绘新.空气钻井计算方法与应用软件[J].钻采工艺,2001,24(1):8-9, 12.
    [40]胡振阳.潜孔锤反循环钻进技术在河南栾川钼矿复杂地层中的试验与理论研究[D].长春:吉林大学硕士学位论文,86.
    [41]张祖培,殷琨等.岩土钻掘工程新技术[M].北京:地质出版社, 2003.
    [42]周维垣等.高等岩石力学[M].北京:水利电力出版社,1990.
    [43]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [44]王学清.潜孔冲击器凿岩系统的波动理论分析[J].凿岩机械与风动工具,2000(4):44-49.
    [45] Johnson K L. Contact mechanics[M]. Combridge University Press. 1985.
    [46] Lawn B R. Partial cone crack formation in a brittle material loaded with a sliding indenter. Proc.Roy.Soc.,1967,A299:307.
    [47]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [48] Liu Hongyuan. Numerical modeling of the rock fracture process under mechanical loading[D].Lulea university of technology. 2002.
    [49] Q.M.Gong, Y.Y.Jiao, J.Zhao.Numerical modeling of the effects of joint spacing on rock fragmentation by TBM cutters. Tunnelling and Underground Space Technology, 2006, 46-55.
    [50]张宗贤,俞洁.岩石动静态断裂面的微观特征[J].中国有色金属学报,1995.5(4): 21-24.
    [51]张东胜,安里千.基于红外热成像和光弹性测试的应力分布与变化的定量分析[J].焦作工学院学报,2001.20(3):225-228.
    [52]赵统武.冲击钻井动力学[M].北京:冶金工业出版社,1986:46 - 62.
    [53]张祖培,殷琨,蒋荣庆,孙友宏等.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [54]张国忠.气动冲击设备及其设计[M].机械工业出版社,1991.
    [55]刘宗平.冲击凿岩工具及理论基础[M].北京:地质出版社,1987.
    [56]赖海辉,朱成忠,李夕兵等.机械岩石破碎学[M].长沙:中南工业大学出版社,1991.
    [57]赵伏军.动静载荷耦合作用下岩石破碎理论及实验研究(D).中南大学,2004
    [58] [苏]斯彼瓦克Aи,波波夫Aи(著),吴光琳,张祖培(译).钻井岩石破碎学[M].北京:地质出版社,1983.
    [59]张宗贤,寇绍全.关于岩石的动静态侵入断裂[J].北京科技大学学报.1990,12(5): 401-407.
    [60] Hagan J T. Cone cracks around Vickers indentations in fused silica glass[J].J.Mater.Sci. 1979,14:462-466.
    [61] Marshall D B.Geometrical effects in elastic/plastic indentation [J]. Amer.Ceram.Soc. 1983,66(8):57-60.
    [62] Marshall D B.Measurement of dynamic hardness by controlled sharp-projectile impact effects in elastic/plastic indentation [J].Amer.Ceram.Soc.1984,67(1):580-585.
    [63]高庆.工程断裂力学[M].1988.
    [64]张宗贤,寇绍全.固体力学中侵入问题的若干新进展[J].力学进展,1992,22(2):183-193.
    [65]切列帕诺夫(著),黄克智等译.脆性断裂力学[M].北京:科学出版社,1990.
    [66] Steverding B, Lehnigk S H. Response of cracks to impact[J]. J. Appl. Phys.,1970,41(5):2096-2099.
    [67] Steverding B, Lehnigk S H. Collision of stress pulses with obstacles and dynamic of fracture[J]. J. Appl. Phys.,1971,42(8):3231-3238.
    [68]李夕兵,古德生.岩石在不同加载波条件下能量耗散的理论探讨[J].爆炸与冲击,1994,14(2):129-140.
    [69]王军.损伤力学的理论及应用[M].北京:科学出版社,1997.
    [70] Rubin A M, Ahrens T J. Dynamic Tensile Failure Induced Velocity Deficits in Rock[J]. Geophys Res Lett.1991(2):219-223.
    [71]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社.1990.
    [72]虞岩贵.冲击载荷作用下含裂纹构件强度计算的试探[J].福州大学学报,1994,22(4):133-138.
    [73]詹俊峰,高德利,刘希圣.地层抗钻强度与钻头磨损实用评估方法[J].石油钻采工艺,1997,19(6):16-23.
    [74]张宗贤.柱齿钻头磨损的若干特点与规律[J].北京科技大学学报,1991,13(1): 403-409.
    [75]季倩倩.钻头表面磨损规律的研究[D].沈阳:东北大学硕士学位论文,57.
    [76]张卫兵. WC、Co质量对超细硬质合金性能影响的研究[J].2003,20(3): 157-160.
    [77]孙东平,夏斌华.超粗晶粒凿岩硬质合金研究的新进展[J].凿岩机械气动工具,2009(4):41-46.
    [78]郭圣达,张正富. WC-Co类硬质合金疲劳特性研究现状[J].材料导报,2009, 23(6):69-72.
    [79]张凤林,王成勇,宋月贤. WC-Co硬质合金的强韧化[J].粉末冶金技术,2003,21(3):236-240.
    [80] T.N.SINGH,A.R.GUPTA and R.SAIN.A comparative analysis of cognitive systems for the prediction of drillability of rocks and wear factor[J].Geotechnical and Geological Engineering ,2006 (24): 299–312.
    [81] R. Lewis. A modelling technique for predicting compound impact wear[J]. Wear, 2007 (262) :1516–1521.
    [82] Ulrik Beste , Staffan Jacobson. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons[J]. Wear, 2008(264):1129–1141.
    [83] Ulrik Beste.On the Nature of Cemented Carbide Wear in Rock Drilling[D].ACTA UNIVERSITATIS UPPSALA 2004:23-65.
    [84] S.S.Panda, A.K.Singh, D.Chakraborty, S.K.Pal. Drill wear monitoring using Back propagation neural network [J]. Journal of Material processing Technogy,2006 (172): 283-290.
    [85] L.C.Duan,X.y.Liu,B.S.Mao,K.H.Yang,F.L.Tang.Research on diamond-enhanced tungsten carbide composite button bits[J].Journal of Material Processing Technology, 2002(129):395-398.
    [86] U. Beste, T. Hartzell, H. Engqvist, N. Axen, Surface damage on cemented carbide rock drill buttons[J]. Wear 2001,(249):324–329.
    [87] U. Beste, S. Jacobson, Rock penetration into cemented carbide rock drill buttons during rock drilling[J]. Wear, 2008(264):1142–1151.
    [88] Engqvist H.and U.Beste. The influence of pH on silding wear of WC-based materials[J]. International Journal of Refractory Metals & Hard Materials,2000,18(2):103-109.
    [89] Engqvist H.and U.Wiklund. Mapping of mechanical properties of WC- Co using nanoindentation[J]. Tribology Letters,2008(8):147-152.
    [90]沈忠厚.现代钻井技术发展趋势[J].石油勘探与开发,2005,32(1):89-91.
    [91]沈忠厚,王瑞和.现代石油钻井技术50年进展和发展趋势[J].石油钻采工艺,2003,25(5):1-6.
    [91]杨志龙.石油钻进过程最优控制[J].石油学报,2000,21(5):77-85.
    [92]霍发宽.了解钻速变化规律优化钻进技术措施[J].钻采工艺,1995,18(2): 95-96.
    [93]陈庭根,管志川.钻井工程理论与技术[M].石油大学出版社,2000.
    [94]周开吉,郝俊芳.钻井工程设计[M].石油大学出版社, 1994.
    [95]王瑞和.钻井工艺技术基础[M].石油大学出版社,1994.
    [96]李世忠.钻探工艺学[M].北京:地质出版社,1992.
    [97] S. Kahraman,N. Bilgin, C. Feridunoglu. Dominant rock properties affecting the penetration rate of percussive drills[J]. International Journal of Rock Mechanics & Mining Sciences, 2003 (40):711–723.
    [98] Gang Han, Mike Bruno, Khang Lao. Percussion Drilling in Oil Industry: Review and Rock Failure Modelling[J]. The 40th U.S.Symposium on Rock Mechanics (USRMS), Alaska, 2005,June:1-10.
    [99] Anton M. Krivtsov, Ekaterina E. Pavlovskaia, Marian Wiercigroch. IMPACT FRACTURE OF ROCK MATERIALS DUE TO PERCUSSIVE DRILLING ACTION[J]. Warsaw, Poland, XXI ICTAM, 2004, August :15–21.
    [100] S. Kahraman. Rotary and percussive drilling prediction using regression analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 1999(36):981-989.
    [101]高兴坤,孙正义,李红宣.计算机模拟技术在钻井工程中的应用及展望[J].石油钻探技术,2007,35(5):118-121.
    [102] Abdulrahman F.AL-Rashidi. Designing Neural Networks for the Prediction of the Drilling Parameters for Kuwait Oil and Gas Fields[D]. Morgantown:West Virginia University,1999,87.
    [103] Geir Hareland. Simulation can help optimize drilling and cut costs[J]. DRILLING, 2000(7):42-47.
    [103]郭学增.最优化钻井理论基础与计算[M].北京:石油工业出版社,1987,109.
    [104]林元华,施太和,李润方,曾德智,刘晓旭,张德平.空气冲旋钻井冲击力和机械钻速仿真研究[J].岩石力学与工程学报,2005.24(18):3337-3341.
    [105]李士斌,张立刚,荆玲,徐守峰.钻井参数优选新方法[J].石油钻探技术,2007, 35(4):9-11.
    [106]周劲辉,高德利.河南油田钻进参数的优化研究[J].探矿工程,2005增刊:207-272.
    [107]魏春禺,李海庆,张庆良,杨金山,潘华枫.优化钻井技术的应用研究[J].石油天然气学报(江汉石油学院学报),2008 ,30(5):110-112.
    [108]李祖光,翟应虎,史海民,白相双,杨明合,孙国军.优化钻井技术在提高松南地区深井钻井速度中的应用[J].钻采工艺,2008,31(5):137-138,141.
    [109] Gary L. Cavanough. A Self-Optimizing Control System for Hard Rock Percussive Drilling[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS, 2008,13(2): 153-157.
    [110]林元华,宗玉宇,梁政,施太和,李润方.石油钻井机械钻速预测研究进展[J].石油钻探技术,2004,32(1):10-13.
    [111]杨志龙.石油钻井过程最优钻井参数的存在性[J].重庆石油高等专科学校学报,2000,2(2):1-4.
    [112]苏自武,杨甘生,陈礼仪.利用神经网格原理对钻井中钻速的预测[J].探矿工程, 2005(1),48-50.
    [113]阎铁,毕雪亮,刘春天,张书瑞.一种预测深井钻井速度的人工神经网络法[J].石油钻探技术,2001,29(6):9-10.
    [114]刘正模.磨钝钻头的研究[J].矿山机械,1981(6):11-14,54.
    [115]杨俊德,胡焕校.金刚石钻头磨损机理分析[J].矿业研究与开发,1997,17(2):37-39.
    [116]史玉升,梁书云基于目标函数的钻压优化模型建模方法[J].地质与勘探, 2000,32(2):7-9.
    [117]樊明武,李志学,冯力丹.油气钻井作业成本预测模型研究[J].天然气工业, 2007(3):134-136.
    [118]苏义脑,周川,窦修荣.空气钻井工作特性分析与工艺参数的选择研究[J].石油勘探与开发,2005, 32(2):87-90.
    [119] Hagan M.T ,Demuth H.B ,Beale M.H.神经网络设计[M].戴葵,译.北京:机械工业出版社,2002.
    [120]葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [121]梁艳春,聂义勇.从科学研究方法论看人工神经网络研究的发展[J ].吉林大学学报(信息科学版),2002,20(1):59 - 62.
    [122]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1995.1-92.
    [123] Weigend A S,Rumelhart D E,Huberman B A .Predicting the future: a connectionist approach.Journalof Neural Systems.1990,1(3):193-209.
    [124]刘国东,丁晶.BP网络用于水文预测的几个问题探讨[J].水利学报,1999(1): 65-70.
    [125]周琳霞,黎明,杨小芹.级联遗传算法优化设计前向神经网络[J].电子技术, 2003(9):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700