用户名: 密码: 验证码:
毛蚶(Scapharca Kagoshimensis)血红蛋白的类酚氧化酶活性及其cDNA克隆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛蚶(Scapharca kagoshimensis)是隶属于软体动物门瓣鳃纲的一种具有重要经济价值的海洋无脊椎动物,其缺乏真正意义上的抗体、没有免疫记忆能力,只能依靠非特异性免疫反应来抵御寄生虫和疾病,其中血细胞和免疫因子在其对多种病原微生物的免疫防御反应中起着决定性作用。血红蛋白(hemoglobin,Hb)是所有脊椎动物和部分无脊椎动物血液中所含有的一大类含铁的呼吸蛋白,除具有运输氧气的主要功能外,还具有稳定血压、抗菌、运输硫化物、调节酸碱平衡、氧化酶、过氧化酶活性等多种生物学功能,是最具有研究价值的蛋白质家族之一。在其发现无脊椎动物血蓝蛋白具有类酚氧化酶活性之后,本实验室首次发现毛蚶Hb也具有类酚氧化酶活性,从此揭开了毛蚶Hb非特异性免疫功能研究的序幕。本研究拟利用生物化学和分子生物学手段从其血淋巴中分离纯化出毛蚶Hb,鉴定其类酚氧化酶活性(PO-like activity)及其激活因子,确定其生物化学性质和酶性质,查清几种常用免疫促进剂刺激以及细菌感染对毛蚶Hb与血细胞的影响作用,克隆出毛蚶Hb的全长cDNA序列,并利用推测一级结构氨基酸序列进行初步的同源性分析,旨在证实毛蚶Hb的非特异性免疫功能,为揭示毛蚶血红蛋白在动物非特异性免疫中的作用及分子机理,鉴定其在呼吸蛋白家族中的分子进化地位等奠定基础。
     本文利用Sephacryl S-100凝胶过滤柱层析和Q sepharose Fast Flow离子交换柱层析技术成功从毛蚶血淋巴中分离纯化出了血红蛋白,并以L-二羟苯丙氨酸(L-DOPA)为特异性底物对其类酚氧化酶活性进行了鉴定,实验结果表明,所得毛蚶Hb纯化样品在SDS-PAGE电泳中为分子量约14.27 kDa的单一条带,胶内酶切肽指纹图谱分析结果证实所得纯化样品确为Hb;同时,所得毛蚶Hb纯化样品对L-DOPA具有很强的氧化活性,且Native-PAGE电泳条带的L-DOPA染色结果也证实其具有很强的氧化活性,表明毛蚶Hb确实具有类酚氧化酶活性。
     生化性质和酶性质研究结果表明,毛蚶血红蛋白纯化样品对L-DOPA发挥类酚氧化酶活性的最适pH值为7.0、最适反应温度为30℃,其Km值约为4.90 mmol/L,且其类酚氧化酶活性可为异丙醇所进一步激活;不同氧化酶抑制剂的研究结果发现,毛蚶Hb纯化样品的类酚氧化酶活性对苯甲酸非常敏感,对抗坏血酸、亚硫酸钠、柠檬酸和硫脲较为敏感,而对苯硫脲和半胱氨酸不敏感,表明毛蚶Hb发挥类酚氧化酶活性是具有酪氨酸酶类型的酚氧化酶性质;此外,金属离子螯合剂乙二胺四乙酸(EDTA),Zn2+和Cu2+均能强烈抑制毛蚶Hb纯化样品的类酚氧化酶活性,二乙基二硫氨基甲酸酯(DETC)、Ca2+和Mg2+的抑制作用较小,而Fe2+却具有激活作用,说明毛蚶Hb的类酚氧化酶活性还具有金属酶性质;毛蚶Hb纯化样品类酚氧化酶活性的回复实验结果显示,被EDTA抑制的类酚氧化酶活性可特异性地为Fe2+所回复,进一步证明其是一种含铁金属酶性质。综上所述,毛蚶Hb发挥类酚氧化酶活性具有酪氨酸酶类型的含铁酚氧化酶的性质。
     免疫促进剂处理毛蚶的实验结果显示,脂多糖、β-葡聚糖、灭活哈维氏弧菌和灭活鳗弧菌处理48 h后,与对照组相比,毛蚶Hb的产量分别增加了7.47%、6.17%、10.39%和27.92%,其类酚氧化酶总活性分别增加了20.72%、4.03%、11.40%和45.84%,而单位酶活性没有显著差异,表明上述四种免疫促进剂的刺激可不同程度地提高毛蚶Hb的合成量及其类酚氧化酶总活性,其中以灭活鳗弧菌的刺激效果最为显著;此外,脂多糖、β-葡聚糖、灭活哈维氏弧菌和灭活鳗弧菌处理48 h后,毛蚶的血细胞的总数分别增加了8.3%、6.3%、2.0%和20.8%,表明上述四种免疫促进剂的刺激可不同程度地增加毛蚶血细胞的数量,其中以灭活鳗弧菌的刺激效果最为显著。综上所述,免疫促进剂脂多糖、β-葡聚糖、灭活哈维氏弧菌和灭活鳗弧菌可不同程度地增加毛蚶血细胞的数量、提高毛蚶Hb的合成量及其类酚氧化酶总活性,暗示血细胞和血红蛋白的确参与了免疫促进剂刺激下毛蚶自身免疫力的提高。
     细菌感染毛蚶的实验结果显示,1×107个/mL鳗弧菌感染毛蚶48h后,与对照组相比,毛蚶Hb的产量增加了19.78%,类酚氧化酶总活性增加了5.29%,血细胞的总数却减少了37.71%;1×108个/mL哈维氏弧菌感染毛蚶48h后,与对照组相比,毛蚶Hb的产量增加了8.44%,类酚氧化酶总活性增加了6.36%,血细胞的总数却减少了1.75%;而浓度为1×105个/mL的哈维氏弧菌和鳗弧菌感染48h后毛蚶Hb的产量减少了1.99%和7.94%,类酚氧化酶总活性减少了1.15%和5.59%,血细胞数量减少了35.63%和16.67%;上述结果表明,细菌感染能不同程度地引起毛蚶血细胞数量的减少,且高浓度细菌感染可不同程度地引起毛蚶Hb产量和类酚氧化酶总活性的增加,但低浓度细菌感染反而会不同程度地引起毛蚶Hb产量和类酚氧化酶总活性的降低,暗示血细胞和Hb的确参与了毛蚶的非特异性免疫反应。
     从毛蚶血细胞中提取总RNA,利用反转录-聚合酶链式反应(RT-PCR)和快速扩增cDNA末端(RACE)技术,分别克隆出了毛蚶血红蛋白HbI、HbII A和HbII B的全长cDNA序列,HbI的cDNA全长为756 bp,编码147个氨基酸残基,分子量为16.2 kDa,与不等壳毛蚶(Scapharca inaequivalvis)HbI的同源性为99.32%;HbII-A的cDNA全长为755 bp,编码150个氨基酸残基,分子量为16.5 kDa,与不等壳毛蚶(Scapharca inaequivalvis)HbII-A链同源性为98.67%;HbII-B的cDNA全长为745 bp,编码152个氨基酸残基,分子量为16.7 kDa,与不等壳毛蚶(Scapharca inaequivalvis)HbII-B链同源性为99.34%。
     研究毛蚶Hb的类酚氧化酶活性,对于揭示Hb在无脊椎动物非特异性免疫中的生物学功能具有重要的理论意义,在动物免疫和呼吸蛋白分子进化等方面也均具有重要的科学价值。
Blood clam, Scapharca kagoshimensis, is one of a marine invertebrates which has an important economic value and belongs to Mollusca, Lamellibranchia. It lacks antibodies and immune memory and has to resist parasites and diseases with non-specific immune system. Haemocytes and humoral immune factors play an important roles in immune responses of S.kagoshimensis to many kinds of pathogenic microorganism. Hemoglobin (Hb), responsible for oxygen transport, are a kind of iron-containing respiratory proteins found in the hemolymph of both vertebrates and some invertebrates. This study indicate that hemoglobin not only have oxygen-bearing function, but also have functions as follows: antimicrobial activity , adjusting blood pressure, transporting sulfide, adjusting acid-base balance, oxidase, peroxidase activity and so on. It is one of the most valuable respiratory proteins to worth researching. Many studies have indicated the hemocyanins can be functionally converted into a kind of phenoloxidase-like enzyme and display PO activities under certain conditions. In this study, phenoloxidase-like activities of the hemoglobin from blood clam S.kagoshimensis was found and it lay solid foundation in non-specific immune of invertebrates. In order to characterize the properties of PO-like activities of the hemoglobin from blood clam S.kagoshimensis, Hb from S.kagoshimensis was purified by biochemical and molecular biology methods, and characterized its biochemistry and enzymatic properties. To study the stimulating mechanisms of immunostimulates, the immunostimulating effects ofβ-glucan, lipopolysaccharide (LPS), inactivate Vibrio harveyi and Vibrio anguillarum on the PO-like activities of Hb from S. kagoshimensis were investigated and full-length cDNA sequence has been obtained. This study has not only great significance in understanding its roles in invertebrate non-specific immune system, but also helps us to fully cognize the multiple biological functions of Hb.
     In this study, Hb from hemolymph of S. kagoshimensis was purified by sephacryl S-100 gel-filtration and Q sepharose Fast Flow ion-exchange chromatography, and characterized its biochemistry and enzymatic properties by using L-dihydroxyphenylalanine (L-DOPA) as the specific substrate to study its PO-like activity. The result indicate that the purified Hb had a molecule weight of only 14.27kDa in sodium dodecyl sulfate polyacrylemide gel electrophoresis(SDS-PAGE), and it is testified by peptide mass fingerprint(PMF). The purified Hb can specific oxidate L-DOPA and dyed by L-DOPA after Native-PAGE .The result indicate that the Hb from S. kagoshimensis have the PO-like activities.
     The biochemical and enzymatic properties of Hb from S. kagoshimensis using L-dihydroxyphenylalanine (L-DOPA) as the specific substrate was studied and the result indicated that the optimum pH and temperature was 7.0 or so and 30℃and using L-dihydroxyphenylalanine (L-DOPA) as the specific substrate to study its PO-like activity. The Km values was 4.90 mmol/L against L-DOPA. The PO-like activities of Hb from S. kagoshimensis can be activated by isopropanol, and was extremely sensitive to some effective inhibitors of benzoic acid; sensitive to ascorbic acid,urea and sodium sulfite,citric acid; but not sensitive to cysteine and1-phenyl-2-thiourea. All these indicate that the PO-like activities of Hb from S. kagoshimensis in this study is a kind of tyrosinase. The PO-like activity of Hb from S. kagoshimensis was very sensitive to EDTA, Cu2+ and Zn2+, but not sensitive to DETC ,Ca2+ and Mg2+, and Fe2+ activate the PO activity effectively. Then it can be concluded that the Hb of S. kagoshimensis was a type of iron-containing protein.
     To study the stimulating mechanisms of immunostimulates, the immunostimulating effects ofβ-glucan, lipopolysaccharide (LPS), inactivated Vibrio harveyi and Vibrio anguillarum on the PO-like activities of Hb from S. kagoshimensis were investigated in this study. Under the stimulation ofβ-glucan, LPS, inactivated Vibrio Harvey and inactivated Vibrio anguillaru, the amount of Hb synthesized from S.kagoshimensis increased about 7.47%、6.17%、10.39% and 27.92%, respectively and PO-like activities increased about20.72%、4.03%、11.40% and 45.84%, but the unit activity of PO-like remains almost unchanged. The immunostimulation of Vibrio anguillaru is the most efficient on the amount of Hb synthesized and PO-like activity. Further more, the number of all hemocytes increased about 8.3%、6.3%、2.0% and 20.8%. It is concluded that under the stimulation ofβ-glucan, LPS, inactivated Vibrio Harvey and inactivated Vibrio anguillaru, the amount of Hb synthesized from S.kagoshimensis, PO-like activities and the number of all hemocytes are all increased, The result indicated that the hemocytes and Hb play an important roles in Scapharca kagoshimensis’s immune responses.
     Under the infection of 1×107ind/mL Vibrio anguillaru, the amount of Hb synthesized from S.kagoshimensis increased about 19.78%, respectively and PO-like activities increased about5.29%, the number of all hemocytes reduced 37.71%. Under the infection of 1×108ind/mL Vibrio Harvey, the amount of Hb synthesized from S.kagoshimensis increased about 8.44%, respectively and PO-like activities increased about6.36%, the number of all hemocytes reduced 1.75%. Under the infection of 1×105ind/mL of Vibrio Harvey and Vibrio anguillaru, the amount of Hb synthesized from S.kagoshimensis reduced about 1.99% and 7.94%, respectively and PO-like activities reduced about1.15% and 5.59%, the number of all hemocytes reduced 35.63% and 16.67%. The result indicated that the infection results in reduction of the number of all hemocytes. Infection with high concentration pathogeny results in increase of the amount of Hb synthesized, PO-like activities and the number of all hemocytes. Otherwise, infection with low concentration pathogeny results in reduction of the amount of Hb synthesized, PO-like activities and the number of all hemocytes.
     Total RNA is isolated from the hemocytes of S.kagoshimensis and full-length cDNA sequence of HbI ,HbII-A and HbII-B has been obtained using reverse transcriptase(RT)-PCR and rapid amplification of cDNA end(RACE).The full-length cDNA of HbI from Scapharca kagoshimensis is 756 bp, encoding a 147-amino acid protein, the molecular weight is about 16.2 kDa, the identity with HbI from Scapharca inaequivalvis is 99.32%; HbII-A from Scapharca kagoshimensis is 755 bp, encoding a 150-amino acid protein, the molecular weight is about 16.5kDa, the identity with HbII-A from Scapharca inaequivalvis is 98.67%; HbII-B from Scapharca kagoshimensis is 745 bp, encoding a 152-amino acid protein, the molecular weight is about 16.7kDa, the identity with HbII-B from Scapharca inaequivalvis is 99.34%.
     In conclusion, the study of the PO-like activities of Hb from S. kagoshimensis has great significance in not only understanding the roles and mechanisms of Hb in invertebrate non-specific immune system, but also identification the molecular evolution status of Hb in the family of respiratory protein.
引文
陈昌福,陈萱,陈超然,梁运祥.β-葡聚糖的特性及其对动物免疫功能的调节[J].华中农业大学学报,2003,22(1):95~100.
    陈水土,苏国成.对虾弧菌制剂试制实验及其在长毛对虾养殖中的应用[J].海洋通报, 1997,16(2):25~31.
    樊廷俊,汪小锋.中国对虾酚氧化酶的分离纯化及其部分生物化化性质.生物化学与生物物理学报,2002,34(5):589~594.
    苟兴龙,车云霞,申泮文.蚯蚓血红蛋白及其研究进展[J].化学通报, 2000, 7:20.
    郭祖宝.动物体内呼吸色素的种类及其分布[J].生物学教学, 2006, 31(1):64.
    江晓路,刘树青,牟海津,王慧谧,管华诗.真菌多糖对中国对虾血清及淋巴细胞免疫活性的影响[J].动物学报,1999,20(1):41~45.
    李太武,等.皱纹盘鲍对河流弧菌Ⅱ苗免疫的研究[J].海洋与湖沼,1997,28:27~31.
    李天道,于佳.四种弧菌对中国对虾的致病性研究[J].海洋湖沼通报, 1998,1:57~64.
    李晓燕,孙塞,路军.血蓝蛋白模型化合物的合成和载氧性能[J].山东大学学报:自然科学版, 1994, 29 (2):96~99.
    刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究[J].海洋与湖沼,1998,29(2):113~118.
    刘志鸿,张士璀,杨爱国,杜方勇,周丽青,王清印.毛蚶血细胞的形态观察及吞噬性能研究.高技术通讯,2003,10:94~96.
    刘志鸿.海洋双壳贝类的免疫特性及调节:[博士学位论文].青岛:中国海洋大学,2004.
    吕宝忠,杨群.血蓝蛋白分子的结构、分类及其在进化上的演变[J].自然杂志,2003, 25(3):180~183.
    罗洪林,黄维义,张为宇.片形吸虫总RNA的提取及其L-rRNA的初步分析[J].中国畜牧兽医,2004,32(3):32.
    马英杰,刘珊珊,马爱军,等.软体动物的血红蛋白[J].海洋科学,1997,3:49~51.
    秦豪杰,武娜,张录顺,等.珠蛋白研究进展及其在法医学中的应用[J].中国法医学杂志, 2008, 23(4):250~252.
    孙秀珍,刘晗,霜天蛾. cDNA表达文库的构建和初步鉴定[J].西安交通大学学报,2005,26(3):244.
    汪小锋.中国对虾酚氧化酶的生物化学性质及几种免疫促进剂对中国对虾酚氧化酶和血细胞的影响:[硕士学位论文].青岛:中国海洋大学,2002.
    王晶.几种免疫促进剂对菲律宾蛤仔酚氧化酶产量和活性的以及血细胞数量和超微结构的影响:[硕士学位论文].青岛:中国海洋大学,2007.
    王雷,李光友,毛远兴.口服免疫药物后中国对虾某些血淋巴因子的测定及方法研究[J].海洋与湖沼,1995,26(1):34~42.
    王维,汪学龙,沈际佳,等.日本血吸虫蛋白质31/32 KDa基因扩增及克隆[J].疾病控制杂志,2004,4(4):302.
    魏玉西,郭道森,李丽,陈皓文.几种海产双壳贝类血淋巴中抗菌物质的诱导及其活性测定.海洋科学,2002,26(8):5~8.
    杨玲玲.日本虫寻(Charybdis japonica)血蓝蛋白纯化及其类酚氧化酶样生物化学性质的研究:[硕士学位论文].青岛:中国海洋大学,2005.
    叶孝经,王立平.中国对虾尾痉挛病的初步研究[J].海洋水产研究,1989(10):53~61.
    张洪渊,刘克武,姜云,等.圆背角无齿蚌碱性硫酸酶的功能基团研究.水生生物学报,1997,21(4):348~352.
    张明峰.动物血液的颜色[J].生物学通报, 2002, 37(4):28.
    张维翥,吴信忠,李登峰,等.栉孔扇贝血液细胞的免疫功能[J].动物学报,2005,51(4):669~677.
    章跃陵,陈俊,林伯坤,等.南美白对虾血蓝蛋白血细胞凝集活性初探[J].汕头大学学报(自然科学版), 2005, 20(3):48~53.
    章跃陵,林伯坤,陈俊,等.凡纳滨对虾血蓝蛋白的细菌凝集活性[J].中国水产科学, 2006, 13(6):l006~1011.
    章跃陵,林智建,李祖江,等.凡纳滨对虾血清中直接与病原菌相结合的主要蛋白的鉴定[J]. 水产学报, 2008, 21(1):27~29.
    章跃陵,罗芸,彭宣宪.血蓝蛋白功能研究新进展[J].海洋科学,2007,31(2):77~79.
    郑珂,陈秋实,李霞.仿刺参体壁总RNA提取方法的建立[J].生物技术通讯,2007,18(1):84~87.
    周永灿,潘金培.贝类细胞和体液的防御机制研究进展.水产学报,1997,21(4):449~454.
    Abdu I A. Oxygen therapeuties: can we tame hemoglobin? [J]. Nature, 2001, 414:305~308.
    Adachi K, Endo H, Watanabe T, et al. Hemocyanin in the exoskeleton of crustaceans: enzymatic properties and immunolocalization [J]. Pigment Cell Res, 2006, l8(2): 136~143.
    Adachi K, Hirata T, Nishioka T, et al. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme[J]. Comp Biochem Physiol, 2003, l34B: 135~141.
    Adachi K,Hirata T,Nagai K,et al. Hemocyanin: a most likely inducer of black spots in kuruma prawn Penaeus japonicus during storage. J Food Sci, 2001, 66: 1130~1136.
    Adema, C M., van der Knaap,W P W. Molluscan hemocyte-mediated cytotoxity: The role of reactive oxygen intermediates. Rev. Aquat. Sci, 1991, 4: 201~223.
    Alayash A I. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? [J]. Nat. Biotechnol, 1999, 17:545~549.
    Anderson, R S, Oliver, L M, Brubacher, L L. Superoxide anion generation by Crassostrea virginica hemocytes as measured by nitriblue tetrazolium reduction[J]. J. Invertebr. Pathol, 1992, 59: 303~307.
    Asada N. Reversible activation of prophenoloxidase with 2-propanol in Drosophila melanogaster[J]. J Exp Biol, 1998, 282: 28~31.
    Ashida M, Brey P T. Recent advances in research on the insect prophenoloxidase[J]. London: Chapman and Hall, 1997. 135~172.
    Ashida M. The prophenoloxidase cascade in insect immunity. Res Immunol, 1990, 141:908~910.
    Ashida, M, Dohke, K. Activation of pro-phenoloxidase by the activating enzyme of the silkworm, Bombyx mori. Insect Biochem, 1980, 10: 37~47.
    Ashida, M, Kinoshita, K, Brey, P T. Studies on prophenoloxidase activation in the mosquito Aedes aegypti L. Eur J Biochem, 1990, 188(3): 507~515.
    Ashida, M., Ohnishi, E. Activation of prophenoloxidase in hemolymph of the silkworm, Bombyx mori. Arch. Biochem. Biophys, 1967, 122: 411~416.
    Ashida, M., S?derh?l, K. The prophenoloxidase activating system in crayfiah. Comp. Biochem. Physiol, 1984, 77B: 21~26.
    Asokan, R., Arumugam, M., Mullainadhan, P. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Linnaeus. Dev Comp Immunol, 1997, 21(1): 1~12.
    Aspan A, Huang TS, Cerenius L, et al. cDNA cloning of prophenoloxidase from the fresh crayfish Pacifastacus leniusculus and its activation[J]. PNAS, 1995, 92(4): 939~943..
    Aspan, A., S?derh?ll, K. Purification of prophenoloxidase from crayfish blood cells and its activation by an endogenous serine proteinase. Insect Biochem, 1991, 21: 363~373.
    Barraco, M.A., Duvic, B., S?derh?ll, K. Theβ-1,3-glucan binding protein from the crayfish Pacifastacus leniusculus, when reached with aβ43 man, induces spreading and degranulation of crayfish granular cells. Cell Tissue Res, 1991, 266: 491~497.
    Barrett F M. Phenoloxidases from larval cuticle of the sheep blow.y, Lucilia cuprina: characterization, developmental changes, and inhibition by antiphenoloxidase antibodies. Arch Insect Biochem Physiol, 1987, 5: 99~118.
    Brookman J L, Ratcliffe, N A, Rowley, A F. Studies on the activation of the prophenoloxidasesystem of insects by bacterial cell wall components. Insect Biochem, 1989, 19: 47~57.
    Burmester T. Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol, 2001, 18: 184~195.
    Burmester T. Origin and evolution of arthropod hemocyanins and related proteins. J. Comp. Physio., 2002, 172(2): 95~107.
    Cammarata, M., Arizza,V., Parrinello,N., et al. Phenoloxidases-dependent cytotoxic mechanism in ascidian (Styela plicata) hemocytes active against erythrocytes and K562 tumor cells. Eur. J.Cell. Biol, 1997, 74: 302~307.
    Canesi L, Betti M, Ciacci C, et al, Signaling pathways involved in thephysiological response of mussel hemocytes to bacterial challenge: therole of stress2 activated P38 MAPK[J]. Dev Comp lmmunol, 2002, 26: 325~334.
    Chan P F, Foster S J. Role of SarA in virulence determination production and environmental signal transduction in Staphylococcus aureus[J]. J Bacteriol, 1998, 180:6232~6241.
    Cheney D P A. Summery of invertebrate leucyte morphology with emphasis on blood elements of the manila clam, Tapes semidecussarta[J]. Biol Bul, 1971, 140(3): 353~368.
    Cheng T C. Bivalves Invertebrate Blood Cells[M]. Academic Press: New York, 1981, 1: 233~330.
    Chiancone E, Vecchini P, Verzili D, et al. Dimeric and Tetrameric Hemoglobins from the mollusk Scapharca inaequivalvis: Structural and Functional Properties[J]. J Molecular Biology, 1981, 152:577~592.
    Cole J.A., Pipe R. K. Phenoloxidases activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis. Fish & Shellfish Immunnol, 1994, 4: 337~352.
    Coutte L, Slomianny M C, Malecha J, et al. Cloning and expression analysis of a cDNA that encodes a leech hemerythrin[J]. Biochim Biophys Acta. 2001, 1518(3): 282~286.
    Datta S, Machaal A, Thekkudan J, et al. Inhaled nitric oxide as rescue therapy for right ventricular insufficiency after orthotopic heart transplantation[J]. Heart and Lung Transplantation, 2004, 23(2):158.
    Decker H, Jaenicke E. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins [J]. Dev Comp Immunol, 2004, 28(7-8): 673~687.
    Decker H, Rimke T. Tarantula hemocyanin shows phenoloxidase activity[J]. J Biol Chem, 1998, 273: 25889~25892.
    Decker H, Ryan M, Jaenieke E, et a1. SDS induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister[J]. J Blo Chem, 2001, 276: 17796~17799.
    Decker H, Terwilliger N B. Cops and robbers:putalive evolution of copper oxygen-binding proteins[J]. J Exp Blol, 2000, 203:1777~1782.
    Decker H, Tuczek F. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci, 2000, 25: 392~397.
    Decker H,Rimke T. Tarantula hemocyanin shows phenoloxidase activity[J]. J Biol Chem, 1998, 273:25889~25892.
    Deloffre L, Salzet B, Vieau D, et al. Antibacterial properties of hemerythrin of the sand worm Nereis diversicolor[J]. Neuro Endocrinol Lett, 2003, 24(1-2): 39~45.
    Destoumieux D, Saulner D, Ccdrnier J, et al. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge[J]. J Biol Chem, 2001, 276: 47070~47077.
    Dohke, K. Studies on phenoloxidase–activiting enzyme from cuticle of the silkworm Bombyx mori. 2. Purification and characterization of the enzyme. Arch. Biochem. Biophys, 1973, 157: 210~221.
    Dularay, B., Lackie, A. M. Hemocytic encapsulation and the prophenoloxidase-activation pathway in the locust Schistocerca gragria Forsk. Insect Biochem, 1985, 15: 827~834.
    Durstewitz G, Terwilliger N. cDNA cloning of a developmentally regulated hemocyanin subunit in the crustacean Cancer magister and phylogenetic analysis of the hemocyanin gene family. Mol Biol Evol, 1997, 14: 266~276.
    Fan T J, Zhang Y N, Yang L L, et al. Identification and characterization of a hemocyanin-derived phenoloxidase from the crab Charybdis japonica[J]. Comp Biochem Physiol B Biochem Mol Biol, 2009, 152(2):144~149.
    Fang F C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies[J]. Nat. Rev. Microbiol, 2004, 2:820~832.
    Fisher,C.W., Brady,U.E. Activation, properties and collection of haemolymph phenoloxidase of the American cockroach, Periplaneta Americana. Comp. Biochem. Physiol, 1983, 75C: 111~114.
    Fujimoto K, Okino N, Kawabata S, et al. Nucleotide sequence of the cDNA encoding the proenzyme of phenlolxidase A of Drosophila nelanogaster[J]. PNAS, 1995, 92: 7769~7773.
    Glinski, Z., Jarosz, J. Molluscan immune defenses. Arch Immunol Ther Exp, 1997, 45(2-3): 149~155.
    Gollas-Galván, T., Hernandez-Lopez, J., Vargas-Albores, F. Prophenoloxidase from brown shrimp (Penaeus californiensis) hemocytes. Comp Biochem Physiol Part B, 1999, 122(1): 77~82.
    Gregorio,E.D., Spellman,P.T., Rubin, G.M. Genome widen analysis of the drosophila immune response by using oligonucleotide microarrays. PNAS, 2001, 98(22): 12590~12595.
    Groppe JC. Morse DE. Isolation of full-length RNA templates for reverse transcription from tissues rich in RNase and proteoglycans[J]. Anal Biochem, 1993, 210: 337.
    Hall, J.L., Rowlands, D.T. Heterogeneity of lobster agglutinins: II Specifity of agglutin - erychrocyte binding. Biochem, 1974, 13(4): 828~832.
    Heck L W. Degradation of IgA proteins by Pseudomonas aeruginosa elastase[J]. J Immunol, 1990, 144: 2253~2257.
    Hillyer, J.F., Christensen, B.M. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochem Cell Biol, 2002, 117(5): 431~440.
    Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. Phylogenetic perspectives in innate immunity. Sci, 1999, 284(5418): 1313~1318.
    Itami T, Takahashi, tsnchihira E, et al. Enhancemnet of disease resistance of kuruma prawn Penaeus japonicus and increase in phagocytic activity of prawn hemocytes after oral administration ofβ- 1, 3-glucan Schizophyllan [A]. The Third Asian Fisheries Forum. Asian Fisheries Society[C]. Manila, Philippenes, 1994. 375~378.
    Iwama, R., Ashida, M. Biosynthesis of the prophenoloxidase in the hemocytes of larval hemolymph of the silkworm Bombyx mori. Insect Biochem, 1986, 16: 547~555.
    Iwanaga, S., Kawabata, S. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front Biosci, 1998, 3: 973~984.
    Jaenicke E, Decker H. Conversion of crustacean hemocyanin to catecholoxidase. Micron, 2004, 35L: 89~90.
    Jaenicke E, Foll R, Decker H. Spider hemocyanin binds ecdysone and 20-OH-ecdysone[J]. J Biol Chem, 1999, 274(26):34267~34271.
    Jiang H, Wang Y, Kanost M R. Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: A bacteria-inducible protein similar to Drosophila easter. PNAS, 1998, 95(21): 12220~12225.
    Jiang N, Tan N S, Ho B, et al. Respiratory protein-generated reactive oxygen species as an antimicrobial strategy [J]. Nat Immunol, 2007, 8(10): 1114~1122.
    Kawano T, Pinontoan R, Hosoya H, et al. Monoamine-dependent production of reactive oxygen species catalyzed by pseudoperoxidase activity of human hemoglobin[J]. Biosci Biotechnol Biochem, 2002, 66(6):1224~1232.
    Klotz I M, Klippenstein G L, Hendrickson W A. Hemerythrin: alternative oxygen carrier[J]. Science. 1976, 192(4237): 335~344.
    Kong K H, Hong M P, Choi S S, Kim Y T. Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum. Biotechnology and Applied Biochemistry. 2000, 31: 113~118.
    Lanz, H., Hermandez, S., Garrido-Guerrero, E., et al. Prophenoloxidase system activation in the crayfish Procambarus clarki. Dev. Comp. Immunol, 1993, 17: 399~406.
    Latchford J. W., Prayitno S.B., Alabi A. The use of vaccines in the culture of penaeid [J]. J.shellfish Res, 1996, 15(2): 456.
    Lee S Y, Lee B L, Sêderhall K. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus[J]. J Biol Chem, 2003, 278:7927~7933.
    Lee S, Kwon T, Hyun J, et al. In vitro activation of prophenoloxidase by two kinds of prophenoloxidase-activating factors isolated from hemolymph of coleopteran, Holotrichia diomphalia larvae. Eur J Biochem, 1998, 254: 50~57.
    Liu C.T., Hou R. F., Ashida M., et al. Effects of inhibitors of serine protease, phenoloxidase and dopa decarboxylase on the melanization of Dirofilaria immitis microfilariae with Armigeres subalbatus haemolymph in vitro. Parasitology, 1997, 115: 57~68.
    Lloyd C R. Local application of sodium thiosulfate prevents cisplatin-induced hearing loss in the guinea pig[J]. J Inorg Biochem, 2001, 81(4): 293~300.
    lwanaga S. The molecular basis of innate immunity in the horseshoe crab[J]. Curr. Opin. Immunol, 2002, 14:87~95.
    Mangum C P. Major events in the evolution of the oxygen carriers[J]. Am Zool, 1998, 38:1~13.
    Mangum C P. Oxygen transport in invertebrates[J]. Am J Physiol, 1985, 248(5):505~514.
    Mangum C P. Respiratory function of the red blood cell hemoglobins of six animal phyla[J]. Adv Comp Environ Physiol, 1992, 13:117~149.
    Maria J C. Haemolymph cell types of the mussel Mytilus gallop rovincialis[J]. Disease of aquatic organims, 1997, 29: 127~135.
    Moore C A. Cytochemical aspects of Mercenaria mercenaria hemocytes[J]. Biol Bull, 1972, 152: 105~119.
    Morioka C, Tachi Y, Suzuki S, et al. Signifcant enhancement of monoxygenase activity of oxygen carrier protein hemocyanin by urea[J]. J Am ChemSoc, 2006, 128: 6788~6789.
    Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense[J]. J Biol Chem, 2000, 275: 29264~29267.
    Nagai T, Osaki T, Kawabata S. Functional conversion of henxyanin to phenoloxidase by horseshoe crab antimicrobial peptides[J]. J Biol Chem, 2001, 276: 27166~27170.
    Na?¨ma Nedjar-Arroume, Ve′ronique Dubois-Delval, Estelle Yaba Adje, et al. Bovine hemoglobin: An attractive source of antibacterial peptides[J]. Peptides, 2008(29): 969~977.
    Negri A, Tedeschi G, Bonomi F, et al. Amino-acid sequences of the alpha- and beta-subunits of hemerythrin from Lingula reevii[J]. Biochim Biophys Acta. 1994, 1208(2): 277~285.
    Ohinishi, E., Dohke, K., Ashida, M. Activation of prephenoloxidase. 2. Activation by α-chymotrypsin. Arch. Biochem. Biophys, 1970, 139: 143~148.
    Pascual C,Gaxiola G,Rosas C. Blood metabolites and hemocyanin of the white shrimp: Litopenaeus vannamei:the effect of culture condition and comparison with other crustacean species[J]. Mar Biol, 2003, 142:735~745.
    Paul R J, Pirow R. The physiological significance of respiratory proteins in invertebrates[J]. Zoology, 1998, 100: 319~327.
    Pleas D, Aguilar M, Falcon A, et a1. Latent phenoloxidase activity and N-terminal amino acid sequence of hemoeyanin from Bathynomus giganteus, a primitive crustacean[J]. Arch Bloehem Blophys, 2003, 409: 402~410.
    Ratcliffe N. A., Leonard, C., Rowley, A. F. Prophenoloxidase activation: nonself recgnition and cell cooperation in insect immunity. Science, 1984, 226: 557~559.
    Roserberger C M, Finlay B B. Phagocyte sabotage: disruption ofmacrophage signalling by bacterial pathogens [ J ]. Mol Cell Biol, 2003, 4: 385~396.
    Ruddell C L. Elucidarion of the nature and function of the granular oyster amebocytes through histochemical studies of normal and traumatized oyster tissues[J]. Histochmie, 1971, 26: 98~112.
    Salvato B, Santamaria M, Beltramini M, et al. The enzymatic properties of Octopus vulgaris hemocyanin: odiphenol oxidase activity. Biochemistry, 1998, 37: 14065~14077.
    Satake K, Yugi M, Kamo M, et al. Hemerythrin from Lingula unguis consists of two different subunits, alpha and beta[J]. Protein Seq Data Anal. 1990, 3(1): 1~5.
    Satoh D, Horii A, Ochiai M, Ashida M. Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori: Purification, characterization, and cDNA cloning. J Biol Chem, 1999, 274(11): 7441~7453.
    Savan R, Endo M, Sakai M. Characterization of a new Ctype lectin from common carp, cyprinus carpio[J]. Mol Immunol, 2004, 41(9): 891~899.
    Seljelid R., Rasmussen, L. T., Larm, O., Hoffman, J. Protective effect ofβ-1,3-D-glucan derivatized plastic beads against Escherichia coli infection in mice. Scandinavian J Immunol, 1987, 25: 55~60.
    Shiao S. H., Higgs, S., Adelman, Z., et al. Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol Biol, 2001, 10(4): 315~321.
    Siddiqui N I, Preaux G, Gielens C. Intrinsic and induced odiphenoloxidase activity ofβ-hemocyanin of Helix pomatia[J]. Micron, 2004, 35:91~92.
    Skaar E P, Humayun M, Bae T, et al. Iron-source preference of Staphylococcus aureus infections[J]. Science, 2004, 305(5690):1626~1628.
    Smith V. J. & S?derh?l, K.β-1,3-glucan activation of crustacean haemocytes in vitro and in vivo. Biol. Bull, 1983, 164: 299~314.
    S?derh?l K., Hall, L. Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochem. Biophys. Acta, 1984, 797: 99~104.
    S?derh?ll K, Cerenius L, Johansson MW. The prophenoloxidase activating system in invertebrates. In: S?derh?ll K, Iwanaga S, Vasata GR, editors. New directions in invertebrates immunology. Fair Heaven, New Jersey: SOS Publications, 1996. 229~254.
    S?derh?ll K. Biochemical and molecular aspects of cellular communication in arthropods. Boll. Zool, 1992, 59: 141~151.
    S?derh?ll K. Prophenoloxidase activating system and melanization-a review. Dev. Comp. Immunol, 1982, 6: 601~611.
    Solomon E, Sundaram U, Machonkin T. Multicopper oxidases and oxygenases. Chem Rev, 1996, 96: 2563~2605.
    Sugumaran M, Kanost M. Regulation of insect hemolymph phenoloxidases. In: Beckage N,Thompson S, Frederick B, editors. Parasites and pathogens. San Diego: Academic Press, 1993. 317~342.
    Sung H H, Chang H J, Her C H, et al. Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosenbergii[J]. J Invertebr Pathol, 1998, 71(1): 26~33.
    Terwilliger N B, Terwilliger R C. Oxygen binding domains of a clam (Cardita borealis) extracellular hemoglobin[J]. Biochim Biophys Acta, 1978, 537:77~85.
    Terwilliger N B. Molecular structure of the extracellular heme proteins[J]. Adv Comp Environ Physiol, 1992, 13:193~229.
    Terwilliger N B. Function adaptations of oxygen-transport proteins [J]. J Exp Biol, 1998, 201: 1085~1098.
    Terwilliger R C, Terwilliger N B. Molluscan hemoglobins[J]. Comp Biochem Physiol B Biochem, 1985, 81: 255~261.
    Uchida T, Yano H, Satake K, et al. The amino acid sequence of hemerythrin from Siphonosoma cumanense[J]. Protein Seq Data Anal, 1990, 3(2): 141~147.
    Van Gelder C, Flurkey W, Wichers H. Sequence and structural features of plant and fungal tyrosinase. Phytochemistry, 1997, 45: 1309~1323.
    Van Holde K, Miller K. Hemocyanins. In: Anfinsen CB,Edsall JT, Eisenberg DS, Richards FM,editors. Advances in Protein Chemistry. New York: Academic Press Inc, 1995, 47: 1~81.
    Van Holde K, Miller K, Decker H. Hemocyanins and invertebrate evolution. J Biol Chem, 2001, 276: 15563~15566.
    Wang R, Lee S, Cerenius L, S?derh?ll K. Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. Eur J Biochem, 2001, 268: 895~902.
    Ward K B, Hendrickson W A, Klippenstein G L. Quaternary and tertiary structure of haemerythrin[J]. Nature, 1975, 257(5529): 818~821.
    Wentworth A D, Jones L H, Wentworth P, et al. Antibodies have the intrinsic capacity to destroy antigens[J]. PNAS, 2000, 97:10930~10935.
    Wretlind B. Pavlovskis O R. Pseudomonas aeruginosa elastase and its role in pseudomonas infections[J]. Rev Infect Dis, 1983, 5:998~1004.
    Yamaura, L., Yonekura, M., Katsura, Y. Purification and some physioco-chemical properties of phenoloxidase from the larvae of housefly. Agr. Biol, 1980, 44: 55~59.
    York J L, Bearden A J. Active site of hemerythrin. Iron electronic states and the binding of oxygen[J]. Biochemistry, 1970, 9(23): 4549~4554.
    Zenteno R, Vazquez L, Sierra C, et al. Chemical characterization of the lectin from the freshwater prawn Macrobrachium rosenbergii(De Man)by MALDI-TOF[J]. Comp Biochem Physiol, 2000, 127:243~250.
    Zhang X B, Huang C H, Qin Q W. Antiviral properties of hemocyanin isolated from Penaeus monodon [J]. Antiviral Res, 2004, 61:93~99.
    Zhang Y L, Wang S Y, Xu A L, et al. Affinity proteomic approach for identification of an IgA-like protein in Litopenaeusvannamei and study on its agglutination characterization[J]. J Proteome Res, 2006, 5(4): 815~821.
    Zlateva T, Di Muro P, Salvato B, Beltramini M. The odiphenol oxidase activity of arthropod hemocyanin[J]. FEBS Lett., 1996, 384: 251~254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700