用户名: 密码: 验证码:
La-Mg-Ni系新型贮氢合金结构与电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
La-Mg-Ni系PuNi_3型贮氢合金是新近发现的高容量电极合金,具有重要的开发应用前景,但电极合金循环稳定性较差,因而如何提高合金电极循环稳定性是该类合金目前应用研究的关键问题。本文以PuNi_3型合金作为La-Mg-Ni系合金研究的起点,首先对PuNi_3型合金进行了元素替代和热处理研究,试图提高PuNi_3型电极合金的循环稳定性和高倍率放电性能。在PuNi_3型合金热处理研究的基础上,发现La-Mg-Ni系A_2B_7型合金具有比PuNi_3型合金更佳的综合电化学性能,据此本文以A_2B_7型合金为研究对象,系统考察了元素替代和热处理对合金结构和电化学性能的影响,研究表明La-Mg-Ni系A_2B_7型电极合金是一类重要的具有良好应用前景的新型Ni/MH电池负极候选材料。本文还采用ND(中子衍射)、XRD(X射线衍射)、粒度分析、HRTEM(高分辨透射电镜)等材料分析方法及电化学阻抗谱等电化学测试技术系统地研究了PuNi_3型合金和Ce_2Ni_7型合金电极容量衰退规律,力求阐明Ce_2Ni_7型合金比PuNi_3型合金具有更佳电化学性能的内在原因。
     对于PuNi_3型合金,本文以La_2MgNi_9为基础成分,系统地研究了混合稀土元素替代和Ti/Zr素替代对合金相结构和电化学性能的影响。结果表明,混合稀土元素(Ce、Pr、Nd)对合金相结构有显著影响,晶胞微结构产生各向异性变化,合金颗粒氢致粉化加剧。混合稀土元素的添加不能有效改善合金电极的循环稳定性,但可以显著提高合金电极的高倍率放电性能。Ti/Zr元素不能固溶于PuNi_3型合金当中,而是形成稳定的Ti-Ni相或Zr-Ni相呈树枝晶形态分布于合金中。Ti/Zr元素的引入从不同程度上提高了合金电极的循环稳定性,改善了合金电极的倍率放电性能,但也会不同程度的降低合金电极的放电容量。
     对于PuNi_3型合金,本文还系统研究了热处理温度对La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5)合金结构和电化学性能的影响。热处理对合金相结构有重要影响,1123K热处理有利于PuNi_3型物相的形成,高温热处理(>1123K)会诱导PuNi_3型合金向Ce_2Ni_7型合金的转变。热处理能够显著改善合金的氢化性能,Ce_2Ni_7型合金和PuNi_3型合金具有相似的吸放氢特性和电极活化性能,最大电化学放电容量均可达400mAh/g。热处理对改善PuNi_3型合金电极的循环稳定性是有限的,但研究发现Ce_2Ni_7型合金电极具有比PuNi_3型合金电极更佳的循环稳定性和动力学性能,70次充放电循环后的容量保持率可达92.9%。因此A_2B_7型合金是一种更具有应用前景的高容量合金电极。
     以A_2B_7型合金为研究对象,本文系统的研究了Mg含量、Co含量及稀土元素对合金结构和电化学性能的影响。结果表明,Mg含量对A_2B_7型合金相结构有重
PuNi_3-type hydrogen storage alloy of La-Mg-Ni system is a kind of new type high capacity electrode alloy which was found in recent years, this kind of alloy possesses an important prospect of development and utilization. However, the cyclic life of alloy electrodes is poor, then it is the key question of unilization researches that how to improve the cyclic life of alloy electrodes. So in this paper, the PuNi_3-type alloy was of the jumping-off point of study of La-Mg-Ni system alloys. Firstly, element substitution and annealing treatment were conducted in order to improve the cyclic stability and high rate dischargeability (HRD) of PuNi_3-type alloys. On the basis of annealing treatment of PuNi_3-type alloys, it is found that A_2B_7-type alloys of La-Mg-Ni system show much better overall electrochemical properties than the PuNi_3-type alloys. Consequently A_2B_7-type alloys became the object of researches. The effect of element substitution and annealing treatment on alloy structure and electrochemical were investigated systemically, the study showed that A_2B_7-type alloy is an important new type candidate of Ni/MH battery negative electrode which processes a good commercialization prospect. Besides, in this paper, methods of material analysis, as ND (neutron diffraction), XRD (X-ray diffraction), particle analysis, HRTEM (high resolution transmission electron microscope) et al, and technology of electrochemical measurement like electrochemical impedance spectrum were introduced to investigate the capacity degradation rule of PuNi_3-type and Ce_2Ni_7-type alloys, and also to clarify the intrinsic reason of the better cyclic stability of Ce_2Ni_7-type alloys when compared with PuNi_3-type alloys.With respect to the PuNi_3-type alloy, La_2MgNi_9 alloy was as the basic component for study in this paper. The effect of the substitution of misch metal and Ti/Zr element on alloy phase structure and electrochemical properties were investigated systematically. It is found that misch metal like Ce, Pr, Nd had an distinct influence on the phase structure, also led to the anisotropic change of microstructure of unit cell and accelerated the pulverization of alloy particles. Misch metal could not improve cyclic stability of alloy electrodes effectively, but it could increase HRD of alloy electrodes remarkably. Ti/Zr elements could not dissolve into PuNi_3-type alloys, but formed stable Ti-Ni or Zr-Ni phase which was distributed like branch in alloys. Introduction of Ti/Zr elements could improve the cyclic stability and HRD of alloy electrode to some extent, but also reduced the discharge capacity of electrodes.To PuNi3-type alloy, the effect of annealing treatment temperature on structure and electrochemical properties of La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5) alloy were also investigated systematically in this paper. Annealing treatment had an important influence on the phase structure of alloys, annealing treatment at 1123K was favorite of the formation of PuNi_3-type, while annealing treatment at high temperature (> 1123K) would induce the phase transformation from PuNi_3-type to Ce_2Ni_7-type. At the same time, annealing
    treatment would improve hydrogenation properties of alloys remarkably, Ce2Ni7-type alloy and PuNi3-type exhibited similar hydrogen absorption/desorption characteristic and electrode activation properties, and discharge capacity both electrodes could be up to 400mAh/g. However it was limited that the cyclic stability of PuNi3-type alloys were improved by annealing treatment. It should be noticed that Ce2Ni7-type electrode alloy showed better cyclic stability and kinetic properties than PuNi3-type one. The capacity retention rate after 70 charge/discharge cycles of Ce2Ni7-type alloy electrode was up to 92.9%, it has been proved to be a kind of high capacity alloy electrode with good applied prospect.Based on A2B7-type alloys, the effects of Mg content, Co content and rare earth elements on alloy structure and electrochemical properties were examined systematically. Experiment results showed that Mg content had an important influence on the phase structure of A2B7-type alloys. According to the different Mg content, alloys would present two different kinds of crystal structure with Ce2Ni7-type and Gd2Co7-type. High Mg content in alloys would lead to the decomposition of A2B7-type phase into PuNi3-type phase and LaNis phase. Because the ratio of CaCus unit and Laves unit in A2B7-type alloy and PuNi3-type alloy is different, the microstructure of both kinds of alloys exhibited different change rule. Mg atoms were distributed mainly at laves unit of A2B7-type alloy. The effect of Mg content on hydrogenation and electrochemical properties of alloys was distinct. When the Mg content was low, alloys would show hydrogen induced amorphous phenomenon with low discharge capacity, but cyclic stability was better;when Mg content increased, amorphous phenomenon disappeared, alloy electrodes exhibited high discharge capacity and good kinetic properties;when Mg content increased further,-and the overall electrochemical properties of alloy electrodes would be deteriorated. Co element in Ce2Ni7-type alloys could not change the phase structure of La1.5Mgo.5Ni7 alloy. Co atoms were only distributed at CaCus unit of Ce2Ni7-type unit cell, not at Laves unit. The special distribution of Co atoms in Ce2Ni7-type unit cell would lead to much more serious pulverization of alloy particle due to inconsistent volume expansion of two kinds of units, and then Co element could not improve cyclic stability of Ce2Ni7-type alloy electrodes. The effect of rare earth elements on electrochemical properties of A2B7-type alloy electrodes was similar to PuNi3-type alloy electrodes, and Ce element could deteriorate cyclic stability of A2B7-type alloy electrodes, and it should be used carefully.Based on the La1.5Mgo.5Ni7 alloy, the effect of annealing temperature on alloy phase structure and microstructure and electrochemical properties were investigated. As-cast alloy was a multi-phase structure;after annealing treatment, it was converted into double-phase structure with Gd2Co7-type and Ce2Ni7-type. Annealing treatment could obviously improve overall electrochemical properties of alloy electrodes. After annealing treatment at 1173K, the discharge capacity of electrodes could be up to 391.2mAh/g and the capacity retention rate after 150 charge/discharge cycles could reach 82.0%. Hydrogenation properties and electrochemical properties between Gd2Co7-type alloy and Ce2Ni7-type alloy was similar.The study of alloy structure, pulverization and corrosion clarified basically
    capacity degradation mechanism of PuNi3-type and Ce2Ni7-type alloys. Neutron diffraction analysis showed that volume expansion of Laves unit in unit cell was far beyond CaCus unit during hydrogenation process, what' s more, the expansion of Laves unit was anisotropic. The inconsistent expansion of two kinds of units would accelerate pulverization. In addition, PuNi3-type alloy has more Laves unit than Ce2Ni7-type one, so the volume expansion of the former was larger than the latter during hydrogenation process, which would lead to the more serious pulverization of PuNi3-type alloy when compared with Ce2Ni7-type alloy. During the electrochemical charge/discharge process, the more serious corrosion of PuNi3-type alloy in contrast to Ce2Ni7-type alloy was an important factor of the more poor cyclic stability of PuNi3-type alloy electrodes. The capacity degradation of Ce2Ni7-type alloy electrode resulted mainly from electrochemical corrosion. PuNi3-type alloy exhibited amorphous phenomenon in charge/discharge cycles as well as hydrogen absorption/desorption process, and amorphous phenomenon could cause the reduction of the reversible hydrogen capacity, which became the other important factor of discharge capacity degradation. In contrast to PuNi3-type alloy, Ce2Ni7-type didn' t exhibit obvious amorphous phenomenon, which was the main reason of better cyclic stability.
引文
[1] 中国科学院资源环境科学信息中心编译.21世纪世界能源科技发展趋势及重点方向.兰州:中国科学院资源环境科学信息中心,2001
    [2] Jeremy Rifkin. The hydrogen economy. Penguin Putnam, 2003
    [3] 胡子龙.贮氢材料.北京:化学工业出版社,2002
    [4] 国家发改委,中国材料研究协会编写.中国新材料产业发展报告.北京:化学工业出版社,2004,58
    [5] 雷永泉.新能源材料.天津:天津大学出版社,2002
    [6] Luo J L, Cui N. Effects of microencapsulation on the electrode behavior of Mg_2Ni-based hydrogen storage alloy in alkaline solution. J. Alloys Comp., 264(1998)299-305
    [7] 雷永泉,李洲鹏,陈长聘等.贮氢电极材料与氢化物—镍电池的进展.材料科学与工程,1990,8(1):1
    [8] 大角泰章.金属氢化物的性质与应用.北京:化学工业出版社,1990
    [9] Hempelmanm R. Diffusion of hydrogen in metals. J. Less-Common Met.,1984, 101:69
    [10] 徐光宪.稀土—贮氢材料.北京:冶金工业出版社,1995,286
    [11] Westlake D. G. A geometric model for the stoichiometry and interstitial siteoccupancy in hydrides of LaNi_5, LaNi_4Al. J. Less-Common Met. 1983,91:275
    [12] V.A.Yartys, V.V.Burnasheva, K.N.Semenenko. Crystal chemistry of RT_5H(D)x,RT_2H(D)x and RT_3H(D)x hydrides based on intermetallic compounds of CaCu_5, MgCu_2, MgZn_2, and PuNi_3 structure type. Int. J. Hydrogen Energy, 1982,7:957
    [13] 袁满雪,韩剑文,赖城明.LaNi_5储氢材料中储氢状态的理论研究.南开大学学报(自然科学),1998,31:84
    [14] D.G.Westlake. Hydrides of intermetillic compounds: a review of stabilities, stoichiometries and preferred hydrogen sites. J. Less-Common Met. 1983,91:1
    [15] J.J.Willems. Metal hydride electrodes stability of LaNi_5-related compounds. Philips J. Res. 1984,39(1):1
    [16] 张永俊,孙俊才,于志伟.贮氢电极合金的发展.金属功能材料,2001,1:9
    [17] 陈长聘,王春生.高性能贮氢电极合金.物理,1998,27:156
    [18] Andreas Zuttel, Felix Meli, Louis Schlapbach. AB_2 and AB_5 metal hydride electrodes: a phenomenological model for the cycle life. J. Alloys Comp., 1993,200:157
    [19] J.M.Joubert, M.Latroche, R.Cemy. Hydrogen cycling induced degradation in LaNi_5-type materials. J.Alloys Comp., 2002, 330-332:208
    [20] Vancht. J.H, Kuijpers.F.A. Philips Res. Rept., 1970,25:133
    [21] K.Y.Shu, X.G. Yang, S.K. Zhang, et al. Microstructure and Electrochemical Properties of Rapidly Solidified Alloy. J. Power Sources, 2001,96:288
    [22] A.Pebler, E.A. Gulbransen,Electroehem..Tech.4(1996)211.
    [23] S.R.Ovshinsky, M.A.Fetcenko, S.Venkatesan, et al. The 13th Internation Seminaron Primary and Secondary Battery Technology and Application. Deerfield Beach, FL,March 1996.
    [24] 张文魁.Zr-Mn-Ni系Laves相贮氢合金的晶体结构相丰度及电化学性能.浙江大学博士学位论文,1997.
    [25] Sapru K. et al. Rechargeable battery and electrode used therein. USA patent, USP 4623 597, 1986
    [26] Y Q, Yang Q M, Wu J, et al. Electrochemical behaviour of somemechanically alloyed Mg-Ni based amorphous hydrogen storage alloys. Z. Phys. Chem.Bd., 1994, 183:379
    [27] 张耀.以多元合金化改进球磨Mg基贮氢电极合金循环稳定性的研究.博士学位论文,浙江大学,2002
    [28] T.Schober, Wenzl. Hydrogen in Metals. G.. Alefeld and Volkl(eds), Springer-Verlag, Berlin, Heidelberg, Topic in Applied Physics, 1978,29:11.
    [29] Tsukahara M, Takahashi K, Mishima T, et al. Phase structure of V-based solid solutions containing Ti and Ni and theirhydrogen-absorption properties. J. Alloys Comp., 1995, 224:162
    [30] Tsukahara M, Takahashi K, Mishima T, et al. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydrige electrodes. J. Alloys Comp., 1997, 253-254:583
    [31] K.H.J.Buschow, H.H.Van Mal. Phase relations and hydrogen absorption in the Lanthanum-Nickel system. J. Less-Common Met., 1972,29:203
    [32] Deyuan Zhang,Jinke Tang, K.A.Gschneidner, Jr. A redetermination of the La-Ni phase diagram from LaNi to LaNi_5 (50-83.3 at%Ni). J. Less-Common Met., 1991,169:45
    [33] T.Yamamoto, H.Inui, M.Yamaguchi,et al. Microstructures and hydrogen absorption/desorption properties of La-Ni alloys in the composition range of La-77.8~83.2at.%Ni. Acta Metallurgica, 1997,45:5213
    [34] 张永刚.金属间化合物结构材料.北京:国防工业出版社,2001
    [35] Don T. Cromer, Clayton E. Olsen. The crystal structures of PuNi_3 and CeNi_3. Acta Cryst., 1959,12:689
    [36] E.Parthe, R.Lemaire. Structure block stacking in intermetallic compounds. Ⅰ. The Rhombohedral-Hexagonal M_(n+1)X_(5n-1) and the Monoclinic-Hexagonal-Trigonal-Orthorhombic M_(n+1)X_(5n+2) structure series. Acta cryst., 1975,B31:1879
    [37] B.D.Dunlap, P.J.Viccaro,G.K.Shenoy. Structrual relationships in rare earth-transition metal hydrides. J. Less-Common Met., 1980,74:75
    [38] A.V.Virkar, A.Raman. Crystal structure of AB_3 and A_2B_7 rare earth-nickel phases, J. Less-Common Met., 1969,18:59
    [39] K. Kadir, I. Uehara and T. Sakai. Synthesis and structure determination of a new series of hydrogen storage alloys: RMg_2Ni_9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi_2 Laves-type layers alternating with AB_5 layers. J. Alloys Comp., 1997,257:115
    [40] M.Latroche, A.Percheron-Guegan. Structural and thermodynamic studies of some hydride forming RM_3-type compounds(R=Lanthanide, M=transition metal). J. Alloys and Comp., 2003, 356-357: 461
    [41] 顾巍.非AB_5型La-Ni系贮氢合金的相结构与电化学性能.硕士学位论文,浙江大学,2002
    [42] J.Chen, N.Kuriyama, H.T.Takeshita, et al. Hydrogen storage alloy with PuNi_3-type structure as Metal hydride electrodes. Electrochemical and Solid-State Letters 2000,3(6):249
    [43] 刘永峰.La-Mg-Ni-co系贮氢电极合金的相结构及电化学性能研究.博士学位论文.浙江大学,2005
    [44] 廖彬.La-Mg-Ni系AB_3型贮氢电极合金的相结构与电化学性能.博士学文论文.浙江大学,2004
    [45] K.H.J.Buschow, A.S.Van Der Goot. The crystal structure of rare-earth nickel compounds of the type R_2Ni_7, J. Less-Common Met., 1970, 22:419-428
    [46] Zhang Di, T. Yamamoto, H.Inui, et al. Characterization of stacking faults on based planes in intermetallie compounds La_5Ni_(19) and La_2Ni_7. Intermetallics, 2000,8:391
    [47] Oesterreicher H, Cliton J and Bittner H. Hydrides of La-Ni compounds. Mat. Res.Bull., 1976, 11:1241
    [48] K. Aoki, T. Yamamoto, T. Masumoto. Hydrogen induced amorphization in RNi_2 Laves phases. Scr. Metall., 1987, 21: 27
    [49] H. Miyamura, T. Sakai, K. Oguro, et al. Hydrogen absorption and phase transitions in rapidly quenched La-Ni alloys. J. Less-Common Met., 1989, 146:197
    [50]H. Miyamura, N. Kuriyama, T. Sakai, K. Oguro, et al. Characteristics of electrodes using amorphous AB_2 hydrogen storage alloys. J. Less-Common Met., 1991, 172-174:1205
    [51]I. Jacob, D. Shaltiel. Hydrogen absorption in Zr(Al_xB_(1-x)) (B=Fe, Co) Laves phase compounds. Solid State Commun., 1978,27:175
    [52]H.Oesterreicher, H.Bittner. Hydrogen formation in La_(1-x)Mg_xNi_2. J. Less-Common Met., 1980,73:339
    [53]K.Kadir,D.Noreus,I.Yamashita. Structural determination of AMgNi_4(where A=Ca,La,Ce,Pr,Nd,Y) in the AuBe_5 type structure. J. Alloys Comp., 2002,345:140
    [54]L. Guenee, V. Favre-Nicolin , K. Yvon,et al. Crystal structure and hydrogenation properties of the ternary compounds LaNi_4Mg and NdNi_4Mg. J. Alloys Comp., 2003,348:129
    [55] G.Liang, R.Schulz. Phase structure and hydrogen storage properties of Ca-Mg-Ni alloys prepared by mechanical alloys. J. Alloys Comp., 2003,356-357:612
    [56]Z.M. Wang, H.Y. Zhoua, Z.F. Gu,et al. Preparation of LaMgNi_4 alloy and its electrode properties. J. Alloys Comp. 2004,377:L7
    [57]Z.M. Wang, H.Y. Zhoua, G. Cheng,et al. Preparation and electrode properties of new ternary alloys:REMgNi_4 (RE = La, Ce, Pr, Nd). J. Alloys Comp., 2004,384:279
    [58]V.V.Burnashera, V.A.Yartys, S.P.Solovev. Translated from Kristallografiya. Soviet Phys. Crystallogr. 1982,27(4):409
    [59]Lushnikov S A, Klyamkin S N, Verbetsky V N. Interaction of RT_3 (R=Ce, T=Co, Ni,Fe) intermetallic compounds with hydrogen under high pressure. J. Alloys Comp., 2002,330-332: 574
    [60]Verbetsky V N, Klyamkin S N, Kovriga A Y, et al. Hydrogen interaction with RNi_3 type intermetallic compounds at high gaseous pressure. Int. J. Hydrogen Energy, 1996, 21:997
    [61]Kohno T, Yoshida H, Kanada M. Hydrogen storage properties of La(Ni_(0.9)M_(0.1))_3 alloys. J. Alloys Comp., 2004, 363: 249
    [62]Zhao M S, Sun C Y and Wu Y M. Electrochemical characteristic of LaNi2-based hydrogen storage alloys. Hydrogen Energy Progress XIII, Proceedings of the 13th Word Hydrogen Energy Conference, Beijin, China, June 12-15, 2000,1(2): 1106
    [63]R.Baddour-Hadjean, J.P.Pereira-Ramos, M.Latroche. New ternary intermetallic compounds belonging to the R-Y-Ni (R=La,Ce) system as negative electrodes for Ni-MH batteries. J. Alloys Comp., 2002, 330-332: 782
    [64]M.Latroche, R.Baddour-Hadjean, A.Per cheron-Guegan. Crystallographic and
     hydriding properties of the system La_(1-x)Ce_xY_2Ni_9 (x=0, 0.5 and 1). J. Solid State Chemistry, 2003,173:236
    [65] Kadir K, Kuriyama N, Sakai T, et al. Structural investgation and hydrogen capacity of CaMg_2Ni_9: a new phase in the AB_2C_9 system isostmctural with LaMg_2Ni_9. J. Alloys Comp., 1999, 284:145
    [66] Kadir K, Sakai T, Uehara I. Structural investigation and hydrogen capacity of YMg_2Ni_9 and (Y_(0.5)Ca_(0.5))(MgCa)Ni_9: new phases in the AB_2C_9 system isostructural with LaMg_2Ni_9. J. Alloys Comp., 1999, 287:264
    [67] K. Kadir, T. Sakai and I. Uehara. Structural investigation and hydrogen storage capacity of LaMg_2Ni_9 and La_(0.65)Ca_(0.35))(Mg_(1.32)Ca_(0.68))Ni_9 of the AB_2C_9 type structure. J. Alloys Comp., 2000,302(1-2): 112
    [68] J. Chen, H. T. Takeshita, H. Tanaka, et al. Hydriding properties of LaNi_3 and CaNi_3 and their substitutes with PuNi_3-type structure. J. Alloys Comp., 2000,302(1-2):304-313
    [69] B. Liao, Y. Q. Lei, L. X. Chen, et al. Effect of the La/Mg ratio on the structure and electrochemical properties of La_xMg_(3-x)Ni_9 (x=1.6-2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries. J. Power Sources, 2004,129(2):358
    [70] B. Liao, Y. Q. Lei, G L. Lu,et al. The electrochemical properties of La_xMg_(3-x)Ni)9(x=1.0-2.0) hydrogen storage alloys. J. Alloys Comp., 2003, 356-357:746
    [71] 廖彬,雷永泉,吕光烈等.La-Mg-Ni系AB_3型贮氢电极合金的相结构与电化学性能金.属学报[J],2005,41:41
    [72] Yongfeng Liu, Hongge Pan, Mingxia Gao, et al. Influences of Ni addition on the structures and electrochemical properties of La_(0.7)Mg_(0.3)Ni_(2.65+x)Co_(0.75)Mn_(0.1)(x=0.0-0.5) hydrogen storage alloys. J. Alloys Comp., 2005, 389: 281
    [73] Yongfeng Liu, Hongge Pan, Mingxia Gao, et al. Investigation on the characteristics of La_(0.7)Mg_(0.3)Ni_(2.65)Mn_(0.1)Co_(0.75+x) (x=0.00-0.85) metal hydride electrode alloys for Ni/MH batteries. J. Alloys Comp., 2005,387(1-2):147
    [74] Hongge Pan, Yongfeng Liu, Mingxia Gao,et al. A study of the structural and electrochemical properties of La_(0.7)Mg_(0.3)(Ni_(0.85)Co_(0.15))_x (x=2.5-5.0) hydrogen storage alloys. J. Electrochem. Soc., 2003,150(5):A565
    [75] Hongge Pan, Yongfeng Liu, Mingxia Gao,et al. The structural and electrochemical properties of La_(0.7)Mg_(0.3)(Ni_(0.85)Co_(0.15))_x (x=3.0-5.0) hydrogen storage alloys. Int. J. Hydrogen Energy. 2003,28(11): 1219
    [76] Hongge Pan, Yongfeng Liu, Mingxia Gao,et al. An investigation on the structural and electrochemical properties of La_(0.7)Mg_(0.3)(Ni_(0.85)Co_(0.15))_x (x=3.15-3.80) hydrogen storage electrode alloys. J. Alloys Comp., 2003,351(1-2):228
    [77]Hongge Pan, Qinwei Jin, Mingxia Gao,et al. An electrochemical study of La_(0.4)Ce_(0.3)Mg_(0.3)Ni_(2.975-x)Mn_xCo_(0.525) (x=0.1-0.4) hydrogen storage alloys. J. Alloys Comp., 2004,376(1-2): 196
    [78]Yongfeng Liu, Hongge Pan, Mingxia Gao,et al. Effect of Co content on the structural and electrochemical properties of the La_(0.7)Mg_(0.3)Ni_(3.4-x)Mn_(0.1)Co_x hydride alloys. J. Alloys Comp., 2004,376(1-2):296-303
    [79]Hongge Pan, Qinwei Jin, Mingxia Gao, et al. Effect of the cerium content on the structural and electrochemical properties of the La_(0.7-x)Ce_xMg_(0.3)Ni_(2.875)Mn_(0.1)Co_(0.525) (x=0-0.5) hydrogen storage alloys. J. Alloys Comp., 2004,373(l-2):237
    [80]Yongfeng Liu, Hongge Pan, Yunfeng Zhu,et al. Influence of Mn content on the structural and electrochemical properties of the La_(0.7)Mg_(0.3)Ni_(4.25-)xCo_(0.75)Mnx hydrogen storage alloys. Materials Science and Engineering A, 2004,372(1-2): 163
    [81]Yongfeng Liu, Hongge Pan, Mingxia Gao,et al. Hydrogen storage and electrochemical properties of the La_(0.7)Mg_(0.3)Ni_(3.825-x)Co_(0.675)Mnx hydrogen storage electrode alloys. J. Alloys Comp., 2004,365(1-2):246
    [82]Yongfeng Liu, Hongge Pan, Mingxia Gao,et al. Electrochemical studies on La_(0.7)Mg_(0.3)Ni_(3.4-x)Co_(0.6)Mnx metal hydride electrode alloys. Materials Chemistry and Physics, 2004,84(1): 171
    [83]Yongfeng Liu, Hongge Pan, Mingxia Gao, et al. The effect of Mn substitution for Ni on the structural and electrochemical properties of La_(0.7)Mg_(0.3)Ni_(2.55-x)Co_(0.45)Mnx hydrogen storage electrode alloys. Int. J. Hydrogen Energy, 2004,29(3):297
    [84]Yongfeng Liu, Hongge Pan, Mingxia Gao, et al. The electrochemical performance of a La-Mg-Ni-Co-Mn metal hydride electrode alloy in the temperature range of-20 to 30°C. Electrochimica Acta, 2004,49(4):545
    [85]B. Liao, Y. Q. Lei, L. X. Chen,et al. A study on the structure and electrochemical properties of La_2Mg(Ni_(0.95)M_(0.05))_9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Comp., 2004,376: 186
    [86]B. Liao, Y.Q. Lei, L.X. Chen,et al. Effect of Co substitution for Ni on the structural and electrochemical properties of La_2Mg(Ni_(1-x)Co_x)_9 (x = 0.1-0.5) hydrogen storage electrode alloys. Electrochimica Acta, 2004,50:1057
    [87]B. Liao, Y.Q. Lei, L.X. Chen,et al. The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La_2Mg(Ni_(1-x)Al_x)_9 (x=0-0.05) alloys. J. Alloys Comp., 2005,404-406:665
    [88]B. Liao, Y.Q. Lei, L.X, et al. The structural and electrochemical properties of La_2Mg(Ni_(08-x)Co_(0.2)Al_x)_9 (x = 0-0.03) hydrogen storage electrode alloys. J. Alloys
     Comp., In Press
    [89] X.B. Zhang, D.Z. Sun, W.Y. Yin, et al. Effect of Mn content on the structure and electrochemical characteristics of La_(0.7)Mg_(0.3)Ni_(2.975-x)Co_(0.525)Mn_x (x=0-0.4) hydrogen storage alloys. Electrochimica Avta, 2005,50:2911
    [90] X.B. Zhang, D.Z. Sun, W.Y. Yin, et al. Crystallographic and electrochemical characteristics of La_(0.7)TMg_(0.3)Ni_(3-x)(Al_(0.5)Mo_(0.5))_x (x=0-0.4) hydrogen storage alloys. Electrochimica Acta,2005,50:3407
    [91] Yang-Huan Zhang, Xiao-Ping Dong, Shi-Hai Guo, et al. Microstructures andelectrochemical performances of La_2Mg(Ni_(0.85)Co_(0.15))_9M_x (M=B, Cr, Ti;x=0,0.1) electrode alloys prepared by casting and rapid quenching. Int. J. Hydrogen Energy, 2006,31:63
    [92] Yang-huan Zhang, Xiao-ping Dong, Guo-qing Wang,et al. Effect of boron addition on the microstructure and electrochemical performance of La_2Mg(Ni_(0.85)Co_(0.15))_9 hydrogen storage alloy. Materials Science and Engineering: A, 2006, 416:219-225,
    [93] Yang-Huan Zhang, Xiao-Ping Dong, Guo-Qing Wang, et al. Microstructure and electrochemical performances of La_(0.7)Mg_(0.3)Ni_(2.55-x)Co_(0.45)Cu_x (x=0-0.4) hydrogen storage alloys prepared by casting and rapid quenching. J. Alloys Comp., In Press
    [94] Yang-huan Zhang, Xiao-ping Dong, Shi-hai Guo,et al. The cycle stabilities of the as-cast and quenched La_2Mg(Ni_(0.85)Co_(0.15))_9M_x (M= B, Cr, Ti;x= 0, 0.1) hydrogen storage alloys. J. Alloys Comp., 2005,398:178
    [95] Yang-Huan Zhang, Xiao-Ping Dong, Guo-Qing Wang,et al. Microstructures and electrochemical performances of La_2Mg(Ni_(0.85)Co_(0.15))_9Cr_x (x=0-0.2) electrode alloys prepared by casting and rapid quenching. J. Power Sources, 2005,144:255
    [96] Yang-Huan Zhang, Guo-Qing Wang, Xiao-Ping Dong, et al. Investigation on the microstructure and electrochemical performances of La_2Mg(Ni_(0.85)Co_(0.15))_9B_x(x=0-0.2) hydrogen storage electrode alloys prepared by casting and rapid quenching. J. Alloys Como., 2004,379:298
    [97] 刘丽琴,唐睿,柳永宁.稀土元素对La_(0.8)Mg_(0.2)Ni_(2.8)Co_(0.6)贮氢合金性能的影响.有色金属学报,2003,13:871
    [98] Rui Tang, Xuedong Wei, Yongning Liu, et al. Effect of the Sm content on the structure and electrochemical properties of La_(1.3-x)Sm_xCaMg_(0.7)Ni_9 (x=0-0.3) hydrogen storage alloys. J. Power Sources, In Press
    [99] X.B. Zhang, D.Z. Sun, W.Y. Yin,et al. Effect of La/Ce ratio on the structure and electrochemical characteristics of La_(0.7-x)Ce_xMg_(0.3)Ni_(2.8)Co_(0.5) (x=0.1-0.5) hydrogen storage alloys. Electrochimica Acta, 2005, 50: 1957
    [100] T. Kohno, H. Yoshida, F. Kawashima, et al. Hydrogen storage properties of new temary system alloys: La_2MgNi_9, La_5Mg_2Ni_(23), La_3MgNi_(14). J. Alloys Comp., 2000, 311(2): L5
    [101] Hongge Pan, Yongfeng Liu, Mingxia Gao, et al. A study on the effect of annealing treatment on the electrochemical properties of La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5) alloy electrodes. Int. J. Hydrogen Energy,2003,28(1): 113
    [102] Faliang Zhang, Yongchun Luo, Jiangping Chen,et al. Effect of annealing treatment on structure and electrochemical properties of La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5) alloy electrodes. J. Power Sources, 2005, 150: 247
    [103] 梁敬魁.粉末衍射法测定晶体结构.北京:科学出版社,2003:776
    [104] 马礼敦.近代x射线多晶体衍射.北京:化学工业出版社,2004:399
    [105] R. A. Young. The Rietveld Method. U. K: Oxford University Press, 1995: 1
    [106] 培根著;谈洪,乐英译.中子衍射.北京:科学出版社,1980
    [107] J.Rodriguez-Carvajal,in: Abstract of the Satellite Meeting on Powder Diffraction, Congress of IUCr, Toulouse,France,P127(1990);Fullprof Program,version 3.5d Oct 98-LLB-JRC, 1998
    [108] 黄孝瑛.透射电子显微学.上海:上海科学技术出版社,1987
    [109] 余学斌,吴铸,黄太仲.TiMn_(1.25-5y)Cr_(0.25)(V_4Fe)_y合金的储氢性能.中国有色金属学报,2003,13:1116
    [110] 肖茂咸.功能材料概论.黑龙江:哈尔滨工业大学出版社,1999
    [111] 吴辉煌.电化学.北京:化学工业出版社,2004
    [112] 史美伦.交流阻抗谱原理及应用.北京:国防工业出版社,2001
    [113] 原鲜霞.MH-Ni电池用AB_5型贮氢合金电化学行为的研究.中国科学院研究生院博士学位论文,2002.3
    [114] Tatsuo Nishna, Hironori Ura, Isamu Uchida. Determination of the chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J. electrochem. Soc, 1997, 144: 1 273.
    [115] C.S. Wang, X.H.Wang, Y.Q. Lei, et al. A new method of determining the thermodynamic parameters of metal hydride electrode materials. Int. J. Hydrogen Energy. 1997;22(12): 1117-1124
    [116] Adzic.G.D, Johnson J.R, Reilly J.J, et al. Cerium Content and Cycle Life of Multicomponent AB_5 Hydride Electrodes. J. Electrochem. Soc. 1995, 142(10):3429
    [117] Kumar M.P.S, Zhang Wenlin, Petwv K, et al. Effect of Ce, Co, and Sn Substitution on Gas Phase and Electrochemical Hydriding/Dehydriding Properties of LaNi_5. J. Electrochem. Soc. 1995,142(10):3424
    [118] L.O.Valoen, A.Zaluska, L.Zaluski,et al. Structure and related properties of (La, Ce,Pr,Nd)Ni_5 alloys. J. Alloys Comp., 2000,306:235
    [119] 北京大学数学力学系概率统计组.正交设计法.北京:石油化学工业出版社,1976
    [120] G.H.Aylwarcl,T.J.V.Findlay. SI Chemical Data. Australia:Wiley, 1974
    [121] H.Fukuda, H.Fujii, Y.Matsumoto, et al. Anomafous behavior of physical properties in RMg_2Ni_9 (R=Ce and Pr) with a two-dimensional rare earth arrangement. Physica B. 1999, 259-261:894
    [122] M.Latroche,R.Baddour-Hadjean,A.Percheron-Guegan. Crystallographic and hydriding properties of the system La_(1-x)Ce_xY_2Ni_9 (x=0,0.5,1). J.Solid State Chemistry, 2003,173:236
    [123] Mendelsohn. M.H, Gruen.D.M, Dwight A.E. The effect of aluminum additions on the structural and hydrogen absorption properties of AB_5 alloys with particular reference to the LaNi_(5-x)Alx ternary alloy system. J. Less-Common Met., 1979,63:193
    [124] K.Suzuki, N.Yanagihara, H.Kawano, et al. Effect of rare earth composition on the electrochemical properties of Mm(Ni,Mn,AlCo)_5 alloys. J. Alloys Comp., 1993,192:173
    [125] J.J.Reilly. Metal hydride electrode. In:J.O.Besenhard(Ed.), handbook of battery materials. Wiley, New York, 2000
    [126] 赵家政,徐涛.分析电子显微使用手册.宁夏:宁夏人民教育出版社,1996.
    [127] Zheng G. Popov B.N. White R.E, et al. Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi_(4.25)Al_(0.75) Electrode in Alkaline Aqueous Solution. J.Electrochem. Soc. 1995,142:2695
    [128] Wei-Kang Hu, Improvement in capacity of Co-free Mm-based hydrogen storage alloys with good cycling stability. J. Alloys Comp., 2000, 297:206
    [129] 罗永春,章应,阎汝煦等.La_(2-x)MgNi_(9-5x)(x=0~1.0)贮氢合金的晶体结构与电化学性能研究.中国稀土学报,2005,23(1):11-15.
    [130] 王超群,靳红梅,王宁等.稀土贮氢合金的相结构研究.电源技术,1998:22(3):107
    [131] J.J. Reilly, G.D. Adzic, J.R. Johnson,et al. The correlation between composition and electrochemical properties of metal hydride electrodes. J. Alloys Comp., 1999,293-295:569
    [132] W.H.Liu, Y.Q.Lei, J.Wu, et. al. A study of degradation of the electrochemical capacity of amorphous Mg_(50)Ni_(50) alloy. J. Power Sources, 1996, 58:243
    [133] Sang-Cheol Han, Paul S.Lee, Jai-Young.Lee, et. al. Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball willing. J. Alloys Comp., 2000,306: 219
    [134] G. D.Alzic, J.R.Johnson, S.Mukerjee, et. al. Function of cobalt in AB5Hx electrodes. J. Alloys Comp., 1997, 253-254:579
    [135] 章应,罗永春,孙凯等.La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5)合金及La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5)D_(4.0)氢化物结构.稀有金属材料与工程.已接收
    [136] Yongfeng Liu, Hongge Pan, Yuanjian Yue, et al. Cycling durability and degradation behavior of La-Mg-Ni-Co-type metal hydride electrodes. J Alloys Comp., 2005,395:291
    [137] Hideaki Tanaka, Hiroshi Senoh, Nobuhiro Kuriyama, et al. Cycle durability of Ca-Mg-Ni alloys and factors which cause degradation of hydrogen storage capacity. Materials Science and Engineering B, 2004,108:81
    [138] K.Aoki, T.Maumoto. Hydrogen-induced amorphization of intermetallics. J. Alloys Comp., 1995, 231:20
    [139] M.Ron. The normalized pressure dependence method for the evaluation of kinetic rate of metal hydride formation/decomposition. J. Alloys Comp., 1999, 283:178
    [140] Lars Ole Valoen, Andrzej Lasia, Jens Oluf. Jensen. et al. The electrochemical impedance of metal hydride electrodes. Electrochimica Acta, 2002, 47:2871
    [141] Chiaki.Iwa Kura, Kazuhiro.Fukuila, Hiroshi.Senoh, et al. Electrochemicalcharacterization of MnNi_(4.0-x)Mn_(0.75)Al_(0.25)Co_x electrodes as a function of cobalt content. Electrochimica Acta, 1998, 43: 2041
    [142] L.O.Valen, R.Tunold. The electrochemical impedance of metal hydride electrodes. J.Alloys Comp., 2002, 330-332:810
    [143] Nobuhiro Kuriyama, Tetsuosakai, Hiroshi Miyamura, et al. Electrochemical impedance spectra and deterioration mechanism of metal hydride electrodes. J. Electrochem. Soc., 1992, 139(7):L72
    [144] 廖小珍,刘文华,马紫峰.贮氢合金进展.稀有金属,2001,25:139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700