用户名: 密码: 验证码:
AB_2C_9型La-Ti-Mg-Ni基合金贮氢性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在全面综述PuNi3结构稀土系贮氢合金国内外研究进展的基础上,以AB2C9型La-Ti-Mg-Ni系合金为研究对象。通过XRD、PCT、吸放氢动力学、SEM、正电子湮没符合多普勒展宽和正电子寿命的测量,以及恒流充放电、循环伏安的电化学测试,系统考察元素替代以及热处理对La-Ti-Mg-Ni系合金的微观结构、气态贮氢和电化学性能的影响规律及作用机制。
     对La2-xTixMgNi9 (x=0.1,0.2,0.3,0.4)合金的相结构及贮氢性能的研究结果表明,具有六方CaCu5型结构的LaNi5相(空间群P6/mmm)和具有斜六体PuNi3型结构的LaNi3相(空间群R-3m)、LaMg2Ni9相(空间群R3m)为合金的主相。随x的增加,LaNi5、LaNi3相的晶胞参数基本没有变化,但当x>0.3时,LaMg2Ni9相晶胞体积开始减小,主要原因是Ti的原子半径(1.45A)小于La的原子半径(1.88A)所致。合金气态贮氢测试表明,随Ti含量的增加,合金的最大贮氢量从1.51wt.%(x=0.1)逐渐减小至1.22wt.%(x=0.4);而吸放氢平台压则先减小后增大,以La1.8Tio.2MgNi9合金吸放氢平台压最低,这表明,适当的Ti取代La可以降低La2-xTixMgNi9 (x=0.1,0.2,0.3,0.4)合金的平台压。在La2-xTixMgNi9 (x=0.1,0.2,0.3,0.4)合金中,La1.9Tio.1MgNi9合金氢化物的稳定性相对较高,导致其放氢过程放氢动力学性能较差。此外,电化学性能测试显示,当Ti替代量为x=0.2时,合金电极具有较好的综合电化学性能,其最大放电容量为333.2mAh/g, 1100mA/g放电电流密度下的高倍率放电能力HRD1100为83.7%,但50次充放电循环后放电容量仅有203.7mAh/g,尚有待于进一步改进研究。
     为改进上述合金的综合贮氢性能,对La2-xTixMgNi9 (x=0.1,0.2,0.3)合金进行退火处理,研究退火条件对这三种合金相结构、气态贮氢和电化学性能的影响。结果表明,在所有合金组成相中(LaNi5、LaNi3、LaMg2Ni9和Ti2Ni相),Ti2Ni相在900℃时出现,而LaMg2Ni9相则在900℃的Lai.9Ti0.1MgNi9合金中消失。热处理增强合金相衍射峰的强度,使合金成分和组织结构更均匀,从而提高合金的最大贮氢量、有效吸氢量和吸放氢动力学性能,降低合金氢化物的稳定性以及吸放氢平台压。退火后,合金的吸放氢滞后增大,主要原因是退火处理降低合金的晶格应变和缺陷,改善合金成分和组织均匀性,从而减少合金的吸放氢通道。退火温度对三种合金最大贮氢量、有效吸氢量以及吸放氢动力学性能影响的效果不相同,对La1.9Ti0.1MgNi9合金,这三个特征量在800℃时达到最大,而对La1.8Ti0.2MgNi9和La1.7Ti0.3MgNi9合金,则在900℃时为最高,主要原因是由于900℃时,在La1.9Ti0.1MgNi9合金中,具有温和吸放氢条件的LaMg2Ni9相消失,而吸放氢条件苛刻的Ti2Ni相出现所致。电化学测试表明,La2-xTixMgNi9 (x=0.1,0.2,0.3)合金经退火处理,电化学性能(最大放电容量、循环稳定性、高倍率放电能力)得到显著改善,而且以900℃的La1.8Tio.2MgNi9合金电极的性能为最佳,其最大放电容量为365.7mAh/g, 1100mA/g放电电流密度下的高倍率放电能力HRD1100达到85.1%。而且,该合金电极在放电容量衰减至最大放电容量60%时需要经过177次充放电循环,远高于其铸态下的52次循环,主要原因是退火合金成分组织均匀化,抗粉化能力提高;合金中具有吸氢作用与催化作用的LaNi5相对电催化活性差的Ti2Ni相起到了催化作用,使电化学容量较高Ti2Ni相实现了可逆吸放氢。
     为提高La1.8Tio.2MgNi9合金的综合性能,采用Co部分取代合金B侧Ni,系统研究La1.8Tio.2MgNi9-xCox (x=0,0.1,0.2,0.3,0.4,0.5)合金(分别标记为Co0、Co1、Co2、Co3、Co4、Co5合金)的微观结构、气态及电化学贮氢性能,结果发现,上述合金的主相为LaNi5相和LaMg2Ni9相。Co的力口入基本没有改变合金中LaNi5相的晶胞参数,却使LaNi3相消失。随Co含量的增加,合金中LaMg2Ni9相晶胞体积的大小变化顺序为:Co0>Co5>Co3>Co1>Co4>Co2。与Co2和Co4合金相比,具有较大晶胞体积的Co0、Co1、Co3和Co5合金吸氢容量较高。所有合金中,Co4合金的吸氢容量和吸放氢滞后最小,而放氢平台压最高。对Co2和Co5合金吸氢前和反复吸放氢10次后的正电子淹没寿命谱与符合多普勒展宽谱的研究表明,Co2和Co5合金吸放氢后,正电子平均寿命增大、高动量电子浓度降低,这主要与合金多次吸放氢后缺陷增多有关。随Co含量的增加,合金电极的最大放电容量从333.2mAh/g (Co0)增大到365.2mAh/g (Co1)、364.9mAh/g (Co2)、350.2mAh/g (Co3)、353.5mAh/g (Co4)和364.7mAh/g(Co5),这表明Co的加入有利于合金电极最大放电容量的提高。在电化学循环测试中,Co的加入可以改善合金电极的循环稳定性,而且以Co5合金电极为最佳,但是Co5合金电极每次充放中放电容量衰减量高达1.83mAh/g·cycle,经80次循环后放电容量仅有218.7mAh/g,因此,其循环稳定性仍有待提高。
     对La1.8Tio.2MgNi9-xAlx(x=0,0.1,0.2,0.3,0.4,0.5)合金的相结构及电化学性能的研究表明,所有合金均包含LaMg2Ni9相。掺A1后,由于A1的固溶,合金中LaNi5相转变为La(Ni, Al)5固溶相,同时,合金相的峰强度增大,合金成分和组织更均匀。随A1含量的增加,合金相的晶胞体积先减小后增大,当x=0.3时达到最小,而x=0.4或0.5时则为最大;x>0.2时,合金中LaNi3相消失,LaNi2相出现。所有合金在2-3次充放电中就可达到其最大放电容量,表现出良好的活化性能。它们的最大放电容量随x的增加先增加后减小,从333.2mAh/g (x=0)增大到357.7mAh/g (x=0.1)后逐渐降低至319.8mAh/g (x=0.5)。La1.8Tio.2MgNi8.9Al0.1合金电极活化过程放电容量最大,主要与该合金具有比La1.8Tio.2MgNi9合金更均匀的组织结构以及当A1含量X≥0.2时,LaNi3相消失、LaNi2相出现有关。A1部分取代Ni,有利于合金电极循环稳定性的提高,其中以La1.8Tio.2MgNi8.7Alo3合金电极循环寿命最长,这可能归因于其适量的A1含量以及较小的晶胞体积所致。比较分析可知,所有合金电极中,La1.8Tio.2MgNi8.7Al0.3合金电极综合电化学性能较好,其最大放电容量为340.0mAh/g,经100次充放电循环后放电容量保持率为60%。
Based on the review of the research and development of the rare earth-based hydrogen storage alloys with PuNi3 structure, the AB2C9-type La-Ti-Mg-Ni system hydrogen storage alloys were selected as the study object of this work. The effect of element substitution and annealing treatment on the microstructure, the hydrogen storage and electrochemical properties of La-Ti-Mg-Ni system alloys were investigated systematically by means of XRD, PCT, hydrogen absorption/desoprion kineti, SEM, positron annihilation lifetime (PAL) and coincidence Doppler broadening (CDB) measurements and electrochemical analysis including galvanostatic charge-discharge and cyclic voltammetries.
     For the La2-xTixMgNi9 (x=0.1,0.2,0.3,0.4) alloys, LaNi5 phase (space group P6/mmm) with the hexagonal CaCu5-type structure, LaNi3 phase (space group R-3m) and LaMg2Ni9 phase (space group R3m) with rhombohedral PuNi3-type structure are the main phase. With x increasing, the lattice parameters of LaNi5 and LaNi3 phase remain almost unchanged, and the cell volume of LaMg2Ni9 phase becomes smaller as x is above 0.2 because the radius of Ti of 1.45A is smaller than that of La of 1.88A. As Ti content increases, the maximum hydrogen storage capacities decrease gradually from 1.51wt.%(x=0.1) to 1.22wt.%(x=0.4), the hydrogen absorption/desorption plateau pressures first decrease and then increase, and the La1.8MgTi0.2Ni9 alloy has the lowest plateau pressure, which indicates that substituting La by suitable Ti content can lower the plateau pressure of La2-xTixMgNi9 (x=0.1,0.2,0.3,0.4) alloys. Among all the studied hydrides, the most stable La1.9Ti0.1MgNi9 hydride shows the slowest hydrogen desorption rate. Electrochemical studies reveal that the overall electrochemical properties of the alloy electrode with x=0.2 are better, e.g., its maximum discharge capacity is 333.2mAh/g, and the HRD1100 (high rate dischargeability at 1100mA/g discharging current density) reaches 83.7%, but its discharge capacity reduces to only 203.7mAh/g after 50 charge/discharge cycles, which needs also to be further improved.
     In order to improve the overall hydrogen storage properties of the alloys, La2-xTixMgNi9(x=0.1,0.2,0.3) alloys were prepared by annealing treatment, and the effect of heat treatment on the phase structure, hydrogen storage and electrochemical properties of La2-xTixMgNi9 (x=0.1,0.2,0.3) alloys were investigated in detail. The results indicate that for LaNi5, LaNi3, LaMg2Ni9 and Ti2Ni phases, Ti2Ni phase appears at 900℃, while LaMg2Ni9 phase disappears in the La1.9Ti0.1MgNi9 alloy annealed at 900℃. The diffraction peaks of the phases become narrowed or sharper by thermal treatment meaning higher composition homogeneity, which favors not only the improvement of the maximum/effective hydrogen storage capacity and hydrogen absorption/desorption kinetic, but also the decrease of the stability of hydrides and hydrogen absorption/desorption plateau pressure. The hysteresis factor increases after heat treatment because the higher composition homogeneity of annealed alloys decreases the grain boundaries and lattice defects, and increases the obstruction in the process of hydriding and dehydriding. For the maximum/effective hydrogen storage capacities and hydrogen absorption/desorption rate, they reach the optimization at 800℃for La1.9Ti0.1MgNi9 alloy, while at 900℃for La1.8Ti0.2MgNi9 and La1.7Ti0.3MgNi9 alloys. The reason is that LaMg2Ni9 phase disappears and Ti2Ni appears for the La1.9Ti0.1MgNi9 alloy annealed at 900℃. To summarize the results obtained by electrochemical measurements, the electrochemical properties including the maximum discharge capacity, the cycling stability and the high rate dischargeability (HRD) have been markedly improved after annealing treatment, and the optimum alloy is found to be La1.8Ti0.2MgNi9 alloy annealed at 900℃. For the alloy electrode, the maximum discharge capacity and HRD at the discharge current density 1100mA/g(HRD1100) are 365.7mAh/g and 85.1%, respectively. And it undergoes 177 charge/discharge cycles when the discharge capacity reduces to 60% maximum discharge capacity, which is higher than that of its as-cast alloy electrode of 52 cycles. The improvement of cycling stability can be associated with two facts. One is the higher composition homogeneity of annealed alloys, which reduces the particle pulverization, and improves anti-oxidation ability. The other is the LaNi5 phase with catalysis activity, which makes the stable Ti2Ni phase with high discharge capacity absorb/desorb hydrogen reversibly.
     For further improving the overall properties of La1.8Tio.2MgNi9 alloy, Ni is substituted by Co, and the La1.8Tio.2MgNi9-xCox (x=0,0.1,0.2,0.3,0.4,0.5) alloys defined as Col, Col,Co2, Co3, Co4, Co5 alloys, respectively, were prepared. The microstructure and the hydrogen storage and electrochemical properties of the alloys were systematically studied. It is found that LaNi5 phase and LaMg2Ni9 phase are the main phase. Co addition has almost not change the lattice parameters of LaNi5 phase, but leads to the disappearance of LaNi3 phase. The order of the cell volume of LaMg2Ni9 phase with increasing x is CoO>Co5>Co3>Col>Co4>Co2. The higher hydrogen storage capacity of CoO, Col, Co3 and Co5 alloys is due to their larger cell volume when compared to Co2 and Co4 alloys. Among all the La1.8Tio.2MgNi9-xCox (x=0,0.1,0.2,0.3,0.4, 0.5) alloys, Co4 alloy shows the smallest hydrogen storage capacity and the lowest hysteresis factor, but the highest hydrogen desorption plateau pressure. For Co2 and Co5 alloy, the positron annihilation lifetime spectroscopy and coincidence Doppler broadening spetra show that the mean positron lifetimes increases and the number of high momentum electode decreases after the alloys absorb and desorb hydrogen repeatedly (10 cycles) comparing with those of the alloys without hydrogenation, which is mainly attributed to the increase of defects. The maximum discharge capacity has been markedly improved by partial substitution of Co for Ni, and increases from 333.2mAh/g (CoO) to 365.2mAh/g (Co1),364.9mAh/g (Co2),350.2mAh/g (Co3),353.5mAh/g (Co4) and 364.7mAh/g (Co5). Moreover, the addition of Co slows down the capacity degradation and prolongs the cycle life, and the optimum Co content is x=0.5. However, the discharge capacity of Co5 alloy electrode decreases to 218.7mAh/g after 80 charge/discharge cycles with the decay of discharge capacity in each cycle of 1.83mAh/g·cycle, so the cycling stability should be further improved.
     For La1.8Tio.2MgNi9-xAlx (x=0,0.1,0.2,0.3,0.4,0.5) alloys, the results obtained by XRD analyses and electrochemical measurements shows that LaMg2Ni9 phase appears in all alloys. The presence of Al leads to the replacement of La(Ni,Al)5 phase for LaNi5 phase. LaNi2 phase appears and LaNi3 phase disappears with further increasing x (x>0.2). With the increasing of Al content, the cell volume of the alloys first decreases to the smallest as x=0.3 and then increases to the largest when x is 0.4 and 0.5. All alloy electrodes are easily activated to the maximum discharge capacity within 2-3 cycles. With x increasing, the maximum discharge capacity first increases from 333.2mAh/g (x=0) to 357.7mAh/g (x=0.1) and then decreases gradually to 319.8mAh/g (x=0.5). La1.8Tio.2MgNi8.9Alo.1 alloy electrode exhibits relatively higher discharge capacity in activation may be due to its better crystallization compared with Lai.8Tio.2MgNi9 alloy electrode and the disappearance of LaNi3 and appearance of LaNi2 phase as x>0.2. The addition of Al leads to a noticeable improvement of cycling stability, and the cycle life of La1.8Tio.2MgNi8.7Alo.3 alloy electrode is longest, which may be associated with its suitable Al content and the smallest cell volume. Among the alloys studied, the La1.8Tio.2MgNi8.7Al0.3 alloy electrode show a relatively good overall properties with the maximum discharge capacity of 340.0mAh/g and the retention of discharge capacity of 60% after 100 charge/discharge cycles.
引文
[1]中国科学院资源环境科学信息中心编译,21世纪世界能源科技发展趋势及重点方向,兰州:中国科学院资源环境科学信息中心,2001
    [2]J. Rifkin, The hydrogen economy, Penguin Putnam,2003
    [3]J.J.G. Willems, K.H.J. Buschow, From permanent magnets to rechargeable hydride electrodes, J. Less-Common Met.,1987;129:13-30
    [4]T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, K. Ogura, H. Ishikawa, Metal Hydride Anodes for Nickel-Hydrogen Secondary Battery, J. Electrochem. Soc.,1990; 137: 795-799
    [5]M. Latroche, Y. Chabre, A. Percheron-Guegan, O. Isnard, B. Knop, Influence of stoichiometry and composition on the structure and electrochemical properties of AB5+x-based alloys used as negative electrode materials in Ni-MH batteries, J. Alloys Comp.,2002; 330-332:787-791
    [6]E.W. Justi, H.H. Ewe, A.W. Kalberlan, N.M. Saridakis, M.H. Schaefer, Electrocatalysis in the nickel-titanium system, Energy Conversion,1970; 10:183-187
    [7]M.W. Earl, J.D. Dunlop, Proceedings of the 26th Power Sources Symposium, Atlantic City, N. J.,1974; 24
    [8]J.J.G. Willems, Metal hydride electrodes stability of LaNis-related compounds, Philips Journal of Research,1984; 39(1):1-94
    [9]K. Hong, The development of hydrogen storage alloys and the progress of nickel hydride batteries, J. Alloys Comp.,2001; 321:307-313
    [10]张丽华,王彦,近年镍氢电池发展状况及前景(上),市场评述,2008;12:34-35
    [11]张丽华,王彦,近年镍氢电池发展状况及前景(下),市场评述,2009;298:25-28
    [12]K. Nakatsuka, M. Yoshino, H. Yukawa, M. Morinaga, Roles of the hydride forming and non-forming elements in hydrogen storage alloys, J. Alloys Comp.,1999; 293-295: 222-226
    [13]大角泰章,金属氢化物的性质与应用,北京:化学工业出版社,1990
    [14]R. Hempelmanm, Diffusion of hydrogen in metals, J. Less-Common Met.,1984; 101: 69-96
    [15]徐光宪,稀土—贮氢材料,北京:冶金工业出版社,1995
    [16]D.G. Westlake, A geometric model for the stoichiometry and interstitial site occupancy in hydrides (deuterides) of LaNi5, LaNi4Al and LaNi4Mn, J. Less-Common. Met.,1983; 91: 275-292
    [17]V.A. Yartys', V.V. Burnasheva, K.N. Semenenko, N.V. Fadeeva, S.P. Solovev, Crystal chemistry of RT5H(D)x, RT2H(D)x and RT3H(D)x hydrides based on intermetallic compounds of CaCu5, MgCu2, MgZn2, and PuNi3 structure types, Int. J. Hydrogen Energy,1982; 7:957-965
    [18]D.G Westlake, Hydrides of intermetillic compounds:A review of stabilities, stoichiometries and preferred hydrogen sites, J. Less-Common Met.,1983; 91:1-20
    [19]K. Hong, The development of hydrogen storage electrode alloys for nickel hydride batteries, J. Power Sources,2001; 96:85-89
    [20]张允什,负极贮氢合金材料电源技术,1996;20(1):36-40
    [21]J.H.N. Van Vucht, F.A. Kuijpers, H.C.A.M. Bruning, Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds, Philips Res. Repts.,1970; 25:133-140
    [22]H. Ewe, E. W. Justi, K. Stephan, Elektrochemische Speicherung und Oxidation von Wasserstoff mit der intermetallischen Verbindung LaNi5, Energy Convesrion,1973; 13: 109-113
    [23]G. Bronoel, J. Sarradin, A. Percheron-Guegan, J.C. Achard, Some fundamental aspects of the electrochemical storage of hydrogen in LaNi5 alloys, Materials Research Bulletin, 1978; 13:1265-1271
    [24]L. Belkbir, E Joly, N. Gerard, J.C Achard, A Percheron-Guegan, Evolution of the kinetic properties in a family of substituted LaNi5 hydrides during activating formation-decomposition cycling, J. Less-Common. Met.,1980; 73:69-77
    [25]L. Belkbir, E. Joly, N. Gerard, Comparative study of the formation-decomposition mechanisms and kinetics in LaNi5 and magnesium reversible hydrides, Int. J. Hydrogen Energy,1981; 6:285-294
    [26]T. Sakai, T. Hazama, H. Miyamura, N. Kuriyama, A. Kato, H. Ishikawa, Rare-earth-based alloy electrodes for a nickel-metal hydride battery, J. Less-Common Met.,1991; 172-174:1175-1184
    [27]Y.Q. Lei, Z.P. Li, C.P. Chen, J. Wu, Q.D. Wang, The cycling behaviour of misch metal-nickel-basedmetal hydride electrodes and the effects of copper plating on their performance,J. Less-Common Met.,1991; 172-174:1265-1272
    [28]K.Y. Shu, X.G yang, S.K. Zhang, GL. Lu, Y.Q. Lei, Q.D. Wang, Microstructure and electrochemical properties of rapidly solidified alloy Ml(NiCoMnTi)5, J. Power Sources, 2001; 96:288-292
    [29]V. Iosub, M. Latroche., J.M. Joubert, A.P. Guegan, Optimisation of MmNi5-xSnx (Mm=La, Ce, Nd and Pr,0.27    [30]K. Giza, W. Iwasieczko, H. Bala, V.V. Pavlyuk, H. Drulis, Hydrogenation behaviour of Lao.5Ro.5Ni4.8Alo.1Lio.1 (R=La, Ce, Pr or Nd) alloys, Int. J. Hydrogen Energy,2009; 34: 913-915
    [31]S.L. Li, H.H. Cheng, X.X. Deng, W. Chen, D.M. Chen, K.Yang, Investigation on crystal structure and thermodynamic properties of La0.6Ndo.4Ni4.8Mno.2Cux (x=0-0.4) hydrogen storage alloys, Rare Metal Materials and Engineering,2008; 37(10):1696-1700
    [32]王英,肖方明,唐仁衡,卢其云,彭能,快淬态AB5型贮氢合金的结构与电化学性能研究,材料研究与应用,2008;2(3):203-206
    [33]X. Tian, X.D. Liu, J. Xu, H.W. Feng, B. Chi, L.H. Huang, S.F. Yan, Microstructures and electrochemical characteristics of Mmo.3Mlo.7Ni3.55Coo.75Mno.4Alo.3 hydrogen storage alloys prepared by mechanical alloying, Int. J. Hydrogen Energy,2009; 34:2295-2302
    [34]Y.W. Jiang, X.P. Liu, L.J. Jiang, S.M. Wang, H.G. Yang, Designing appropriate heat treatment temperature for LaNi3.8Alo.75Mno.45 alloy, Rare Metals,2006; 25(6):243-246
    [35]S.P. Yi, H.Y. Zhang, G.Q. Zhang, S.L. Hu, L. Pei, J.F. Yin, The electrochemical properties of LaNis electrodes doped with multi-walled carbon nanotubes synthesized by chemical vapor deposition and treated at different temperatures in a nitrogen atmosphere, Physics B,2006; 373:131-135
    [36]郭进,韦文楼,马树元,高英俊,方志杰,LaNi5电子结构与成键特征,金属学报,2003;39(1):10-12
    [37]A.F. Al Alam, S.F. Matar, M. Nakhl, N. Ouaini, Investigation of changes in crystal and electronic structures by hydrogen within LaNi5 from first-principles, Solid State Sciences, 2009; 11:1098-1106
    [38]C. Iwakura, K. Ohkawa, H. Senoh, H. Inoue, Electrochemical and crystallographic characterization of Co-free hydrogen storage alloys for use in nickel-metal hydride batteries, Electrochim. Acta,2001; 46:4383-4388
    [39]X.D. Wei, P. Zhang, H. Dong, Y.N. Liu, J.W. Zhu, G. Yu, Electrochemical performances of a Co-free La(NiMnAlFe)5 hydrogen storage alloy modified by surface coating with Cu, J. Alloys Comp.,2008; 458:583-587
    [40]C. Lenain, L. Aymard, F. Salver-Disma, J.B. Leriche, Y. Chabre, J.M. Tarascon, Electrochemical properties of AB5-type hydride-forming compounds prepared by mechanical alloying, Solid State Ionics,1997; 104:237-248
    [41]W.K. Hu, Z. Ye, D. Noreus, Studies on multi-component rare earth-based hydrogen storage alloys with small amounts of boron, J. Alloys Comp.,1998; 280:314-320
    [42]C.J. Li, X.L. Wang, Investigations on the cycle stability and the structure of the MmNi3.6Coo.75Mno.55Alo.i hydrogen storage alloy:I. Measurements and analysis of the cycle stability and the phase structure, J. Alloys Comp.,1999; 284:270-273
    [43]A. Pebler, E.A. Gulbransen, Thermochemical and structural aspects of the reaction of hydrogen with alloys and intermetallic compounds of Zirconium, Electrochem. Tech., 1966; 4:211-215
    [44]杨晓光,Zr-Cr-Ni系AB2型Laves相贮氢合金及其电化学性能的研究,博士学位论文,浙江大学,1995
    [45]S.K. Dhar, M.A. Fetcenko, S. R. Ovshinsky, Advanced Materials for Next Generation High Energy and Power Nickel-Metal Hydride Portable Batteries, IEEE,2001; 0-7803-6545-3:325-336
    [46]W.X. Chen, Effects of addition of rare-earth element on electrochemical characteristics of ZrNi1.1Mno.5Vo.3Cro.1 hydrogen storage alloy electrodes, J. Alloys Comp.,2001; 319: 119-123
    [47]W.K. Choi, K. Yamataka, S.G. Zhang, H. Inoue, C. Iwakura, Effect of surface treatment with boiling alkaline solution on electrochemical and physicochemical properties of the Zr0.9Tio.1Ni1.1Coo.1Mno.6V0.2 alloy electrode, J. Electrochem. Sco.,1999; 146(1):46-48
    [48]F.J. Liu, S. Suda, F-treatment effect on the hydriding properties of the La-substituted AB2 compound (Ti,Zr)(Mn,Cr,Ni)2, J. Alloys Comp.,1995; 231:666-669
    [49]C. Iwakura, I. Kim, N. Matsui, H. Inoue, M. Matsuoka, Surface modification of Laves-phase ZrVo.5Mno.5Ni alloy electrodes with an alkaline solution containing potassium borohydride as a reduction agent, Electrochim. Acta,1995; 40(5):561-566
    [50]姚树文,李重河,钦佩,陈念贻,MgCu2型Laves相晶格常数的规律性,计算机与应用化学,1997;14(1):75-78
    [51]F. Stein, M. Palm, G. Sauthoff, Structure and stability of Laves phases. Part Ⅰ. Critical assessment of factors controlling Laves phase stability, Intermetallics,2004; 12:713-720
    [52]蒋卫卿,黄存可,黄丹,菅晓玲,郭进,二元合金Laves相结构的PLS分析,金属学报,2005;41(1):19-22
    [53]J.J. Reilly, R.H. Wiswall, Formation and properties of iron titanium hydride, Inorg. Chem.,1974; 13(1):218-222
    [54]T.H. Jang, J.I. Han, Lee Jai-Young, Effect of substitution of titanium by zirconium in TiFe on hydrogenation properties, J. Less-Common Met.,1986; 119(2):237-246
    [55]H.I. Miller, J. Murray, E. Laury, J. Reinhardt, A. J. Goudy, The hydriding and dehydriding kinetics of FeTi and Feo.9TiMno.1, J. Alloys Comp.,1995; 231(1-2):670-674
    [56]朱海岩,陈长聘,吴军,吴京,王启东,表面化学处理与TiFe合金的活化,稀有金属,1991;15(3):189-193
    [57]J.J. Reilly, R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4, Inorg. Chem.,1968; 7:2254-2256
    [58]K. Sapru, B. Reichman, A. Reger, S.R. Ovshinsky, Rechargeable battery and electrode used therein, USA patent, USP4623 597,1986
    [59]Y.Q. Lei, Y.M. Wu, Q.M. Yang, J. Wu, Q.D. Wang, Electrochemical behaviour of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys, Z. Phys. Chem., 1994; 183:397-384
    [60]T. Kohno, S. Tsuruta, M. Kanda, The hydrogen storage properties of new Mg2Ni alloy, J. Electrochem Soc.,1996; 143(9):L198-L199
    [61]G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, Mechanical alloying and hydrogen absorption properties of the Mg-Ni system, J. Alloys Comp.,1998; 267:302-306
    [62]Y.N. Liu, X.J. Zhang, Effect of Lanthanum additions on electrode properties of Mg2Ni, J. Alloys Comp.,1998; 267:231-234
    [63]Y. Tsushio, E. Akiba, Hydrogen desorption properties of the quaternary alloy system Mg2-xMlxNi1-yM2y, J. Alloys Comp.,1998; 267:246-251
    [64]P. Mandal, O.N. Srivastava, Hydrogenation behaviour of the new composite storage material Mg-x% FeTi, J. Alloys Comp.,1994; 205:111-118
    [65]D. Cracro, A. Percheron-Guegan, Morphology and hydrogen absorption properties of an AB2 type alloy ball milled with Mg2Ni, J. Alloys Comp.,1998; 268:248-255
    [66]X.D. Liu, L.H. Huang, X. Tian, H.W. Feng, B. Chi, Activation characteristics and microstructure of Mg2Ni/Mmo.3Mlo.7Ni3.55Coo.75Mno.4Alo.3 composite hydrogen storage alloys prepared by two-step re-melting, Int. J. Hydrogen Energy,2007; 32:4939-4942
    [67]M. Tsukahara, K. Takahashi, T. Mishima, T. Sakai, H. Miyamura, N. Kuriyama, I. Uehara, Metal hydride electrodes based on solid solution type alloy TiV3Nix (0≤ x≤0.75), J. Alloys Comp.,1995; 226:203-207
    [68]朱云峰,钛钒基贮氢电极合金结构和电化学性能研究,博士学位论文,浙江大学,2003
    [69]A.J. Maeland, A.F. Andersen, K. Videm, Hydrides of lanthanum-nickel compounds, J. Less-Common Met.,1976; 45:347-350
    [70]K. Kadir, T. Sakai, I. Uehara, Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers, J. Alloys Comp.,1997; 257:115-121
    [71]K. Kadir, N. Kuriyama, T. Sakai, I. Uehara, L. Eriksson, Structural investigation and hydrogen capacity of CaMg2Ni9:a new phase in the AB2C9 system isostructural with LaMg2Ni9, J. Alloys Comp.,1999; 284:145-154
    [72]H.G. Pan, Y.F. Liu, M.X. Gao, Y.F. Zhu, Y.Q. Lei, Q.D. Wang, A study on the effect of annealing treatment on the electrochemical properties of Lao.67Mgo.33Ni2.5Coo.5 alloy electrodes, Int. J. Hydrogen Energy,2003; 28:113-117
    [73]Y.F. Liu, H.G. Pan, M.X. Gao, Y.F. Zhu, Y.Q. Lei, Q.D. Wang, The effect of Mn substitution for Ni on the structural and electrochemical properties of Lao.7Mgo.3Ni2.55-xCoo.45Mnx hydrogen storage electrode alloys, Int. J. Hydrogen Energy, 2004; 29:297-305
    [74]E. Akiba, H. Hayakawa, T. Kohno, Crystal structures of novel La-Mg-Ni hydrogen absorbing alloys, J. Alloys Comp.,2006; 408-412:280-283
    [75]沈向前,陈云贵,陶明大,吴超玲,王伟,邓刚,Lao.8-xCexMgo.2Ni3.5 (x=0-0.2)贮氢合金电极的低温放电性能,稀有金属材料与工程,2009;38(2):237-241
    [76]B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, The structural and electrochemical properties of La2Mg(Nio.8-xCoo.2Alx)9 (x=0-0.03) hydrogen storage electrode alloys, J. Alloys Compd.,2006; 415:239-243
    [77]Y.H. Zhang, B.W. Li, H.P. Ren, Z.W. Wu, X.P. Dong, X.L. Wang, Influences of the substitution of Fe for Ni on structures and electrochemical performances of the as-cast and quenched Lao.7Mgo.3Coo.45Ni2.55-xFex (x=0-0.4) electrode alloys, J. Alloys Compd., 2008; 460:414-420
    [78]H. Oesterreicher, J. Clinton, H. Bittner, Hydrides of La-Ni compounds, Mater. Res. Bull., 1976; 11:1241-1247
    [79]顾巍,非AB5型La-Ni系贮氢合金的相结构与电化学性能,硕士学位论文,浙江大学,2002
    [80]F.L. Zhang, Y.C. Luo, J.P. Chen, R.X. Yan, L. Kang, J.H. Chen, Effect of annealing treatment on structure and electrochemical properties of Lao.67Mgo.33Ni2.5Coo.5 alloy electrodes, J. Power Sources,2005; 150:247-254
    [81]F.L. Zhang, Y.C. Luo, D.H. Wang, R.X. Yan, L. Kang, J.H. Chen, Structure and electrochemical peoperties of La2-xMgxNi7.o (x=0.3-0.6) hydrogen storage alloys, J. Alloys Comp.,2007; 439:181-188
    [82]A.R. dos Santos, R.C. Ambrosio, E.A. Ticianelli, Electrochemical and structural studies on nonstoichiometric AB2-type metal hydride alloys, Int. J. Hydrogen Energy,2004,29: 1253-1261
    [83]D.L. Sun, H. Enoki, F. Gingl, E. Akiba, New approach for synthesizing Mg-based alloys, J. Alloys Compd.,1999,285:279-283
    [84]M. Tsukahara, T. Kamiya, K. Takahashi, A. Kawabata, S. Sakurai, J. shi, H.T. Takeshita, N. Kuriyama, T. Sakai, Hydrogen storage and electrode properties of V-based solid solution type alloys prepared by a thermic process, J. Electrochem. Soc.,2000,147: 2941-2944
    [85]D.T. Cromer, C.E. Olsen, The crystal structure of PuNi3 and CeNi3, Acta Cryst.,1959; 12: 689-694
    [86]A.V. Virkar, A. Ramam, Crystal structures of AB3 and A2B7 rare earth-nickel phases, J. Less-Common Met.,1969; 18:59-66
    [87]M. Latroche, A. Percheron-Guegan, Structural and thermodynamic studies of some hydride forming RM3-type compounds (R=lanthanide, M=transition metal), J. Alloys Compd.,2003; 356-357:461-468
    [88]B.D. Dunlap, P.J. Viccaro, G.K. Shenoy, Structural relationships in rare earth-transition metal hydrides, J. Less-Common Met.,1980; 74:75-79
    [89]V.V. Burnasheva, V.A. Yartys', S.P. Solov'ev, N.V. Fadeeva, K.N. Semenenko, Neutron-diffraction investigation of the crystal structure of the deuteride HoNi3D1.8, Sov. Phys. Crystallogr.,1982; 27(4):409-413
    [90]T. Takeshita, W.E. Wallace, R.S. Craig, Solubility of hydrogen in RCo3 compounds, Inorg. Chem.,1974; 13(9):2283-2284
    [91]V.A. Yartys', New aspects of the structural chemistry of hydrides of intermetallic compounds:"isotropic" and "anisotropic" structures, Koordinatz Khim. (Soviet Journal of Coordination Chemistry),1992; 18(4):401-408
    [92]C.A. Bechman, A. Goudy, T. Takeshita, W.E. Wallace, R.S. Craig, Solubility of hydrogen in intermetallics containing rare earth and 3d transition metals, Inorg. Chem.,1976; 15(9):2184-2187
    [93]R.M. Donohue, A.J. Goudy, Desorption kinetics of 1:3 erbium cobalt intermetallic hydride, Inorg. Chem.,1991; 30:800-802
    [94]V.N. Verbetsky, S.N. Klyamkin, A.Yu. Kovriga, A.P. Bespalov, Hydrogen interaction with RNi3 type intermetallic compounds at high gaseous pressure, Int. J. Hydrogen Energy, 1996; 21:997-1000
    [95]J. Chen, H.T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, M. Haruta, Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure, J. Alloys Compd.,2000; 302:304-313
    [96]S.A. Lushnikov, S.N. Klyamkin, V.N. Verbetsky, Interaction of RT3 (R=Ce, T=Co, Ni, Fe) intermatallic compounds with hydrogen under high pressure, J. Alloys Compd.,2002; 330-332:574-578
    [97]R.H. Van Essen, K.H.J. Buschow, Hydrogen sorption characteristics of Ce-3d and Y-3d intermetallic compounds J. Less-Common Met.,1980; 70:189-198
    [98]M. Yamaguchi, H. Ikeda, T. Ohta, T. Katayama, T. Goto, Influence of hydrogen on the magnetic properties of Y-Co compounds, J. Less-Common Met.,1985; 106:165-173
    [99]S.K. Malik, W.E. Wallace, T. Takeshita, Influence of Absorbed Hydrogen on the Magnetic Behaviour of RCo3 (R=Gd, Dy and Ho) Compounds, Solid State Commun., 1978; 28(12):977-980
    [100]阮景辉,曾祥欣,牛世文,赵建民,杨开棣,戴春华,中子散射研究LaNi3的氢致相变,原子能科学技术,1994;28(2):109-112
    [101]M.J. Benham, S. Bennington, D.K. Ross, D. Noreus, M. Yamaguchi, Ray and neutron scattering investigations of YCo3-H, Z. Phys. Chem. Neue Folge,1989; 163:283-290
    [102]M.I. Bartashevich, A.N. Pirogov, V.I. Voronin, T. Goto, M. Yamaguchi, I. Yamamoto, Crystal structure of y-phase RCo3H~4 hydrides, J. Alloys Compd.,1995; 231:104-107
    [103]L.O. Wasylechko, A.A. Fedorchuk, Y.N. Grin, CeNi3-type ternary phases in the R-Ni-Ga systems (R=Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), J. Alloys Compd., 1995;219:222-224
    [104]V.V. Burnasheva, B.P. Tarasov, Influence of the partial replacement of nickel or yttrium by other metals on the absorption of hydrogen by the compound YNi3, Russ. J. Inorg. Chem.,1984; 29:1136-1141
    [105]V.A. Yartys', I.I. Bulyk, Hydrogen interaction with intermetallic compounds of rare earth metals, Cobalt and Nickel with Aluminium, Gallium and Indium, Z. Phys. Chem. Bd.,1993; 179:275-279
    [106]T. Kohno, H. Yoshida, M. Kanda, Hydrogen storage properties of La(Nio.9Mo.i)3 alloys, J. Alloys Comp.,2004; 363:249-252
    [107]T.Z. Si, Q.A. Zhang, G. Pang, D.M. Liu, N. Liu, Structural characteristics and hydrogen storage properties of Ca3.0-xMgxNi9 (x=0.5,1.0,1.5 and 2.0) alloys, Int. J. Hydrogen Energy,2009; 34:1483-1488
    [108]M.S. Zhao, C.Y. Sun, Y.M. Wu, Electrochemical properties of rare earth AB3-type alloy as negative electrode material in MH-Ni battery, HYDROGEN ENERGY PROGRESS 109 Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China, June 12-15,2000; 2:1106-1110
    [109]K. Kadir, T. Sakai, I. Uehara, Structural investigation and hydrogen capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure, J. Alloys Comp.,2000; 302:112-117
    [110]R. Baddour-Hadjean, L. Meyer, J.P. Pereira-Ramos, M. Latroche, A. Percheron-Guegan, An electrochemical study of new La1-xCexY2Ni9 (0    [111]R. Baddour-Hadjean, J.P. Pereira-Ramos, M. Latroche, A. Percheron-Guegan, New ternary intermatallic compounds belonging to the R-Y-Ni (R=La, Ce) system as negative electrodes for Ni-MH batteries, J. Alloys Compd.,2002; 330-332:782-786
    [112]M. Latroche, R. Baddour-Hadjean, A. Percheron-Guegan, Crystallographic and hydriding properties of the system La1-xCexY2Ni9 (xce=0,0.5 and 1), J. Solid State Chem., 2003; 173:236-243
    [113]K. Kadir, T. Sakai, I. Uehara, Structural investigation and hydrogen capacity of YMg2Ni9 and (Yo.5Cao.5)(MgCa)Ni9:new phase in the AB2C9 system isostructural with LaMg2Ni9, J. Alloys Comp.,1999; 287:264-270
    [114]T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, Hydrogen storage properties of new ternary system alloys:La2MgNig, La5Mg2Ni23, La3MgNi14, J. Alloys Comp.,2000; 311:L5-L7
    [115]唐睿,张朝晖,刘丽琴,朱杰武,柳永宁,La1.3CaMgo.7Ni9储氢合金,中国有色金属学报,2004;14(1):51-54
    [116]C.H. Peng, M. Zhu, Microstructure and hydrogen storage properties of a multi-phase Mlo.7Mgo.3Ni3.2 hydrogen storage alloy, J. Alloys Compd.,2004; 375:324-329
    [117]Y.F. Liu, H.G. Pan, M.X. Gao, Y.F. Zhu, Y.Q. Lei, Hydrogen storage and electrochemical properties of the Lao.7Mgo.3Ni3.g25-xCoo.675Mnx hydrogen storage electrode alloys, J. Alloys Comp.,2004; 365:246-252
    [118]Y.F. Liu, H.G. Pan, Y.F. Zhu, R. Li, Y.Q. Lei, Influence of Mn content on the structural and electrochemical properties of the Lao.7Mgo.3Ni4.25-xCoo.75Mnx hydrogen storage alloys, Materials Science and Engineering A,2004; 372:163-172
    [119]Y.F. Liu, H.G. Pan, M.X. Gao, R. Li, Y.Q. Lei, Effect of Co content on the structural and electrochemical properties of the Lao.7Mgo.3Ni3.4-xMno.1Cox hydride alloys 110. The structure and hydrogen storage, J. Alloys Comp.,2004; 376:296-303
    [120]H.G. Pan, Q.W. Jin, M.X. Gao, Y.F. Liu, R. Li, Y.Q. Lei, Effect of the cerium content on the structural and electrochemical properties of the Lao.7-xCexMgo.3Ni2.875Mno.1Coo.525 (x=0-0.5) hydrogen storage alloys, J. Alloys Comp.,2004; 373:237-245
    [121]J. Guo, D. Huang, G.X. Li, S.Y. Ma, W.L. Wei, Effect of La/Mg on the hydrogen storage capacities and electrochemical performances of La-Mg-Ni alloys, Materials Science and Engineering B,2006; 131:169-172
    [122]J. Guo, R. Zhang, W.Q. Jiang, G.X. Li, W.L. Wei, The effect of substitution Al for Ni on the electrochemical properties of Lao.7Mgo.3Ni2.75-xAlxCoo.75 hydrogen storage alloys, J. Alloys Compd.,2007; 429:348-351
    [123]Y.X. Liu, L.Q. Xu, W.Q. Jiang, G.X. Li, W.L. Wei, J. Guo, Effect of substituting A1 for Co on the hydrogen-storage performance of La0.7Mgo.3Ni2.6AlxCoo.5-x (x=0.0-0.3) alloys, Int. J. Hydrogen Energy,2009; 34:2986-2991
    [124]L. Jiang, G.X. Li, L.Q. Xu, W.Q. Jiang, Z.Q. Lan, J. Guo, Effect of substituting Mn for Ni on the hydrogen storage and electrochemical properties of ReNi2.6LxMnxCoo.9 alloys, Int. J. Hydrogen Energy,2010; 35:204-209
    [125]J. Chen, N. Kuriyama, H.T. Takeshita, H. Tanaka, T. Sakai, M. Haruta, Hydrogen storage alloys with PuNi3-type structure as metal hydride electrodes, Elctrochem. Solid-State Lett.,2000; 3(6):249-252
    [126]B. Liao, Y.Q. Lei, G.L. Lu, L.X. Chen, H.G. Pan, Q.D. Wang, The electrochemical properties of LaxMg3-xNi9(x=1.0-2.0) hydrogen storage alloys, J. Alloys Compd.,2003; 356-357:746-749
    [127]B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3-xNi9 (x=1.6-2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries, J. Power Sources,2004; 129: 358-367
    [128]廖彬,La-Mg-Ni系AB3型贮氢电极合金的相结构与电化学性能,博士学位论文,浙江大学,2004
    [129]B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, A study on the structure and electrochemical properties of La2Mg(Nio.95Mo.os)9 (M=Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys, J. Alloys Compd.,2004; 376:186-195
    [130]H.G. Pan, Y.F. Liu, M.X. Gao, Y.Q. Lei, Q.D. Wang, A study of the structure and electrochemical properties of Lao.7Mgo.3(Nio.85Coo.15)x (x=2.5-5.0) hydrogen storage electrode alloys, J. Electrochem. Soc.,2003; 150:A565-A570
    [131]H.G Pan, Y.F. Liu, M.X. Gao, Y.F. Zhu, Y.Q. Lei, Q.D. Wang, Structural and electrochemical properties of the Lao.7Mgo.3Ni2.975-xCoo.525Mnx hydrogen storage electrode alloys, J. Electrochem. Soc.,2004; 151(3):A374-A380
    [132]Y.F. Liu, H.G Pan, M.X. Gao, R. Li, Y.Q. Lei, Effect of Co content on the structural and electrochemical properties of the Lao.7Mgo.3Ni3.4-xMno.1Cox hydride alloys:II. Electrochemical properties, J. Alloys Comp.,2004; 376:304-313
    [133]刘永峰,La-Mg-Ni-Co系贮氢电极合金的相结构及电化学性能研究,博士学位论文,浙江大学,2005
    [134]H.G. Pan, Y.F. Liu, M.X. Gao, Y.Q. Lei, Q.D. Wang, Electrochemical properties of the Lao.7Mgo.3Ni2.65-xMno.iCoo.75Alx (x=0-0.5) hydrogen storage alloy electrodes, J. Electrochem. Soc.,2005; 152(2):A326-A332
    [135]Y.F. Liu, H.G Pan, M.X. Gao, H. Miao, Y.Q. Lei, Q.D. Wang, Function of Al on the cycling behavior of the La-Mg-Ni-Co-type alloy electrodes, Int. J. Hydrogen Energy, 2008; 33(1):124-133
    [136]F.L. Zhang, Y.C. Luo, A.Q. Deng, Z.H. Tang, L. Kang, J.H. Chen, A study on structure and electrochemical properties of (La, Ce, Pr, Nd)2MgNi9 hydrogen storage electrode alloys, Electrochimica Acta,2006; 52:24-32
    [137]张法亮,罗永春,王大辉,阎汝煦,吴静然,陈剑虹,La(0.67-x)(Ti/Zr)xMg0.33Ni2.5Co0.5 (x=0-0.15)贮氢合金结构和电化学性能,稀有金属材料与工程,2006;35(6):900-904
    [138]J. Guo, W.Q. Jiang, R.J. Xiao, G.K. Huang, D. Huang, Effect of Co and Mn on the electrochemical properties of Lao.7Mgo.3Ni2(Co+Mn) alloys, J. Alloys Comp.,2005; 390: 301-304
    [139]张羊换,李保卫,蔡颖,董小平,任江远,王新林,快淬La-Mg-Ni系贮氢合金的电化学性能及微观结构,稀有金属材料与工程,2007;36(1):108-112
    [140]Y. Li, Y.T. Cheng, Amorphous La-Ni thin film electrodes, J. Alloys Compd.,1995; 223: 6-12
    [141]张羊换,陈梅艳,王新林,王国清,祁焱,郭世海,硼对低钴AB5型贮氢合金循环寿命的影响,2005;34(2):212-216
    [142]D.L. Zhao, Y.H. Zhang, X.P. Dong, Y. Qi, S.H. Guo, X.L. Wang, Influence of rapid quenching on cyclic stability of La-Mg-Ni system (AB3-type) electrode alloys, J. RARE EARTHS,2008; 26(2),291-297
    [143]蒙冕武,刘心宇,成钧,周怀营,球磨La0.92Mg2.08Ni9合金的结构及性能研究,电工材料,2004;1:28-31
    [144]H. Miao, H.G. Pan, S.C. Zhang, N. Chen, R. Li, M.X. Gao, Influences of Co substitution and annealing treatment on the structure and electrochemical properties of hydrogen storage alloys Lao.7Mgo.3Ni2.45-xCoo.75+xMno.iAlo.2 (x=0.00,0.15,0.30), Int. J. Hydrogen Energy,2007; 32:3387-3394
    [145]D.W. Song, Y.J. Wang, Y. Liu., S.M. Han, L.F. Jiao, H.T. Yuan, Effects of annealing on microstructures and electrochemical properties of Lao.8Mgo.2Ni2.4Mno.10Coo.55Alo.10 alloy, J. RARE EARTHS,2008; 26(3):398-401
    [146]Y.H. Zhang, B.W. Li, H.P. Ren, Y. Cai, X.P. Dong, X.L. Wang, Cycle stabilities of the Lao.7Mg0.3Ni2.55-xCo0.45Mx (M= Fe, Mn, Al; x = 0,0.1) electrode alloys prepared by casting and rapid quenching, J. Alloys Comp.,2008; 458:340-345
    [147]Y.H. Zhang, B.W. Li, H.P. Ren, Y. Cai, X.P. Dong, X.L. Wang, Effects of substituting Ni with Cu on the microstructures and electrochemical characteristics of the as-cast and quenched Lao.7Mgo.3Ni2.55-xCoo.45Cux (x=0-0.4) electrode alloys, Int. J. Hydrogen Energy, 2007; 32:3420-3426
    [148]H.G. Pan, Y.J. Yue, M.X. Gao, X.F. Wu, N. chen, Y.Q. Lei, Q.D. Wang, The effect of substitution of Zr for La on the electrochemical properties of Lao.7-xZrxMgo.3Ni2.45Mno.1Coo.75Alo.2 hydrogen storage electrode alloys, J. Alloys Comp., 2005; 397:269-275
    [149]A. Ziittel, F. Meli, L. Schlapbach, Surface and bulk properties of the TiyZr1-y(VxNi1-x)2 alloy system as active electrode material in alkaline electrolyte, J. Alloys Compd.,1995; 231:645-649
    [150]Y.F. Zhu, H.G. Han, M.X. Gao, J.X. Ma, S.Q. Li, Q.D. Wang, The effect of Zr substitution for Ti on the microstructures and electrochemical properties of electrode alloys Ti1-xZrxV1.6Mno.32Cro.48Ni0.6, Int. J. Hydrogen Energy,2002; 27:287-293
    [151]B. Rozdzynska-Kielbik, W. Iwasieczko, H. Drulis, V.V. Pavlyuk, H. Bala, Hydrogenation equilibria characteristics of LaNi5-xZnx intermetallics, J. Alloys Comp., 2000; 298:237-243
    [152]储爱民,杨丽颖,刘厚才,伍先明,退火对La0.75Mg0.25Ni3.5Co0.4贮氢合金电化学性能的影响,材料热处理学报,2008;29(1):16-19
    [153]C.Y. Seo, S.J. Choi, J. Choi, C.N. Park, J.Y. Lee, Effect of V and Zr on the electrochemical properties of La-based AB5-type metal hydride electrodes, J. Alloys Compd.,2003; 351:255-263
    [154]X.P. Dong, F.X. Lu, Y.H. Zhang, L.Y. Yang, X.L. Wang, Effect of annealing temperature on microstructure and electrochemical performance of Lao.75Mgo.25Ni3.sCoo.2 hydrogen storage electrode alloy, J. RARE EARTHS,2008; 26:99-104
    [155]K. Nomura, H. Uruno, S. Ono, H. Shinozuka, S. Suda, Effects of lattice strain on the hysteresis of pressure-composition isotherms for the LaNis-H2 system, J Less-Common Met.,1985; 107(2):221-230
    [156]E.H. Kisi, C.E. Buckley, E.M. Gray, The hydrogen activation of LaNis, J. Alloys Comp., 1992; 185:369-384
    [157]Y. Nakamura, H. Nakamura, S. Fujitani, I. Yonezu, Homogenizing behaviour in a hydrogen-absorbing LaNi4.55Al0.45 alloy through annealing and rapid quenching, J. Alloys Comp.,1994; 210:299-303
    [158]H.T. Takeshita, H Tanaka, N Kuriyama, T Sakai, I Uehara, M Haruta, Hydrogenation characteristics of ternary alloys containing Ti4Ni2X (X=O, N, C), J. Alloys Comp.,2000; 311:188-193
    [159]E.H. Kisi, E. Wu, M. Kemali, In-situ neutron powder diffraction study of annealing activated LaNi5, J. Alloys Comp.,2002; 330-332:202-207
    [160]M. Latroche, A. Percheron-Guegan, Structural ans thermodynamic studies of some hydride forming RM3-type compounds (R=Lanthanide, M=transition metal), J. Alloys Comp.,2003; 461:356-357
    [161]王福山,王春生,陈立新,雷永泉,王启东,吕光烈,(Tio.7Zr0.2V0.1)Ni贮氢合金的电化学性能及氢致相变研究,稀有金属材料与工程,1999;28(2):73-76
    [162]雷永泉,二十世纪新材料丛书:新能源材料,第1版,天津:天津大学出版社,2000
    [163]T. Sakai, K. Oguro, H. Miyamura, N. Kuriyama, A. Kato, H. Ishikawa, Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries, J. Less-Common Met.,1990; 161:193-202
    [164]T. Sakai, H. Yoshinage, H. Miyamura, N. Kuriyama, H. Ishikawa, Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys, J. Alloys Comp., 1992; 180:37-54
    [165]X.L. Zhao, Y.H. Zhang, B.W. Li, H.P. Ren, X.P. Dong, X.L. Wang, Investigation on microstructures and electrochemical performances of the Lao.75Mgo.25Ni2.5Cox(x=0-1.0) hydrogen storage alloys, J. Alloys Comp.,2008; 454:437-441
    [166]Y.H. Zhang, D.L. Zhao, B.W. Li, X.L. Zhao, Z.W. Wu, X.L. Wang, Microstructures and electrochemical characteristics of the Lao.75Mgo.25Ni2.5Mx (M=Ni, Co; x=0-1.0) hydrogen storage alloys, Int. J. Hydrogen Energy,2008; 33:1868-1875
    [167]X.J. Zhao, Q. Li, K. Chou, H. Liu, G.W. Lin, Effect of Co substitution for Ni and magnetic-heat treatment on the structures and electrochemical properties of La-Mg-Ni-type hydrogen storage alloys, J. Alloys Comp.,2009; 473:428-432
    [168]G. D. Aszic, J.R. Johncon, J.J. Reilly, J. McBreen, S. Mukerjee, M. P. S. Kumar, W. Zhang, S. Srinivasan, Cerium content and cycle life of multicomponent AB5 hydride electrodes, J. Electrochem. Soc.,1995; 142:3429-3433
    [169]张耀,以多元合金化改进球磨Mg基贮氢电极合金循环稳定性的研究,博士学位论文,浙江大学,2002
    [170]Y.F. Liu, H.G. Pan, Y.J. Yue, X.F. Wu, N. Chen, Y.Q. Lei, Cycling durability and degradation behavior of La-Mg-Ni-Co-type metal hydride electrodes, Journal of Alloys and Compounds 2005; 395:291-299
    [171]魏范松,La-Ni-Sn系AB5+x型无Co贮氢合金电极合金的研究,博士学位论文,浙江大学,2006
    [172]W.K. Hu, D.M. Kim, K.J. Jang, J.Y. Lee, Studies on Co-free rare-earth-based hydrogen storage alloys, J. Alloy Comp.,1998; 269:254-258
    [173]Y.J. Wang, H.T. Yuan, G.S. Wang, Y.S. Zhang, Characteristics of novel Co-free MlNi4.2-xCu0.5Alo.3Znx(0    [174]X.D. Wei, S.S. Liu, H Dong, P Zhang, Y.N. Liu, J.W. Zhu, G. Yu, Microstructures and electrochemical properties of Co-free AB5-type hydrogen storage alloys through substitution of Ni by Fe, Electrochim. Acta,2007; 52:2423-2428
    [175]R. Balasubramaniam, M.N. Mungole, K.N. Rai, Hydriding properties of MmNi5 system with aluminium, manganese and tin substitutions, J. Alloys Comp.,1993; 196:63-70
    [176]T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, K. Ogura, H. Ishikawa, The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys, J. Less-common Met.,1990; 159:127-129
    [177]M. Jurczyk, M. Nowak, E. Jankowska, J. Jakubowicz, Structure and electrochemical properties of the mechanically alloyed La(Ni,M)5 materials, J. Alloys Comp.,2002; 339: 339-343
    [178]H. Miyamura, N. Kuriyama, T. Sakai, K. Oguro, A. Kato, H. Ishikawa, Characteristics of electrodes using amorphous AB2 hydrogen storage alloys, J. Less-common Met.,1991; 172-174:1205-1210
    [179]W.H. Liu, Y.Q. Lei, D.L. Sun, J. Wu, Q.D. Wang, A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy, J. Power Sources,1996; 58: 243-247
    [180]Y. Zhang, L.X. Chen, Y.Q. Lei, Q.D. Wang, The reduction of cycling capacity degradation of Mg-Ni-based electrode alloys by Fe substitution, Int. J. Hydrogen Energy, 2002; 27:501-506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700