用户名: 密码: 验证码:
La_(15-x)Nd_xFe_(14)Ni_(64)Mn_5B_2(x=0-6)贮氢合金的结构和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型La-Fe-B系贮氢合金是一种“绿色”环保的稀土功能材料,具有较好的贮氢特性和较低的成本,综合电化学性能与传统LaNi_5型合金相当,可以不用价值较高的Co,同时含有价值低廉的Fe元素,成本比商品LaNi_5型贮氢合金低10-40%,可以开发出满足电池不同需求的各种贮氢电极材料。La-Fe-B系贮氢电极材料有着广阔的市场前景和显著的经济社会效益预期,具有重大的开发价值。
     元素替代法是改善贮氢合金性能的主要途径之一。本文研究了Nd部分替代La15Fe14Ni64Mn5B2合金中的La对材料结构和性能的影响。
     采用中频感应熔炼-快淬法制备了La_(15-x)Nd_xFe_(14)Ni_(64)Mn_5B_2(x=0、2、4、6)贮氢合金,在一定的温度和压力下退火处理。X射线衍射(XRD)分析表明,合金由LaNi_5相、(Fe,Ni)相和La_3Ni_(13)B_2相组成。Nd替代La没有改变相组成,但衍射峰略向高角度方向位移。扫描电镜(SEM)及能谱(EDS)分析结果与XRD分析的相组成结果一致。适量的Nd替代La能够改善P-C-T的平台性能。电化学测试表明,La_(15-x)Nd_xFe_(14)Ni_(64)Mn_5B_2 (x=0、2、4、6)贮氢合金的放电容量、高倍率放电能力(HRD)随x值的增大先增加后减小,x=2合金电极的放电容量最大(302 mAh·g~(-1)),HRD也最大(65.6%)。Nd替代La对合金的循环性能有所改善。
     退火热处理改善了La_(15-x)Nd_xFe_(14)Ni_(64)Mn_5B_2(x=0、2、4、6)贮氢合金电极的活化性能,提高了放电容量和高倍率放电性能,但电极循环稳定性下降。
La-Fe-B system hydrogen storage alloys with an good electrochemical performance like LaNi5 type alloys are a new type of rare earth function material, which adopts Fe,. Compared with LaNi5, La-Fe-B system hydrogen storage alloys have a cost lower 10-40% due to the Co-free. Various hydrogen storage electrode materials could be developed to meet different demands. With a promising market and remarkably economical and social anticipation, this new type of La-Fe-B hydrogen storage electrode material deserves deeper research.
     Element substitution is a one of the methods for further research aiming to ameliorate hydrogen storage material’s electrochemical performance. In this paper, La_(15)Fe_(14)Ni_(64)Mn_5B_2 is substituted its La by Nd so as to observe element Nd’s effect on the alloy’s phase structure and electrochemical performance.
     Hydrogen storage alloys La_(15-x)Nd_xFe_(14)Ni_(64)Mn_5B_2(x=0,2,4,6) were prepared by medium frenquency induction melting and quick-quenching. The alloys were tested by X-ray diffraction to identify their phases. There is no new phase although La is partly replaced by Nd except for slightly movement of diffraction peaks to high angle direction. Alloys’Surfaces are also observed by SEM and compositions are determined by EDS. Results show there are three phases in alloys: LaNi_5, (Fe,Ni) and La3Ni13B2. La_(15-x)Nd_xFe_(14)Ni_(64)Mn_5B_2(x=0,2,4,6) alloys electrodes were tested for eletrochemical performances. The highest capacity appears when x equals 2, then maximum capacity declines with increasing x. Small amount of Nd substitution for La could broaden plateau of discharge curve and improve electrode’s P-C-T curve plateau. Nd substitution for La also provides some improvement for electrode’s cycle performance. Alloy has a better HRD performance when x=2, but it declines as x increases. Generally speaking, small amount of Nd substitution for La has a positive effect on properties of La_(15)Fe_(14)Ni_(64)Mn_5B_2 alloy electrode.
     Anealing reduces numbers of activating, increases highest capacity, distinct enhances high rate discharge ability. But anealing also causes adverse effect on cycling performance.
引文
[1]李全安,陈云贵,王丽华等.贮氢合金的开发和应用[J].材料开发与应用,1999,14(3):33-36.
    [2] Van Vucht J.H.N., Kuijpers F.A., Bruning H.C.A.M. Reversible-room temperature absorption of large quantities of hydrogen by intermetallic compounds[J]. Philips Journal of Research, 1970, 25: 133-140.
    [3] Willems J.J.G.Metal hydride electrodes stability of LaNi5-related compounds [J]. Philips Journal of Research,1984, 39(Suppl.1) : 1-91.
    [4] Sakai T., Yoshinaga H., Miyamura H., et al. Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys[J]. Journal of Alloys and Compounds, 1992 , 180: 37-54.
    [5] Willems J.J.G., Bushow K.H.J. From permanent magnets to rechargeable hydride electrodes[J]. Journal of The Less Common Metals, 1987 , 129 : 13-30.
    [6]刘永平,赵罡,李荣,等.贮氢合金的开发与应用[J].重庆大学学报,2003,26 (5):143-147.
    [7] Notten P.H.L., Einerhand R. E. F. Electrocatalytic hydride-forming compounds for rechargeable batteries[J]. Advanced Materials, 1991 , 3 : 343-350.
    [8] Sumita Srivastava, O.N. Srivastava. Synthesis, characterization and hydrogenation behaviour of composite hydrogen storage alloys, LaNi5/La2Ni7, LaNi3[J]. Journal of Alloys and Compounds, 1999 , 282: 197-205.
    [9] Moriwaki Y., Gamo T., Seri H., et al. Electrode characteristics of C15-type laves phase alloys[J] Journal of The Less Common Metals, 1991, 172~174 : 1211-1218.
    [10] Fetcenko M.A., Ovshinsky S.R., Reichman B., et al. Recent advances in Ni/MH battery technology[J]. Journal of Power Sources , 2007, 165 : 544-551.
    [11]张允什.负极贮氢合金材料[J]电源技术,1996 ,20(1) :36-40.
    [12] Jurczvk M., Rajewskia W., Wojcikb G., et al. Metal hydride electrodes prepared by mechanical alloying of ZrV2-type materials[J]. Journal of Alloys and Compounds, 1999 , 285 : 250-254.
    [13] Bououdina M., Sun D.L., Enoki H., et al. Improved kinetics by the multiphase alloys prepared from Laves phases and LaNi5[J]. Journal of Alloys and Compounds, 1999 , 288 : 229-237.
    [14] Han Sang cheol, Jiang Jianjun, Park Jeonggun, et al. The electrochemicalevaluation of ball milled MgNi-based hydrogen storage alloys[J]. Journal of Alloys and Compounds, 1999 ,285 : L8-L11.
    [15] Chiaki Iwakura, Shinji Nohara, Shu Guo Zhang, et al. Hydriding and dehydriding characteristics of an amorphous Mg2Ni–Ni composite[J]. Journal of Alloys and Compounds,1999 , 285 : 246-249.
    [16]张文鹏,吴建民.稀土含量对MmNi5基储氢合金性能的影响[J].金属功能材料,1998,5(4):176-178.
    [17] Liquan Li, Tomohiro Akiyama, Jun-ichiro Yagi. Effect of hydrogen pressure on the combustion synthesis of Mg2NiH4 [J]. Intermetallics, 1999, 7: 201-205.
    [18] Kleiner J. E., Sevilla, E. H., Cotts, R. M. Diffusion of Hydrogen in a'-VHx[J]. Physical Review B, 1986 , 33(10) : 6662-6666.
    [19] Maelanda A.J., Libowitz G.G., Lynch J.F., et al. Hydride formation rates of B.C.C. group V metals[J]. Journal of The Less Common metals. , 1984, 104(1) : 133-139.
    [20] Tsukahara M., Takahashi K., Mishim T., et al. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0≤x≤0.75).[J]. Journal of Alloys and Compounds, 1995, 266 : 203-207.
    [21] Tsukahara M., Takahashi K., Mishima T. et al. Influence of various additives in vanadium-based alloys V3TiNi0.56 on secondary phase formation, hydrogen storage properties and electrode properties[J]. Journal of Alloys and Compounds, 1996, 245: 59-65.
    [22] Tsukahara M., Takahashi K., Mishima T., et al. Heat-treatment effects of V-based solid solution alloy with TiNi-based network structure on hydrogen storage and electrode properties[J]. Journal of Alloys and Compounds, 1996 , 243 : 133-138.
    [23] Tsukahara M., Takahashi K., Isomura A., et al. Improvement of the cycle stability of vanadium-based alloy for nickel-metal hydride (Ni–MH) battery[J]. Journal of Alloys and Compounds, 1999 , 287 : 215-220.
    [24] Tsukahara M., Takahashi K., Mishima T., et al. V-based solid solution alloys with Laves phase network: Hydrogen absorption properties and microstructure [J]. Journal of Alloys and Compounds, 1996, 236 : 151-155.
    [25] Kuk-Jin Jang, Jae-Han Jung, Dong-Myung Kim, et al. Self-discharge mechanism of Vanadium–Titanium metal hydride electrodes for Ni–MH rechargeable battery[J]. Journal of Alloys and Compounds, 1998, 268: 290-294.
    [26] Sumita Srivastava, O.N. Srivastava. Hydrogenation behaviour with regard to storage Capacity, Kinetics, Stability and thermodynamic behaviour of hydrogen storage composite alloys LANi5/La2Ni7, LaNi3[J]. Journal of Alloys and Compounds, 1999, 290: 250-256.
    [27] Chen J., Takeshita H.T., Tanaka H., et al. Hydriding properties of LaNi3 and CaNi3 and their substitutes with PiNi-type structure[J]. Journal of Alloys and Compounds, 2000, 302: 304-313.
    [28] Yongfeng Liu, Hongge Pan, , Mingxia Gao, et al. The effect of Mn substitution for Ni on the structural and electrochemical properties of La0.7Mg0.3Ni2.55?xCo0.45Mnx hydrogen storage electrode alloys[J]. International Journal of Hydrogen Energy 2004, 29: 297-305.
    [29] Chen L., Wu F., Tong M., et al. Advanced nanocrystalline Zr-based AB2 hydrogen storage electrode materials for NiMH EV Batteries[J]. Journal of Alloys and Compounds, 1999 , 293~295 : 508-520.
    [30] Wada. M, Yoshinaga H., Kajita O., et al. Production of copper-alloy complex granules for nickel/metal hydride electrodes[J]. Journal of Alloys and Compounds, 1993, 192(1-2): 164-166.
    [31] Yong-Quan Lei, Zhou-Peng Li, Chang-Pin Chen, et al. The cycling behaviour of misch metal—nickel-based metal hydride electrodes and the effects of copper plating on their performance[J]. Journal of The Less Common Metals, 1991, (172-174): 1265-1272.
    [32] Chuanjian Li, Xinlin Wang. Investigations on the cycle stability and the structure of theMmNi3.6Co0.75Mn0.55Al0.1 hydrogen storage alloy II. Microstructure investigations and discussions[J]. Journal of Alloys and Compounds, 1999, 284: 274–281.
    [33]葛利玲,马玉韩,井晓天,等.稀土系贮氢合金热处理的研究与进展[J].金属功能材料2005,12(3):22-25.
    [34] Michele Gupta. Electronic properties of LaNi5 and LaNi5H7[J]. Journal of The Less Common Metals. 1987, 130: 219-228.
    [35]闫慧忠,孔繁清,熊玮,李金,李宝犬.RE-Fe-B系贮氢合金[P].中国:200810176872.8,2009.04.15.
    [36]闫慧忠,熊玮,孔繁清,李宝犬,李金.La15Fe77B8型贮氢合金及其用途[P].中国:200810176873.2,2009.04.29.
    [37]周增林,宋月清,黄长庚,等.电化学方法研究贮氢电极合金的曲线P-C-T[J].分析试验室,2008,27(7):13-17.
    [38] Yuan Li, Shumin Han, Jinhua Li, et al. The effect of Nd content on the electrochemical properties of low-Co La–Mg–Ni-based hydrogen storage alloys[J]. Journal of Alloys and Compounds 2008, 458: 357–362.
    [39] K. Giza , W. Iwasieczko , H. Bala , et al. Hydrogenation behaviour of La0.5R0.5Ni4.8Al0.1Li0.1 (R=La, Ce, Pr or Nd) alloys[J]. International Journal of Hydrogen Energy 2009, 34: 913– 915.
    [40]胡子龙.贮氢材料[M].北京:化学工业出版社,2002.91-100.
    [41] Beck W., Bockris J. O. M., Genshaw M. A., et al. Diffusivity and solubility of hydrogen as a function of composition in Fe-Ni alloys [J]. Metallurgical and Materials Transactions B, 1971, 2(3): 883-888.
    [42] Fujita F E, Sohmura T. Hydrogen in stainless steel and Fe-Ni alloys [J]. J De Physique, 1976, C6: 379-383.
    [43] Spada F., Oesterreicher H. Hydrogen absorption in La3Ni13B2[J]. Journal of The Less Common Metals, 1983, 90: L1-L4.
    [44] Yuan Li, Da Han, Shumin Han, et al. Effect of rare earth elements on electrochemical properties of La–Mg–Ni-based hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2009, 34: 1399-1404.
    [45] F. Rosalbinoa, S. Delsanteb, G. Borzoneb, et al. Electrocatalytic behaviour of Co–Ni–R (R = Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2008, 33: 6696-6703.
    [46] W.X. Chena, Z.D. Xu, J.P. Tu. Electrochemical investigations of activation and degradation of hydrogen storage alloy electrodes in sealed Ni/MH battery[J]. International Journal of Hydrogen Energy, 2002, 27: 439–444.
    [47] Zhou Yu, Zhang Yufen, Lei Yongquan, et al. Activation mechanism of hydrogen-storage electrode alloy Ml(NiCoMnTi)5 produced by gas atomization.[J]. International Journal of Hydrogen Energy, 1998, 23(3): 183 -189.
    [48] Guo J H, Jiang Z T, Duan Q S, et al. Influence of Ce and Nd contents of Ml(NiCoMnAl) 5 alloy on the performances of Ni-MH batteries [J]. Journal of Alloys and Compounds, 1999, 293-295: 821-824.
    [49] Chiaki Iwakura, Takafumi Oura, Hiroshi Inoue, et al. Effects of substitution with foreign metals on the crystallographic, thermodynamic and electrochemicalproperties of AB5-type hydrogen storage alloys[J]. Electrochimica Acta, 1996, 41(1): 117-121.
    [50] Hui Ye, Baojia Xia, Wenquan Wu, et al. Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys[J]. Journal of Power Sources, 2002 , 111: 145-151.
    [51] Nebojsa I. Potkonjak, Stevan N. Blagojevic, Desanka Z. Suznjevic. Hydrogen diffusion behavior inα-solid solution phase of LmNi3.55Co0.75Mn0.4Al0.3 metal hydride electrode—Effect of temperature[J]. Journal of Alloys and Compounds 2009, 484: 689–692.
    [52] Shen Xiangqian, Chen Yungui, Tao Mingda, et al. The structure and high-temperature (333 K) electrochemical performance of La0.8-xCexMg0.2Ni3.5 (x=0.00–0.20) hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2009, 34: 3395– 3403.
    [53]郭红霞,曹美丽,陈迅,等.金属氢化物一镍蓄电池低温性能的研究[J].河南师范大学学报,2003,31(2):76-78.
    [54] Hiroshi Senoh, Yasutaka Hara, Hiroshi Inoue, et al. Charge efficiency of misch metal-based hydrogen storage alloy electrodes at relatively low temperatures[J]. Electrochimica Acta 2001, 46: 967–971.
    [55] ChunshengWanga, Mariza Marrero-Riverab, Daniel A. Serafinib, et al. The self-discharge mechanism ofAB5-type hydride electrodes in Ni/MH batteries[J]. International Journal of Hydrogen Energy 2006, 31: 603– 611.
    [56] Jon-Ha Lee, Ki-Young Lee, Jai-Young Lee. Self-discharge behaviour of sealed Ni-MH batteries using MmNi3.3+xCo0.7Al1.0?x anodes[J]. Journal of Alloys and Compounds, 1996, 232: 197-203.
    [57] Zhihong Ma, Jufeng Qiu, Lixin Chen, et al. Effects of annealing on microstructure and electrochemical properties of the low Co-containing alloy Ml(NiCoMnAlFe)5 for Ni/MH battery electrode[J]. Journal of Power Sources, 2004,125: 267–272.
    [58]闫慧忠,熊玮,孔繁清,等.热处理对La0.65Pr0.05Nd0.05Mg0.25Ni3.3Al0.1储氢合金结构和电极性能的影响[J].稀土,2007,28(5):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700