用户名: 密码: 验证码:
仿昆虫微飞行器简化气动力模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿昆虫微飞行器具有机动性能好、体积小、能量利用效率高等优点,是目前飞行器领域的研究热点之一,近十年来先后有7篇相关文章在著名杂志Science和Nature上发表。
     制作实际的“机器知了”,首先需要一个合适的气动力模型,而目前各类文献中的气动力模型,在实际控制中不能同时满足对于精度和实时性的要求。本论文针对昆虫拍翅气动力模型,进行了如下的工作:
     1、面向工程实际,建立了既能满足精度,又能满足计算实时性要求的昆虫拍翅气动力模型
     在Dickinson基于经验拟合系数的拍动模型和Ellington USBE模型的基础上,提出了两个气动力模型,即取Dickinson和Ellington两模型优点的用Dickinson实验系数修正后的USBE模型;及将USBE模型在弦展方向扩展后的EUSBE模型。在第三章分别对以上模型进行了各种气动特性的仿真,并与实验结果进行了比较。
     针对附加质量在拍动中的作用问题,采用了两种不同的建模方法对翅膀周围的流体附加质量进行了建模。一为“基于经验系数的附加质量模型”;二为“由阻力增量推出的附加质量模型”。在第四章,结合前面提出的EUSBE模型,对以上两个模型进行了仿真,并详细分析和讨论了附加质量分量在不同翅膀转动模式下一个周期中主要阶段的不同作用;最后对两个模型进行了横向比较。
     2、利用以上模型,对所设计的仿蝉翅膀进行了气动特性分析
     参考蝉的翅膀,设计了一款翅展33毫米的仿蝉翅膀;采用第四章中包含附加质量的EUSBE模型,在第五章中从工程的角度对其各类特性进行了仿真分析和讨论。
     3、对在建模过程中发现的问题进行了进一步的探索,提出了粘度可能影响附加质量力实际表现的观点
     针对本文仿真结果与实验结果之间的差异,通过在加/减速阶段采用不同的系数,得到了与实验相当吻合的仿真结果;同时,对薄层变速运动流体的受力分析表明,实际表现出来的附加质量力的幅度可能受流体粘度的影响,从而在第六章提出了流体粘度对附加质量力可能有影响的新观点。
Due to its highest maneuverability, small size, high efficiency both in aerodynamic and energy utilities, the insect-like Micro-Airo-Vehicle becomes one of the most popular research area of aero-craft designing. Seven research articles were published on Science and Nature magazines in the past decade.
     To make a "cicada airo-robot", an aerodynamic model of insect flight was needed. This model should satisfy two requirements: simple enough to be used in real-time control and accurate enough to predict properly the aerodynamic forces. So the main tasks of this dissertation are:
     1 Building an aerodynamic model of insect flight which can meet the above two requirements
     Based on the empirical aerodynamic model developed by Dickinson and the model of USBE (Un-Steady Blade Element) by Ellington, two new aerodynamic models were proposed. The first one was the USBE model revised by Dickinson's coefficients, which took the advantages of those two models. The second was EUSBE (Extended Un-Steady Blade Element) model, which extended the blade element theory into the chord direction. Simulations of the above models were made respectively, and the results were compared with the experiment results. The above works were described in chartper 3.
     To study the effects of added mass, two different models with fluid added mass effects taken into account were made from the engineering point of view. One was the experiential coefficient based added mass model; and the other was the increased drag derived added mass model. Simulations of the two models were carried out respectively in charpter 4, and the added mass effects at the key points during one stroke cycle in different rotation mode were carefully analyzed and discussed. Comparisons were made between the two models.
     2 Analyzing the aerodynamic properties of a simplified cicada wing
     According to the real wing of a cicada, a 33mm wingspan simplified wing was considered. Simulations were made using the EUSBE model proposed in chapter 4 with added mass effects taken into account. Analyses of the aerodynamic properties of this wing were made from the engineering point of view.
     3 Making further investigations to the related problems and proposing an idea that the viscosity of the fluid might influence the added mass effects
     To eliminate the discrepancies between the simulation and experiment results, two different added mass coefficients were used for accelerating and decelerating periods, respectively. The simulation results showed very well agreement with the experimental results. At the same time, the forces on an accelerating thin fluid layer were investigated carefully, and a conclusion was made that the viscosity of fluid might influence the added mass effects.
引文
A.J. Bergou, S. Xu, Z.J. Wang, (2007) Passive wing pitch reversal in insect flight,J. Fluid Mech., (591):321-337;
    
    A. P. Willmott, C.P. Ellington, (1997a)The mechanics of flight in the hawkmoth manducasexta i. Kinematics of hovering and forward flight. J. Exp. Biol.,(200):2705-2722;
    
    A. P. Willmott, C.P. Ellington, (1997b) The mechanics of flight in the hawkmoth manducasexta ii. Aerodynamic consequences of kinematic and morphological variation., J. Exp. Biol.,(200):2273-2745;
    
    A.R. Ennos, (1989) The kinematics and aerodynamics of the free flight of some diptera. J. Expl Biol., (142): 49-85;
    
    A. S. Sangani, (1991), The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion, Phys.Fluid A,3 (12),:2955-2970;
    
    C. E. Brennen, (1982), A Review of Added Mass and Fluid Inertial Forces, USA Naval Civil Engineering Laboratory, Port Hueneme, California;
    
    C. Eloy, C. Souilliez, L. Schouveiler,(2007), Flutter of a rectangular plate, J. Fluid.Struct.,23 (2007) 904-919;
    
    C. Forster, W. A. Wall, E.Ramm,(2007), Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 196:1278-1293;
    
    C. Harrison, E. Tavernier, O. Vancauwenberghe,(2007), On the response of a resonating plate in a liquid near a solid wall, Sensor. Actuat. A-Phys,134:414-426;
    
    C.N. Balintl,.M.H. Dickinson, (2004), Neuromuscular control of aerodynamic forces and moments in the blowfiy(Calliphora vicina), J. Expl Biol.,207:3813-3838;
    
    C. P. Ellington, (1984a), The aerodynamics of hovering insect flight I: The Quasi-Steady Analysis, Phil. Trans. R. Soc. Lond. B, (305): 1-15;
    
    C. P. Ellington, (1984b), The aerodynamics of hovering insect flight II:Morphological Parameters, Phil. Trans. R. Soc. Lond. B, (305): 16-40;
    
    C. P. Ellington, (1984c), The aerodynamics of hovering insect flight III: Kinematics,Phil. Trans. R. Soc. Lond. B, (305):41-78;
    
    C. P. Ellington, (1984d), The aerodynamics of hovering insect flight IV:Aeorodynamic Mechanisms, Phil. Trans. R. Soc. Lond. B , (305):79-l 13;
    
    C. P. Ellington, (1984e), The aerodynamics of hovering insect flight V: A Vortex Theory, Phil .Trans. R. Soc. Lond. B, (305):115-144;
    
    C. P. Ellington, (1984f), The aerodynamics of hovering insect flight VI: Lift and Power Requirements,Phil.Trans.R.Soc.Lond.B,(305):115-144;
    C.P.Ellington,K.E.Machin,T.M.Casey,(1990),Oxygen consumption of bumblebees in forward flight,Nature,(347):472-473;
    C.P.Ellington,C.Van den Berg,A.P.Willmott,et al.(1996),Leading Edge Vortices in Insect Flight,Nature,(384):626-630;
    C.P.Ellington,(2006),Insects versus birds:the great divide,44th AIAA Aerospace Sciences Meeting and Exhibit,January 2006,Reno,Nevada;
    C.Poelma,W.B.Dickson,M.H.Dickinson,(2006),Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing,Exp.Fluids,(41):213-225;
    D.A.Nield,A.V.Kuznetsov,M.Xiong,(2004),Effects of Viscous Dissipation and Flow Work on Forced Convection in a Channel Filled by a Saturated Porous Medium,Kluwer Academic Publishers.Transport in Porous Media,56:351-367;
    D.I.Pullin,Z.J.Wang,(2004),Unsteady Forces on an Accelerating Plate and Application to Hovering Insect Fight,J.Fluid Mech.,(509):1-21;
    D.L.Altshuler,W.B.Dickson,J.T.Vance,et.al,(2005),Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight,PNAS,(102.50):18213-18218;
    E.E Michaelidcs,(2003),Hydrodynamic force and heat/mass transfer from particles,bubbles,and drops-The Freeman Scholar Lecture.J.Fluids Eng.,(125):209-23;
    E.H Dowell,K.C Hall,(2001),Modeling of Fluid Structure Interaction,Annu.Rev.Fluid Mech.,33:445-490;
    E.J.Chang,M.R.Maxcy,(1994),Unsteady flow about a sphere at low to moderate Reynolds number.Part 1.scillatory motion.J.Fluid Mech.,(277):347-379;
    E.J.Chang,M.R.Maxey,(1995),Unsteady flow about a sphere at low to moderate Reynolds number.Part 2,Accelerated motion.J.Fluid Mech.,(303):133-153;
    E.Longattea,Z.Bendjeddoub,M.Souli,(2003),Methods for numerical study of tube bundle vibrations in cross-flows,J.Fluid.Struct.,18:513-528;
    F.Minotti,(2002),Unsteady two-dimensional theory of a flapping wing.,Phys.Rev.E,(66):051907;
    F.O.Lchmann,(2004),The Mechanisms of Lift Enhancement in Insect Flight,Naturwissen-schaften,(91):101-122;
    F.O.Lehmann,(2007),http://stammhirn.biologie.uni-ulm.de/w4fly/LehmannLabProj ects.html
    F.O.Lehmann,(2008),When Wings Touch Wakes:Understanding Locomotor Force Control by Wake-Wing Interference in Insect Wings,J.Exp.Biol.,(211):224-233;
    F.O.Lehmann,M.H.Dickinson,(1997),The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster.,J.Exp.Biol,(200):1133-1143;
    G.K.Taylor,R.L.Nudds,A.L.R.Thomas,(2003),Flying and swimming animals cruise at a strouhal number tuned for high power efficiency,Nature,(425):707-711;
    G.J.Berman,Z.J.Wang,(2007a),Energy-Minimizing Kinematics in Hovering Insect Flight,J.Fluid Mech.,(582):153-168;
    G.Mougin,J.Magnaudet,(2002),The generalized Kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow,Int.J.of Multiphas.Flow,28:1837-1851;
    H.Liu,C.P.Ellington,K.Kawachi,C.V.D.Berg,A.P.,Willmott,(1998),Acomputational fluid dynamic study of hawkmonth hovering,J.Exp.Biol.,(201):461-477;
    H.M.Sean,S.K.Agrawal,Z.Khan,(2006),Design of a Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle,IEEE/ASME Transactions on Mechatronics,11(2);
    I.Kim,S.Eghobashi,W.A.Sirigano,(1998),On the equation for spherical-particle motion:effect of Reynolds and acceleration numbers.J.Fluid Mech.,(367):221-253;
    J.A.Walker,(2002),Rotational Lift:Something Different or More of the Same?,J.Exp.Biol.,(205):3783-3792;
    J.A.Walker,(2002),Functional morphology and virtual models:Physical constraints on the design of oscillating wings,fins,legs,and feet at intermediate Reynolds numbers.Int.Comp.Biol.,(42),232-242;
    J.H.Wu M.Sun,(2004),Unsteady Aerodynamic Forces of a Flapping Wing,J.Exp.Biol.,(207):1137-1150;
    J.H.Wu,M.Sun,(2005),The Influence of the Wake of a Flapping Wing on the Production of Aerodynamic Forces,Acta.Mech.Sinica,2005(21):411-418;
    J.M.Birch,M.H.Dickinson,(2001),Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings,Nature,(412):729-733;
    J.M.Birch,M.H.Dickinson,(2003),The Influence of Wing-Wake Interactions on Production of Aerodynamic Forces in Flapping Flight,J.Exp.Biol.,(206):2257-2272;
    J.M.Wakeling,C.P.Ellington,(1997),Dragonfly flight.Ⅲ.Lift and power requirements.J.Exp.Biol.,(200):583-600;
    J Oliver Linton,(2007),The physics of flight:Ⅲ.Hovering,Physics Education,496-501;
    J.R.Usherwood,C.P.Ellington,(2002),The aerodynamics of revolving wings.I.model hawkmoth wings,J.Exp.Biol.,(205):1547-1564;
    L.W.S.Balachandar(2007),On the Added Mass Force at Finite Reynolds and Acceleration Numbers,Theor.Comput.Fluid Dyn,21:147-153;
    L.Bao,J.S.Hu,Y.L.Yu,P.Cheng,B.Q.Xu,B.G.Tong,(2006),Viscoelastic Constitutive Model Related to Deformation of Insect Flight Under Loading in Flapping Motion,Appl.Math.Mech-Engl.,27(6):741-748;
    Lockheed Maertin Company:MicroStar:Micro Air Vehicle,Design to Reality;
    M.Abbad,M.Souhar,(2004),Effects of the History Force on an Oscillating Rigid Sphere at Low Reynolds Number,Exp.in Fluid.,36:775-782;
    M.Chibaa,,T.Sugimoto,(2003),Vibration characteristics of a cantilever plate with attached spring-mass system,J.Sound.Vib.,260:237-263;
    M.H.Dickinson,G.G.,Karl,(1996),The Wake Dynamics and Flight Forces of the Fruit Fly Drosophila Melanogaster,J.Exp.Biol.,199,2085-2104);
    M.H.Dickinson,F.O.Lehnmann,S.P.Sane.(1999),Wing rotation and the aerodynamic basis of insect flight.Science,(84.5422):1954-1960;
    M.H.Dickinson,C.T.Farley,R.J.Full,et al.,(2000),How Animals Move:An Integrative View,Science,(288):100-106;
    M.H.Dickinson,(2004),http://dickinson.caltech.edu/old;
    M.Nasir,M.Dickinson,D.Liepmann,(2005),Multidirectional Force and Torque Sensor for Insect Flight Research,The 13th International Conference on Solid-state Sensors,Actuators and Microsysrems,Seoul,Korea,June 5-9,P:555-558;
    M.Sun,G.Du,(2003a),Lift and power requirements of hovering insects flight,Acta.Mech.Sinica,19(5):458-469;
    M.Sun,J.Tang,(2002),Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion,J.Exp.Biol.,(205):55-70;
    M.Sun,J.Tang,(2002),Lift and power requirements of hovering flight in Drosophila,J.Exp.Biol.,205(16):2413-2427;
    M.Sun,J.H.Wu,(2003b),Aerodynamic Force Generation and Power Requirements in Forward Flight in a Fruit Fly with Modeled Wing Motion,J.Exp.Biol.,(206):3065-3083;
    M.Sun,S.L.Lan,(2004),A Computational Study of the Aerodynamic Force and Power Requirements of Dragonfly(Aeshna duncea) Hovering,J.Exp.Biol.,(207):1887-1901;
    N.Mordant,J.F.Pinton,(2000),Velocity measurement of a settling sphere.Eur Phys J B,(18):343-352
    P Chai,R.Dudley,(1995),Maximum right performance and limits to power output of vertebrate striated-muscle.FASEB J.,(9):A353;
    P.M.Lovalenti,J.F.Brady,(1993),The force on a bubble,drop or particle in arbitrary time-dependent motion at small Reynolds number.Phys.Fluids A,5(9):2104-2116;
    R.J.Hill,D.L.Koch,A.J.C.Ladd,(2001),The _rst e_ects of fluid inertia on flows in ordered and random arrays of spheres,J.Fluid Mech.,448,:213-241;
    P.W.Webb,(1982),Fast-Start Resistance of Trout,J.Exp.Biol.,96:93-106;
    R.Dudley,C.P.Ellington,(1990),Mechanics of forward flight in bumblebees.ii:Quasi-steady lift and power requirements,J.Exp.Biol.,(148)53-88;
    R.Dudley,(2002),The Biomechanics of Insect Flight.Princeton,NJ:Princeton University Press;
    R.Dudley,(1991),Biomechanics of flight in neotropical butterflies-aerodynamics and mechanical power requirements,J.Exp.Biol.,335-357.
    R.Mei,C.J.Lawrence,Adrian RJ,(1991),Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity.J.Fluid Mech.,(233):613-631;
    R.Mei,(1991),Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number.J.Fluid Mech.,(270):133-174;
    R.Mei,R.J.Adrian,(1992),Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number.J.Fluid Mech.,(237):323-341;
    R.Ramamurti,W.C.Sandberg,(2002),A three-dimensional computational study of the aerodynamic mechanisms of insect flight,J.Exp.Biol.,(206):1507-1518;
    R.Ross,(2007),Robotic Insect Takes Off Researchers have created a robotic fly for covert surveillance,MIT Technology Review,7-19-2007;http://www.technologyreview.corn/Infotech/19068/
    S A Ansari_,R Z bikowski,and K Knowles,Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover.Part Ⅰ:methodology and analysis,Proc.IMechE Vol.220 Part G:J.Aerospace Engineering;
    S A Ansari_,R Z bikowski,and K Knowles,Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover.Part II:mplementation and validation,Proc.IMechE Vol.220 Part G:J.Aerospace Engineering;
    S.A.Combes,T.L.Daniel,(2003A),Flexural stiffness in insect wings ii.Spatial distribution and dynamic wing bending,J.Exp.Biol.,(206):2989-2997;
    S.A.Combes,T.L.Daniel,(2003b),Into thin air:contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.J.Exp.Biol.,(206),2999-3006;
    S.L.Lan,M.Sun,(2001),Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number,Acta.Mech.Sinica,(149):135-147;
    S.N.Fry,R.Sayaman,M.H.Dickinson,(2003),The aerodynamics of free-flight maneuvers in Drosophila.,Science,(300):495-498;
    S.N.Fry,R.Sayaman,M.H.Dickinson,(2005),The Aerodynamics of Hovering Flight in Drosophila,J.Exp.Biol.,(208):2303-2318;
    S.N.Fry,(2006),http://fly.ini.unizh.ch/joomla/index.php?option=com_content&view =article&id=56&Itemid=70;
    S.P.Sane,M.H.Dickinson,(2001),The Control of Flight by a Flapping Wing:Lift and Drag Production,J.Exp.Biol.,(204):2607-2626;
    S.P.Sane,M.H.Dickinson,(2002),The Aerodynamic effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight,J.Exp.Biol.,(205):1087-1096;
    S.P.Sane.(2003),The Aerodynamics of Insect Flight,J.Exp.Biol.,(206):4191-4208;
    S.P.Sane,(2006a),Induced airflow in flying insect I.A theoretical model of the induced flow,J.Exp.Biol.,(209):32-42;
    S.P.Sane,(2006b),Induced airflow in flying insect II.Measurement of induced flow,J.Exp.BioL,(209):43-56;
    T.L.Silwester,W.Schneider,(2005),The moving contact line with weak viscosity effects-an application and evaluation of Shikhmurzaev's model,Acta.Mech.Sinic,176:245-258;
    T.Sarpkaya,.M.Isaacson,.(1981),Mechanics of Wave Forces on Offshore Structures.New York:Van Nostrand Reinhold;
    U.Pesavento,Z.J.Wang,(2004),Falling Paper:Navier-Stokes Solutions,Model of Fluid Forces,and Center of Mass Elevation,Phys.Rev.Lett.,(93.14):144501;
    Y.C.Fung,(1969),An introduction to the theory of aeroelasticity.New York:Dover.
    Y.L.Yu,B.G.Tong,H.Y.Ma,(2003),An Analytic Approach to Theoretical Modeling of Highly Unsteady Viscous Flow Excited by Wing Flapping in Small Insects,Acta.Mech.Sinic.,19(6):508-516;
    Y.P.Liu,M.Sun,(2007),Wing Kinematics Measurement and Aerodynamic Force and Moments Computation of Hovering Hoverfly,The 1st International Conference on Bioinformatics and Biomedical Engineering,ICBBE 2007,P:452-455;
    Y.Yadykin,V.Tenetov,D.Levin,(2003),The added mass of a flexible plate oscillating in a fluid,J.Fluid.Struct.,17:115-123;
    Z.A.Khan,S.K.Agrawal,(2005),Force and Moment Characterization of Flapping Wings for Micro Air Vehicle Application,2005 American Control Conference June 8-10,2005.Portland,OR,USA;
    Z.J.Wang,(2008),Aerodynamic Efficiency of Flapping Flight:Analysis of a Two-Stroke Model,J.Exp.Biol.,(211):234-238;
    Z.J.Wang,(2005),Dissecting Insect Flight,Annu.Rev.Fluid Mech.,(37):183-210;
    Z.J.Wang,(2000),Two Dimensional Mechanism for Insect Hovering,Phys.Rev.Lett.,(85.10):2216-2219;
    鲍麟,胡劲松,,余永亮,程鹏,续伯钦,童秉纲,(2006)昆虫翼拍动中受载变形的粘弹性本构模型,应用数学和力学,27.6:655-662;
    陈国栋,贾培发,刘艳,(2005),微型飞行器的研究与发展,机器人技术与应用,34-44;
    兰世隆,孙茂,(2001),模型昆虫翼作非定常运动时的气动特性 力学学报(3);
    林建忠,阮晓东,陈邦国,王建平,周洁,任安禄,(2005),流体力学,清华大学出版社;
    孙茂.(2002),昆虫飞行的高升力机理.力学进展.32(3):425-434;
    孙茂,黄华,(2006),微型飞行器的仿生力学—蝴蝶飞行的气动力特性,北京航空航天大学学报,(32.10):1146-1151;
    童秉纲,陆夕云,(2004),关于飞行和游动生物的研究.力学进展.34(1):1-8;
    童秉纲,孙茂,尹协振,(2005),飞行和游动生物流体力学的国内研究进展概述,自然杂志,7(4):191-198;
    王姝歆,颜景平,张志胜,周建华,(2003),基于昆虫翅膀运动机理的仿昆拍式翅研究.中国机械工程,14(23):2006-2009;
    王姝歆,陈国平,周建华,颜景平,(2006),仿生扑翼飞行机器人翅型的研制与实验研究,实验力学,21(3):315-321;
    辛健成(1999),喷薄欲出的微型无人机(上)A机器人技术与应用,(4):24-25;
    杨翊仁,张继业,马建中等,(1998),不可压缩粘性流中板状梁的振动附加质量及阻尼,技动力工程19.5;
    赵攀峰,刘春阳,祝隆伟,陈小燕,杨基明,(2005),二维平板翼拍翼运动的涡流场显示.中国科学技术大学学报,35:441-447;
    赵攀峰,刘春阳,梁宗宪,杨向龙,杨基明,二维平板翼悬停拍翼运动中俯仰旋转速度对流场特性的影响,(2006),空气动力学学报,24.2:157-162;
    左德参,陈文元,彭松林等,(2005),基于MEMS技术的扑翼式微飞行器的研究,系统仿真学报,(6):1505-1527。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700