用户名: 密码: 验证码:
QoS与负载均衡路由及相关技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
QoS路由是网络QoS控制技术的一个关键技术,它的基本任务是为一次连接寻找一条有足够资源、能满足QoS要求的可行路径。随着各种业务量的增加,网络拥塞现象日益严重,负载均衡的目的就是实现网络资源的优化使用,提高网络资源的利用率。基于负载均衡的路由算法可以使网络中的不同链路、路由器和交换机之间平衡业务负荷,更好地避免部分资源被过度使用而另外一部分为未充分利用。随着无线宽带网络技术的快速发展,频谱资源愈显“匮乏”,能够提供“伺机接入”的认知无线电技术开始被重视,这也给路由算法带来了新的挑战。论文主要研究了不同网络模型下的QoS路由与负载均衡路由算法及相关技术。
     时延约束下的最小费用路径问题是一个典型的QoS路由问题,论文提出了一种基于拉格朗日松弛法的路由算法,通过将链路费用参数吸收到延时参数中,同时在迭代过程中结合延时约束条件,可以在多项式时间内找到一个最优或较优解,并对该算法进行了分析和仿真,证明了算法的正确性。
     蚁群算法属于仿生学算法,被大量应用于求解NP完全问题。论文针对实际网络的特点,提出了并行迭代方式的蚁群优化算法,并通过仿真说明了该算法在性能上与采用串行迭代方式的算法持平但在实际消耗的时间上远小于串行方式。
     如何根据带宽请求合理建立LSP,提高网络资源的利用率,是MPLS的重要研究方向。论文在分析最大流算法的基础上,提出了MCRA算法,在选择路径时,算法同时考虑到了最大流零流边对最大流的影响以及MPLS网络中各出口-入口对之间带宽资源的竞争。仿真结果表明,与参与测试的算法相比,最小竞争路由算法能够接受更多的路由请求。
     针对支持多速率传输的无线Mesh网络,以博弈论中的循环囚徒困境的“针锋相对”战略为启发,论文提出了节点间亲密度的概念,并以此为因子激励节点间的合作。节点是否对RREQ分组进行转发取决于是否符合自身利益,它们的决策影响到相关节点间的亲密度。最后通过仿真证明了该方法能够有效地改善网络性能。
     在认知无线电Mesh网络中,由于此用户采用“伺机接入”方式与主用户共享信道,因此给定数据传输需求和有限频谱资源限制的条件下,为了能够在最短时间内完成用户的数据传输需求,必须将路由、调度和频谱分配联合考虑。频谱分配算法是认知无线电网络中路由算法的关键技术之一,为此提出了基于图论的分配算法,算法的目的有两个,一个是最大化分配的信道带宽,另一个是最大化同时活动的用户数。算法结合了染色模型和二分图匹配模型的优点,仿真结果表明算法改善了CR网络的性能。
QoS Routing is an important technology of QoS control system. To find a feasible path that has sufficient resource and can meet the requirements of QoS constraints is a basic task of QoS Routing. With the rapid growth of various traffics, especially the multimedia traffic, the congestion of internet becomes more and more serious. Load balancing is one of solutions that proposed to solve the congestion problem. Load balancing aims to optimize resource of network and improve the efficiency of utilization of resource. Load balancing routing algorithms make the traffic load of links, routers and switches in network smoother. It can avoid that a part of resource of network be overused while others not be used efficiently. With the development of technology of wireless networks, spectrums become more and more lack. Therefore, cognitive radio (CR), a wireless network with opportunity access, aroused interesting of many researchers. But it brings a different difficult problem to the routing algorithm research. This paper focus on QoS Route, load balancing route and relative technology.
     DCLC (Delay Constrainted Least Cost) problem is a famouse problem of QoS Route. A novel approach based on Lagrangian relaxation was proposed. In this approach, the cost parameter of links is absorbed into delay parameter and taked the delay parameter into account whiles each iteration process. This approach can find a feasible path during non-polynomial. Simluations and analysis proved the correctness of porposed algorithm.
     Ant Colony Algorithms are one of bionics algorithms and are used for solving the non-polynomial completed problems usually. According to the characteristic of network, a new ant colony algorithm was proposed. The new algorithm adopts parallel iteration mode while a new routing request arrival. Simulations show that the proposed algorithm with parallel iteration mode has the same performance with the algorithms adopted the serial iteration mode but spend less time.
     It is very important for MPLS networks to build a LSP (Label Switched Path) reasonably. Bandwidth is a key constrained parameter of LSP request usually. How to choose a reasonable path which can both satisfy the request of bandwidth and improve the utilization of resource of MPLS networks is a difficult problem. Based on the maximal flow algorithm, a novel algorithm, named MCRA, was proposed. While finding path, MCRA considers not only the influence of maximal-flow-zero-edge, but also the competition of bandwidth between every ingress-egress pairs. Simulations show that, comparing with other algorithms, MCRA can accept more LSP request for it can balancing the load more efficiently.
     Recently, more and more wireless networks begin to support multi-rate transmission. It makes the routing problem of wireless mesh network (WMN) more and more complex. In this paper, a novel routing algorithm for multi-rate wireless mesh network is presented. It aims to achieve load balance and support multi-rate effectively. Alternating prisoner’s dilemma is a famous problem in game theory. Tit for tat (TFT) strategy is the best solution of this dilemma. Inspired with TFT, a new conception, named consanguinity, is been proposed by this new algorithm. This conception is used to inspirit nodes of network to cooperate with each other. The users with higher consanguinity will glad to forward RREQ packet. Simulation result shows that the proposed approach can improve the performance of WMN effectively.
     In CR mesh network, the secondary users (SUs) share the spectrum with primary users (PUs) by opportunity access mode. The SUs must quit the using spectrum as soon as PUs appear in this spectrum. It means that must transmit its data as soon as possible. So, in CR mesh network, routing algorithms should take the spectrum allocation problem into account. The spectrum allocation algorithms are one of important domain of routing algorithms research in CR mesh network. This paper proposed a new approach, which is based on graph-theory and aims at two objectives: one is the sum of the allocated channel bandwidth is maximum, and the other is the number of users can be active simultaneity is maximum. The simulations show that the presented algorithm can improve the performance of spectrum allocation of CR mesh network.
引文
[1] R. Braden, D. Clark, S. Shenker. Integrated Services in the Internet Architecture: an Overview. RFC 1633. 1994.
    [2] J. Wroclawski. Specification of the Controlled-Load Network Element Service. RFC 2211. 1997.
    [3] S. Shenker, C. Partridge, R. Guerin. Specification of Guaranteed Quality of Service. RFC 2212. 1997.
    [4] S. Shenker, J. Wroclawski. General Characterization Parameters for Integrated Service Network Elements. RFC 2215. 1997.
    [5] S. Shenker, J. Wroclawski. Network Element Service Specification Template. RFC 2216. 1997.
    [6] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin. Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification. RFC 2205. 1997.
    [7] K. Nichols, V. Jacobson, L. Zhang. A Two-bit Differentiated Services Architecture for the Internet. RFC 2638. 1999.
    [8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. An Architecture for Differentiated Services. RFC 2475. 1998.
    [9] K. Nichols, S. Blake, F. Baker, D. Black. Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474. 1998.
    [10] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, J. McManus. Requirements for Traffic Engineering Over MPLS. RFC 2702. 1999.
    [11] Garey M.S., Johnson D.S.. Computers and intractability: a guide to the theory of NP-completeness. Oxford: Freeman, W.H., 1979.
    [12] Hao, F., Zegura, E.W. On scalable QoS routing: performance evaluation of topology aggregation. IEEE INFOCOM 2000. 2000: 147~156.
    [13] Shaikh, A., Rexford, J., Shin, K.G. Evaluating the impact of stale link state on quality-of-service routing. IEEE/ACM Transactions on Networking, 2001, 9(2): 162~176.
    [14] Apostolopoulos, G., Guerin, R., Kamat, S. Implementation and performance measurements of QoS routing extensions to OSPF. IEEE INFOCOM’99. New York, 1999: 680~688.
    [15] Orda, A., Sprintson, A. QoS routing: the precomputation perspective. IEEE INFOCOM 2000. 2000: 128~136.
    [16] Sobrinho, J.L. Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet.IEEE INFOCOM 2001. 2001: 727~735.
    [17] G. Malkin. RIP Version 2. RFC2453. 1998.
    [18] J. Moy. OSPF Version 2. RFC2328. 1998.
    [19] R. Callon. Use of OSI IS-IS for Routing in TCP/IP and Dual Environments. RFC1195. 1990.
    [20] E. Rosen, A. Viswanathan, R. Callon. Multiprotocol Label Switching Architecture. RFC3031. 2001.
    [21] L. Andersson, P. Doolan, N. Feldman, A. Fredette, B. Thomas. LDP Specification. RFC3036. 2001.
    [22] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, T. Przygienda. QoS Routing Mechanisms and OSPF Extensions. RFC2676. 1999.
    [23] Wang, Z., Crowcroft, J. QoS routing for supporting resource reservation. IEEE Journal on Selected Areas in Communications, 1996, 14(7): 1228~1234.
    [24] Kar K, Kodialam M, Lakshman T.V. Minimum interference routing of bandwidth guaranteed tunnels with MPLS traffic engineering applications. IEEE Journal on Selected Areas in Communications, 2000, 18(12): 2566-2579.
    [25] Figueiredo G.B, da Fonseca N.L.S., Monteiro J.A.S. A Minimum Interference Routing Algorithm. IEEE International Conference on Communications, Paris, France, June 20-24, 2004, 4, 1942-1947.
    [26]郑志梅,崔勇. MPLS流量工程最小冲突路径算法.计算机学报, 2007, 30(6): 934-944.
    [27] Retvari G., Biro J.J., Ciinkler T., Henk, T. A precomputation scheme for minimum interference routing: the least-critical-path-first algorithm. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, USA, March 13-17, 2005, 1, 260-268.
    [28]唐治果,李乐民,虞红芳.针对MPLS网络流量工程的链路关键性路由算法.电子与信息学报, 2007, 29(5): 1187-1190.
    [29] Zhu Mingying, Ye Wu, Feng Suili. A New Dynamic Routing Algorithm Based on Minimum Interference in MPLS Networks. 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, Oct. 12, 2008, 1-4.
    [30] Calle E., Urra, A., Marzo, J.L., Geng-Sheng Kuo, Hai-Bo Guo. Minimum interference routing with fast protection. IEEE Communications Magazine, 2006, 44(10): 104-111.
    [31]蒋国明,魏仰苏,孟兆航. MPLS的基于最小干涉的负载均衡算法研究.计算机工程与设计, 2007, 28(2): 371-372.
    [32] Colorni A.,Dorigo M.,Maniezzo V.,et al. Distributed optimization by ant colonies. Proceedings of the 1st European Conference on Artificial Life. 1991,134-142.
    [33] Dorigo M. Optimization,learning and natural algorithms. Ph. D. Thesis,Department of Electronics,Politecnico diMilano,Italy. 1992.
    [34] Holland J. H. Adaptation in Natural and Artificial Systems. MIT Press, 1975.
    [35] Goldberg D. E. Genetic Algorithm in Search, Optimization, and Machine Learning. Reading, MA, Addison-Wisely, 1989.
    [36] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Second, Extended Edition, 1994.
    [37]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式—鱼群算法.系统工程理论与实践. 2002, 32(7): 32-38.
    [38]陆俊,祁兵.多蚁群算法的网络负载动态均衡方法.计算机应用, 2008, 28(3): 572-574.
    [39]夏鸿斌,须文波,刘渊.负载平衡路由:一种新的ACO路由策略.计算机应用研究. 2009, 26(7): 2504-2507.
    [40][114]肖晓丽,田悦宏,李振.一种基于蚂蚁算法的网络负载分担路由方法.计算机应用. 2006, 26(7): 1697-1699.
    [41] Bing Qi, Chunhui Zhao. Ant Algorithm Based Load Balancing for Network Sessions. ICNC, 2007: 771-775.
    [42] Kwang Mong Sim, Weng Hong Sun. Ant Colony Optimization for Routing and Load-Balancing: Survey and New Directions. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2003, 33(5): 560-572.
    [43]冯春燕,张晨,丁炜.基于网络拥塞与流量特征的遗传算法实现MPLS流量优化.北京邮电大学学报, 2005, 28(4): 78-82.
    [44]黄双明,蒙军,索忠乐,戴浩.基于遗传算法的MPLS网络流量工程研究.计算机工程与应用. 2005, 31: 148-150.
    [45]曾志民,张晨,冯春燕,丁炜.基于遗传算法实现并行路径的自适应流量工程.计算机应用, 2005, 25(10): 2247-2249.
    [46]凌永发,徐宗本.一种均衡网络流量的遗传算法.计算机工程. 2007, 33(7): 1-3.
    [47] Sun Wook Kim, Hee Yong Youn, Sung Jin Choi, Nag Bum Sung. GAPS: The Genetic Algorithm-based Path Selection Scheme for MPLS Network. IRI, 2007: 570-575.
    [48] El-Alfy, E.-S.M. MPLS Network Topology Design Using Genetic Algorithms. IEEE International Conference on Computer Systems and Applications, 2006: 1059-1065.
    [49]王卫亚,王凤琳.多约束条件下路由选择算法研究.计算机应用, 20007, 27(10):2395-2397.
    [50] Xiaojuan Shan, Mingyan Jiang, Jingpeng Li. The Routing Optimization Based on Improved ArtificialFish Swarm Algorithm. WCICA, 2006: 3658– 3662.
    [51] Xing Jin, Lin Bai, Yuefeng Ji, Yongmei Sun. Probability Convergence based Particle Swarm Optimization for Multiple Constrained QoS Multicast Routing. SKG’08. 2008: 412-415.
    [52] Li Taoshen, Xiong Qin, Ge Zhihui. Genetic and particle swarm hybrid QoS anycast routing algorithm. ICIS, 2009: 313-317.
    [53] Gang Liu, K. G. Ramakrishnan. A*Prune: An Algorithm for Finding K Shortest Paths Subject to Multiple Constraints. INFOCOM. 2001, 2: 743-749.
    [54] Liang Guo, Matta, I. Search Space Reduction in QoS Routing. 19th IEEE International conference on Distributed Computing Systems. 1999: 142-149.
    [55] Smita Rai, Omkar Deshpande, et al. Reliable Multipath Provisioning for High-Capacity Backbone Mesh Networks. IEEE/ACM TRANSACTIONS ON NETWORKING. 2007, 15(4): 803-812.
    [56] A. Juttner, B. Szviatovszki, Mecs l. Rajko Z. Lagrange relaxation based method for the QoS routing problem. IEEE INFOCOM 2001, Alaska, USA, 2001, 2: 859-868.
    [57] H. De Neve, P. Van Mieghem. TAMCRA: A Tunable Accuracy Multiple Constraints Routing Algorithm. Computer Communications, 2000, 23: 667–679.
    [58] P. Van Mieghem, F. A. Kuipers. Concepts of Exact Quality of Service Algorithms. IEEE/ACM Trans. Net., 2004.
    [59] Hong Man, Yang Li, Xinhua Zhuang. Analysis of a Multi-Stream QoS Game for Multi-Path Routing[C]. IEEE International Conference on Multimedia and Expo, USTC, Hefei, China, 2007, 7: 1083-1086.
    [60] KOKSAL C E, BALAKR ISHNAN H. Quality-aware routing metrics for time-varying wireless mesh networks. IEEE Journal on Selected Areas in Communications, 2006, 24(11) : 1984-1994.
    [61] http://gridcom.tropos.com/landing_index.php.
    [62] LiangMa, Mieso K. Denko. A Routing Metric for Load-Balancing in Wireless Mesh Networks. Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops, May 21- 23, 2007, Washington, DC,USA, 2007:409- 414.
    [63] Chen Dajun, Wang Chao, Lin Qiang. Ant-based trusted routing algorithm for wireless mesh networks. Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, 2009 (PrimeAsia). 2009 : 53– 56。
    [64] Bokhari, F., Zaruba, G. AMIRA: Interference-Aware Routing Using Ant Colony Optimization in Wireless Mesh Networks. WCNC, 2009: 1– 6.
    [65] Zhang Hui, Dong Yu-ning, Yang Long-xiang, Zhu Hong-bo. A novel ant colony based cross-layer QoSrouting algorithm for wireless mesh networks. ICCT, 2008: 66– 68.
    [66] Chen Yuan, Agarwal, A. Ants-in-Mesh routing protocol for Wireless Mesh Network. ICON, 2008: 1– 6.
    [67] Daru Pan, Bingbing Xing. An ant routing algorithm for wireless mesh network. WCICA, 2008: 4595– 4599.
    [68] Umlauft, M. A concept for ant-routing with colored pheromones in wireless mesh networks. Intelligent Systems 2008, 2008: 10-60 - 10-64.
    [69] Zhu Li, Li Zhishu, Cheng Yanhong, Xing Jianchuan. An Ants Intelligent Routing Protocol for Wireless Mesh Network. WiCom, 2007: 1668-1671.
    [70]柯宗武,李腊元,陈年生.基于遗传算法的无线网状网QoS路由算法.计算机应用研究, 2007, 24(11): 941-942.
    [71]胡友强,符云清.一种基于链路状态组合度量的无线网状网路由协议.计算机科学, 2008, 35(12): 58-61.
    [72]宋文,方旭明.无线Mesh网络公平感知路由算法设计与仿真.系统仿真学报, 2007, 19(18): 4320-4325.
    [73] J.So, N.H.Vaidya. A Routing Protocol for Utilizing Multiple Channels in Multi-hop Wireless Networks with a Single Transceiver. UIUC Technical Report, http://www.crhc.uiuc.edu/wireless/papers/multichannel_routing.pdf. 2004.
    [74] R Draves, J Padhye, B Zill. Routing in multi-radio, multi-hop wireless mesh networks. ACM Annual International Conference on Mobile Computing and Networking (MOBICOM) ,2004:114~128.
    [75] So J. , Vaidya N. A Multi-channel MAC Protocol for Ad Hoc Wireless Networks. Dept. of electrical and Computer Engineering, 2003 (1) : 254 - 257.
    [76] Hejiao Huang, Yun Peng, Jing Li. Joint Routing and Channel Assignment in WMN Using Extended Petri Net. The 28th International Conference on Distributed Computing Systems Workshops, 2008: 108-113.
    [77] A. P. Subramanian, H. Gupta, S. R. Das. Minimum interference channel assignment in multi-radio wireless mesh networks, SECON, June 2007: 481–490.
    [78] K. N. Ramachandran, E. M. Belding, K. C. Almeroth, M. M. Buddhikot. Interference-aware channel assignment in multi-radio wireless mesh networks. INFOCOM, April 2006: 1–12.
    [79] C.-C. Hsu, P. Liu, D.-W. Wang, J.-J. Wu. Generalized edge coloring for channel assignment in wireless networks. International Conference on Parallel Processing, 2006: 82–92.
    [80] Jianjun Yang, Zongming Fei. Bipartite Graph Based Dynamic Spectrum Allocation for Wireless Mesh Networks. ICDCS’08, June 2008: 96-101.
    [81] Chengshi Zhao, Mingrui Zou, Bin Shen, Bumjung Kim, Kyungsup Kwak. Cooperative Spectrum Allocation in Centralized Cognitive Networks Using Bipartite Matching. IEEE GLOCOM 2008, Nov. 2008: 1-6.
    [82] Swami S, Ghosh C, Dhekne R.P., Agrawal D.P. and Berman K.A.. Graph Theoretic Approach to QoS-Guaranteed Spectrum Allocation in Cognitive Radio Networks. IPCCC 2008, Dec. 2008: 354-359.
    [83] FCC, Spectrum Policy Task Force Report, ET Docket No.02-155, Nov. 02, 2002, 3-4.
    [84] Jianjun Yang, Zongming Fei. Bipartite Graph Based Dynamic Spectrum Allocation for Wireless Mesh Networks. 28th International Conference on Distributed Computing Systems Workshops (ICDCS '08). 2008: 96– 101.
    [85] Chengshi Zhao, Mingrui Zou, Bin Shen, Bumjung Kim, Kyungsup Kwak. Cooperative Spectrum Allocation in Centralized Cognitive Networks Using Bipartite Matching. IEEE Global Telecommunications Conference (IEEE GLOBECOM 2008). 2008: 1– 6.
    [86] Swami, S., Ghosh, C., Dhekne, R.P., Agrawal, D.P., Berman, K.A. Graph Theoretic Approach to QoS-Guaranteed Spectrum Allocation in Cognitive Radio Networks. IEEE International Performance, Computing and Communications Conference (IPCCC 2008). 2008: 354– 359.
    [87] Lazos, L., Sisi Liu, Krunz, M. Spectrum Opportunity-Based Control Channel Assignment in Cognitive Radio Networks. 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON '09). 2009: 1– 9.
    [88] Papavassiliou, S., Tassiulas, L., The Joint Resource Allocation Problem in Wireless Networks. IEEE International Conference on Communications (ICC '95). 1995, Vol.1: 395– 399.
    [89]苏曦,沈树群,冯志勇,陈星.认知无线电系统中的自适应动态频谱分配方法.电子与信息学报. 2009, 31(12): 2801-2806.
    [90]廖楚林,陈劼,唐友喜,李少谦.认知无线电中的并行频谱分配算法.电子与信息学报. 2007, 29(7): 1608-1611.
    [91]李一兵,杨蕊,高振国.基于着色理论的认知无线电频谱分配算法.系统工程与电子技术. 2010, 32(6): 1109-1112.
    [92] Salehinejad, H., Talebi, S., Pouladi, F. A metaheuristic approach to spectrum assignment for opportunistic spectrum access. IEEE 17th International Conference on Telecommunications (ICT 2010), 2010: 234– 238.
    [93] Yutao Liu, Guisen Xu, Xuezhi Tan. A Novel Spectrum Allocation Mechanism Based on Graph Coloring and Bidding Theory. International Conference on Computational Intelligence and Natural Computing(CINC '09). 2009, Vol. 1: 155– 158.
    [94] Zhang Jian-wu, Zhao Qi, Zou Jing-yuan. Advanced Graph-Coloring Spectrum Allocation Algorithm for Cognitive Radio. 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom '09). 2009: 1– 4.
    [95] Rao, V.S., Prasad, R.V., Yadati, C., Niemegeers, I.G.M.M. Allocation of Opportunistic Spectrum in Cognitive Radio Ad hoc Networks; 7th IEEE Consumer Communications and Networking Conference (CCNC 2010), 2010: 1– 5.
    [96] Haitao Zheng, Chunyi Peng. Collaboration and Fairness in Opportunistic Spectrum Access; 2005 IEEE International Conference on Communications (ICC 2005). 2005, Vol. 5, : 3132– 3136.
    [97] Yuqin Chen, Ning Han, Sung Hwan Shon, Jae Moung Kim. Dynamic Frequency Allocation Based On Graph Coloring and Local Bargaining for Multi-Cell WRAN System. 2006 Asia-Pacific Conference on Communications (APCC '06). 2006: 1– 5.
    [98] Jiao Wang, Yuqing Huang, Hong Jiang. Improved Algorithm of Spectrum Allocation Based on Graph Coloring Model in Cognitive Radio. 2009 WRI International Conference on Communications and Mobile Computing (CMC '09). 2009, Vol.3: 353– 357.
    [99] Liu Yutao, Jiang Mengxiong, Tan Xuezhi, Fan Lu. MAXIMAL INDEPENDENT SET BASED CHANNEL ALLOCATION ALGORITHM IN COGNITIVE RADIOS. 2009 IEEE Youth Conference on Information, Computing and Telecommunication (YC-ICT '09). 2009: 78– 81.
    [100] Anh Tuan Hoang, Ying-Chang Liang. Maximizing Spectrum Utilization of Cognitive Radio Networks Using Channel Allocation and Power Control; 2006 IEEE 64th Vehicular Technology Conference (VTC-2006) 2006: 1– 5.
    [101] Shi-biao He, Xin-chun Zhang, Li-jia Ge, Pan He. Research of dynamic spectrum allocation based on service demand. 2010 Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC 2010); 2010, Vol. 2: 348– 351.
    [102] Zhong Fan, Zhang, R. Spectrum allocation and medium access in cognitive radio wireless networks. 2009 European Wireless Conference (EW 2009). 2009: 90– 95.
    [103] Yufang Xi, Yeh, E.M. Spectrum Allocation, Power Control, Routing, and Congestion Control for Wireless Networks with Duplexing Constraints. Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers (ACSSC 2007). 2007: 255– 259.
    [104] Anh Tuan Hoang, Ying-Chang Liang. Dynamic Spectrum Allocation with Second-Price Auctions: When Time is Money. 3rd International Conference on Cognitive Radio Oriented Wireless Networksand Communications (CrownCom 2008). 2008: 1-6.
    [105] Kovacs, L., Vidacs, A. One-Shot Multi-Bid Auction Method in Dynamic Spectrum Allocation Networks. 16th IST Mobile and Wireless Communications Summit. 2007: 1-5.
    [106] Zhu Ji, Liu, K.J.R. Belief-Assisted Pricing for Dynamic Spectrum Allocation in Wireless Networks with Selfish Users. 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Network (SECON '06). 2006, Vol. 1: 119-127.
    [107] Yongle Wu, Beibei Wang, Liu, K.J.R., Clancy, T.C. Collusion-Resistant Multi-Winner Spectrum Auction for Cognitive Radio Networks. 2008 IEEE Global Telecommunications Conference (GLOBECOM 2008). 2008: 1-5.
    [108] Burgkhardt, D., Cosovic, I., Jondral, F.K. Dynamic Spectrum Allocation by Hierarchical Resource Trading. 2008 IEEE Vehicular Technology Conference (VTC Spring 2008). 2008: 1796 -1800.
    [109] Niyato, D., Hossain, E. Competitive spectrum sharing in cognitive radio networks: a dynamic game approach. IEEE Transactions on Wireless Communications. 2008, 7(7): 2651-2660.
    [110] Mahonen, P.; Petrova, M. Flash Crowds in Cognitive Radio Environment: Beware an Unpredictable Mob. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2007). 2007: 1-5.
    [111] Zhijin Zhao, Zhen Peng, Shilian Zheng, Junna Shang. Cognitive radio spectrum allocation using evolutionary algorithms. IEEE Transactions on Wireless Communications. 2009, 8(9): 4421-4425.
    [112] Zhang Beiwei, Hu Kunyuan, Zhu Yunlong. Spectrum Allocation in Cognitive Radio Networks Using Swarm Intelligence. Second International Conference on Communication Software and Networks. (ICCSN '10). 2010: 8-12.
    [113] Tan Xuezhi, Liu Yutao, Xu Guisen. Dynamic Spectrum Allocation in Cognitive Radio: Auction and Equilibrium. International Forum on Information Technology and Applications (IFITA '09). 2009, Vol. 1: 554-558.
    [114] Yan Xiao, Song Qijun, Zhang Hongshun, Shao Lulu. Dynamic Spectrum Allocation Based on Cognitive Radio. 5th Asia-Pacific Conference on Environmental Electromagnetics (CEEM 2009). 2009: 254-257.
    [115] E. Crawley, R. Nair, B. Rajagopalan, H. Sandick. A Framework for QoS-based Routing in the Internet. RFC 2386. 1998.
    [116] Wang, B., Hou, J.C. Multicast routing and its QoS extension: problems, algorithms, and protocols. IEEE Network, 2000, 14(1): 22~36.
    [117] Bennett, J., Zhang, H. Hierarchical packet fair queueing algorithms. ACM SIGCOMM Computer Communication Review, 1996, 26(4): 143~156.
    [118] Ma, Q., Steenkiste, P. Quality-of-Service routing with performance guarantees. Proceedings of the 4th International IFIP Workshop on Quality of Service. New York: 1997.
    [119] Orda, A. Routing with end-to-end QoS guarantees in broadband networks. IEEE/ACM Transactions on Networking, 1999, 7(3): 365~374.
    [120] Pornavalai, C., Chakraborty, G., Shiratori, N. QoS based routing algorithm in integrated services packet networks. Journal of High Speed Networks, 1998, 7(2): 99~112.
    [121] Cidon, I., Rom, R., Shavitt, Y. Multi-Path routing combined with resource reservation. Proceedings of the IEEE INFOCOM’97. 1997: 92~100.
    [122] Shin, K.G., Chou, C.C. A distributed route-selection scheme for establishing real-time channel. The 6th International Conference on High Performance Networking (HPN’95). Palma, 1995: 319~329.
    [123] Chen, S., Nahrstedt, K. Distributed quality-of-service routing in high-speed networks based on selective probing. Proceedings of the 23rd Annual Conference on Local Computer Networks (LCN’98). Boston, 1998: 80~89.
    [124] Chen, S., Nahrstedt, K. Distributed QoS routing with imprecise state information. Proceedings of the 7th International Conference on Computer Communications and Networks (IC3N’98), 1998: 614~621.
    [125] Widyono, R. The design and evaluation of routing algorithms for real-time channels. Technical Report, TR-94-024, Berkeley: International Computer Science Institute, 1994.
    [126] Yuan, X. On the extended Bellman-Ford algorithm to solve two-constrained quality of service routing problems. Proceedings of the 8th International Conference on Computer Communications and Networks (IC3N’99), Boston, 1999: 304~310.
    [127] Yuan, X., Liu, X. Heuristic algorithms for multi-constrained quality of service routing. Proceedings of the IEEE INFOCOM 2001, Piscataway, 2001: 844~853.
    [128] Chen, S., Nahrstedt, K. On finding multi-constrained paths. Proceedings of the IEEE International Conference on Communications (ICC’98), Atlanta, 1998: 874~879.
    [129] Lorenz, H., Orda, A., Raz, D. et al. Efficient QoS partition and routing of unicast and multicast. Proceedings of the 8th International Workshop on Quality of Service (IWQoS 2000). Pittsburgh, 2000: 75~83.
    [130]王菁,刘三阳,李祖猛.基于改进蚁群算法的QoS单播路由优化.系统仿真学报. 2009, 10, 21(19): 6081-6085.
    [131]陈岩,杨华江,沈林成.基于再励学习蚁群算法的多约束QoS路由方法.计算机科学. 2007, 34(5): 25-27.
    [132]古明家,宣士斌,廉侃超,李永胜.基于自适应变异蚁群算法的QoS路由算法.计算机工程. 2009, 12, 35(23): 209-211.
    [133] Attia, R., Rizk, R., Mariee, M. A Hybrid Multi-path Ant QoS Routing Algorithm for MANETs. IFIP International Conference on Wireless and Optical Communications Networks, 2009 (WOCN '09). 2009: 1-5.
    [134] Deepalakshmi, P., Radhakrishnan, S. QoS routing algorithm for mobile ad hoc networks using ACO. 2009 International Conference on Control, Automation, Communication and Energy Conservation (INCACEC 2009). 2009: 1– 6.
    [135] Shokrani, H., Jabbehdari, S. A novel ant-based QoS routing for mobile ad hoc networks. First International Conference on Ubiquitous and Future Networks (ICUFN 2009). 2009: 79-82.
    [136] Dhurandher, S.K., Misra, S., Obaidat, M.S., Gupta, N. QDV: A Quality-of-Security-Based Distance Vector Routing Protocol for Wireless Sensor Networks Using Ant Colony Optimization. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WIMOB '08).2008: 598-602.
    [137]岳承君,井元伟.不确定信息QoS路由的概率遗传算法的研究.系统仿真学报. 2006, 8, 18(2): 935-936.
    [138]范一鸣,余建军,方智敏.融合小生境机制的QoS多播路由遗传模拟退火算法.通信学报. 2008, 5, 29(5): 65-71.
    [139]刘伟彦,张顺颐.下一代网络中基于遗传算法的QoS组播路由算法.电子与信息学报. 2006, 11, 28(11): 2157-2161.
    [140]储萍,王康泰.基于极值遗传算法的QoS组播路由.计算机工程. 2009, 5, 35(9): 220-224.
    [141] Gelenbe, E., Liu, P., Laine, J. Genetic Algorithms for Route Discovery. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2006, 36(6): 1247-1254.
    [142] Abdullah, J., Ismail, M.Y., Cholan, N.A., Hamzah, S.A. GA-based QoS Route Selection Algorithm for Mobile Ad-Hoc Networks. 6th National Conference on Telecommunication Technologies 2008 and 2008 2nd Malaysia Conference on Photonics (NCTT-MCP 2008). 2008: 339-343.
    [143] Abdullah, J. Modeling of GA-Based QoS Routing Algorithm for Pervasive Mobile Ad Hoc Networks. Third International Conference on Pervasive Computing and Applications (ICPCA 2008). 2008, Vol.1: 333-338.
    [144] Leela, R., Selvakumar, S. Genetic Algorithm approach to Dynamic Multi Constraint Multi Path QoS Routing Algorithm for IP networks (GA-DMCMPRA). First International Communication Systems and Networks and Workshop (COMSNETS 2009). 2009: 1-6.
    [145]李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用.山东大学学报. 2004, 64(4): 64-67.
    [146]王兴伟,秦培玉,黄敏.基于人工鱼群的ABC支持型QoS单播路由机制.计算机学报. 2010, 4, 33(4): 718-725.
    [147]刘春波,罗志平,王会进,刘丽华,余秀琴.基于人工鱼群算法的QoS组播路由问题的求解.第三届中国智能计算大会. 2009: 279-283.
    [148]曹建国,陶亮.改进型量子蚁群算法求解QoS单播路由.计算机工程与应用. 2010, 46(18): 116-118.
    [149]程爱华,季中恒,葛宝忠.基于PSO和变异模拟退火的QoS单播路由算法.计算机工程. 2009, 35(6): 205-207.
    [150]龙鹏飞,张纯,贺亮.基于捕食模型与蚁群算法的多约束QoS路由选择.计算机工程与应用. 2009, 45(14): 116-118.
    [151]董武世,柯宗武,陈年生.基于量子遗传算法的QoS多播路由算法.计算机工程与应用. 2007, 43(27): 144-147.
    [152]赵秀平,谭冠政.基于免疫遗传算法的多约束QoS组播路由选择方法.计算机应用. 2008, 28(3): 591-595.
    [153]王卫亚,王凤琳.基于遗传—蚁群融合算法的OSPF路由算法QoS扩展.计算机工程与应用. 2008, 44(29): 108-111.
    [154]朱玉平,叶大振,王锁萍.基于蚁群—遗传算法的QoS路由选择.计算机工程与应用. 2006, 25: 113-115.
    [155] Xue-Mei Sun, Xiao-Yu Lv. Novel Dynamic Ant Genetic Algorithm for QoS Routing in Wireless Mesh Networks. 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom '09). 2009: 1-4.
    [156] Li Taoshen, Xiong Qin, Ge Zhihui. Genetic and particle swarm hybrid QoS anycast routing algorithm. IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009). 2009, Vol. 1: 313-317.
    [157]王军伟,王兴伟,黄敏,刘彭程. NGI中一种基于食物链算法的柔性QoS组播路由算法.计算机科学. 2007, 34(6): 30-33.
    [158]成兰,崔亚量,鲍雅萍.基于粒子群和博弈论的QoS组播路由算法.计算机工程. 2008, 34(14): 92-94.
    [159]王兴伟,侯美佳,黄敏,王琦.一种基于博弈论方法的模糊QoS单播路由机制.计算机学报. 2007, 30(1): 10-17.
    [160]王兴伟,王琦,黄敏,田野.基于模糊积分和博弈论的QoS组播路由机制.软件学报. 2008, 19(7): 1743-1752.
    [161] Xingwei Wang, Qi Wang, Meijia Hou, Min Huang. A Game Theory and QGA Based Flexible QoS Unicast Routing Scheme. International Conference on Communication Technology (ICCT’06). 2006: 1-4.
    [162] Xingwei Wang, Qi Wang, Min Huang. A Gaming Fuzzy QoS Multicast Routing Scheme in NGI. Seventh International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT '06). 2006: 244-249.
    [163] Korilis, Y.A., Orda A. Incentive compatible pricing strategies for QoS routing. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '99). 1999, Vol. 2: 891-899.
    [164] Hespanha, J.P., Bohacek, S. Preliminary results in routing games. Proceedings of the 2001 American Control Conference. 2001, Vol. 3: 1904-1909.
    [165] La, R.J., Anantharam, V. Optimal routing control: repeated game approach. IEEE Transactions on Automatic Control. 2002, 47(3): 437-450.
    [166] Georgiou, C., Pavlides, T., Philippou, A. Network uncertainty in selfish routing. 20th International Parallel and Distributed Processing Symposium (IPDPS 2006).
    [167] Dorigo M., Maniezzo V., Colorni A. Ant System:Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics. 1996, 26(1): 29-41.
    [168] Bullnheimer B., Hartl R. F., Strauss C. A new rank-based version of the Ant System: A computational study. Central European Journal for Operations Research and Economics. 1999, 7(1): 25-38.
    [169] Stützle T., Hoos H. The MAX-MIN Ant System and local search for the traveling salesman problem. Proceedings of the IEEE International Conference on Evolutionary Computation and Evolutionary Programming. 1997: 309-314.
    [170] Stützle T., Hoos H. Improvements on the Ant System: Introducing MAX-MIN Ant System. Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms. 1998: 245-249.
    [171] Stützle T., Hoos H. MAX-MIN Ant System. Future Generation Computer Systems. 2000, 16(8):889-914.
    [172] Dorigo M., Gambardella L. M. Ant Colonies for the traveling salesman problem. Biosystems. 1997, 43(2): 73-81.
    [173] Dorigo M., Gambardella L. M. Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation. 1997, 1(1): 53-66.
    [174] El-Sayed M., El-Alfy, Shokri Z. Selim, et al. Solving the Minimum-Cost Constrained Multipath Routing with Load Balancing in MPLS Networks Using an Evolutionary Method. IEEE Congress on Evolutionary Computation, Singapore, Sept. 25-28, 2007: 4433 - 4438.
    [175] A. V. Goldberg, S. Rao. Beyond the flow decomposition barrier. Journal of the ACM. 1998, 45(5): 783-797.
    [176] J. H, van Lint, R. M. Wilson. A course in combinatorics[M]. Cambridge, Cambridge University Press, 2001: 61-70.
    [177] Charles E. Perkins, Pravin Bhagwat. Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers. Proceedings of the conference on Communications architectures, protocols and applications. 1994: 234-244.
    [178] PShree Murthy, PJ. J. Garcia-Luna-Aceves. An efficient routing protocol for wireless networks. ACM Mobile Networks and Applications. 1996, 1(2): 183-197.
    [179] C.E. Perkins and E.M. Royer. Ad-Hoc on-Demand Distance Vector Routing. Proc. Workshop Mobile Computing Systems and Applications (WMCSA’99), Feb.1999: 90-100.
    [180] David B. Johnson, David A. Maltz. Dynamic source routing in ad hoc wireless networks. Mobile Computing, Kluwer Academic Publishers, edited by Tomasz Imielinski and Hank Korth, chapter 5, pages 153–181, 1996.
    [181] http://www.tropos.com
    [182] Sergio Marti, PT. J. Giuli, Kevin Lai, PMary Baker. Mitigating routing misbehavior in mobile ad hoc networks. Proceedings of the 6th annual international conference on Mobile computing and networking. 2000: 255-265.
    [183] C. Wedkind, M. Milinski. Human cooperation in the simultaneous and alternating prisoner’s dilemma: Pavlov versus generous tit-for-tat. Proceeding of the National Academy of Science of the United States of American, 1996, 93(7): 2686-2689.
    [184] A Kamerman. WaveLAN II: a high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 1997, 2(3): 118-133.
    [185] G Holland, N H Vaidya. A rate-adaptive MAC protocol for multi-hop wireless networks. Proc. of ACM MobiCom, San Dieg, 2001: 236-250.
    [186] B Sadeghi, V Kanodia, A Sabharwal. Opportunistic media access for multi-rate ad hoc networks. Proc. ACM MobiCom, Atlanta, 2002: 90-100.
    [187] Z Ji, Y Yang. Exploiting medium access diversity in rate adaptive wireless LANS. Proc. of ACM MOBICOM, New York, 2004: 345-359.
    [188] R. Draves, J. Padhye, B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. Proceedings of the 10th annual international conference on Mobile computing and networking. Sep. 2004 - Oct. 2004, Philadelphia, PA, USA: 114-128
    [189] PAlec Woo, Terence Tong, PDavid Culler. Taming the underlying challenges of reliable multihop routing in sensor networks. Proceedings of the 1st international conference on Embedded networked sensor systems. Nov. 2003 - Nov. 2003, Los Angeles, California, USA.: 14-27.
    [190] Lin Xiao-Hui, Kwok Yu-Kwong, Lau V K. On channel-adaptive routing in IEEE 802.11b based Ad Hoc wireless network. IEEE Proceeding of Global Telecommunications Conference. 2003, San Franciso: 3509-3513.
    [191]王炫,李建东,张文柱.支持多速率传输的动态Ad hoc路由协议.电子与信息学报. 2006, 10, Vol28(10): 1907-1911.
    [192]王青山,王琦,许胤龙,林晓斌.无线自组网中多速率敏感单播路由.系统仿真学报. 2008, 12, Vol20(24): 6703-6706.
    [193]汪洋,林闯,李泉林,王竞奇,姜欣.基于非合作博弈的无线网络路由机制研究.计算机学报. 2009, Vol32(1): 55-68.
    [194]卫萌菡,方旭明.基于博弈论的无线宽带网络协作资源管理.计算机应用. 2010, 3, Vol30(2): 745-750.
    [195] N.K.Hoven.On the feasibility of cognitive radio.Master of Science. University of California, Berkeley,Spring 2005.
    [196] Kolodzy P. Next generation communications: kickoff meeting. In Proc. DARPA, 2001, 10(17).
    [197] McHenry M. Frequency agile spectrum access technologies. FCC Workshop Cogn. Radio, 2003. 5(19).
    [198] Haykin S. Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
    [199] Mitola J., Maguire G., Jr. Cognitive radio: Making software radios more personal. IEEE Personal Communications Magazine, 1999, 6(4): 13-18.
    [200] Milota J. 1999 IEEE International Workshop on Cognitive radio for flexible mobile multimedia communications (MoMuC’99), 1999: 3-10.
    [201] http://www.ieee802.org/22/
    [202] Kyasanur P, Yang X, Vaidya N H, Mesh networking protocols to exploit physical layer capabilities. First IEEE workshopon wireless Netwooks. San Diego, 2005:665~668.
    [203] Berlemann L, Mangold S, Walke B H. Policy-based reasoning for spectrum sharing in cognitive radio networks. Proc. IEEE DySPAN 2005. Baltimore, USA, 2005: 1~10.
    [204] S.Krishnamurthy,M.Thoppian,S.Venkatesan,et al. Control Channel Based MAC-Layer Configuration, Routing and Situation Awareness for Cognitive Radio Networks. MILCOM 2005,October 2005:1~6.
    [205] Paul KOLODZY. Application of Cognitive Radio Technology across the Wireless Stack. IEICE TRANS. COMMUN. November 2005:4158~4162.
    [206] Dafang Zhang. The generating algorithm of the maximal independent sets in a graph based on matrix. ACTA ELECTRONICA SINICA, 1998, 26(5):86-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700