用户名: 密码: 验证码:
Mn-系中、低碳贝氏体结构钢的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前研究表明,非调质钢进行热加工后空冷就能达到调质钢的强度水平,但其塑性,尤其是韧性远低于调质钢的水平,限制了其应用范围。本文所研制的贝氏体钢具有优良的强韧性配合,对于解决现有非调质钢韧性不足的瓶颈有着重要意义。
    本文采用组织观察,常规力学性能测试等多种方法研究了Mn-系中、低碳贝氏体钢的成分、组织、热处理与性能的关系。通过Si含量的变化,探讨了Si对中、低碳Mn-系贝氏体钢性能和组织的影响。由于Mo是贵重元素,讨论了不加Mo对性能和组织的影响。结果表明,低碳钢经奥氏体化后空冷为粒贝组织,中碳钢经奥氏体化后空冷为贝氏体/马氏体复相组织。随Si含量的提高,回火脆性出现的温度(曲线峰谷)逐步提高,峰谷值呈下降趋势。Si含量达到1.7%后,其高温回火韧性低于未回火状态下的数值,低碳高Si钢640℃回火时冲击韧性仅为80J,中碳高Si钢仅为25J。低碳钢Si含量在0.84~1.46%时,580℃回火,抗拉强度>850Mpa,冲击韧性>160J,强韧性配合优良。含Mo钢将回火脆性曲线向右推移,峰谷值出现的回火温度升高。到了高温回火阶段,无Mo钢的冲击韧性高于有Mo钢。低碳钢中Si对组织形貌产生显著影响,随Si含量的提高,组织中的M/A岛形貌由块状岛到条状岛、继而又变成块状岛。
    本文通过测定低碳Si钢的CCT曲线,研究了Si和少量Mo对贝氏体转变的影响。结果表明,在其他元素含量不变的情况下,随着Si含量的增加,Si使CCT曲线的贝氏体转变温度降低,所获组织中M/A小岛更为细小。当Si含量达到1.46%后,Si不再使Bs点降低。增加低Si钢中的Si含量,可以有效推迟高温转变的临界冷速。Mo能有效推迟高温转变,使Ms点下降。含Mo试验钢在较宽的冷速范围内只发生贝氏体转变。
Non-quenched and tempered steel can have coequal strength withquenched and tempered steel by air-cooling after hot-working treatment. Butplastic property, especially fracture toughness property of non-quenched andtempered steel is so low that it can't be widely used. Tested steels of this workhave a good combinability of σb and Aku. It is vital for extensive use ofnon-quenched and tempered steel.
    The relation among composition, structure, heat treatment andperformance of low carbon and medium carbon bainitic steel was investigatedby microstructure and general mechanical properties etc. The difference ofstructure and mechanical properties was studied though the increasing Sicontent and a little content of Mo. The results showed that granular bainitemicrostructure could be obtained by air-cooling after austenization in lowcarbon bainitic steel and bainite/martensite mixed microstructure could beobtained by air-cooling after austenization in medium carbon bainitic steel.Temperature of tempering brittleness happening increased and valley value ofcurve reduced though the increasing content of Si. Aku after high temperaturetempering was lower than non-tempered steel when the content of Si is 1.7%.σb and Aku have a good combinability between 0.7~1.4% Si content when thesteel was tempered at 580℃, σb>850Mpa and Aku>160J. Temperature oftempering brittleness happening increased when a few content of Mo wasadded. σ b of Mo steel is lower than free Mo steel at high temperingtemperature. Figure of M/A island transformed from massive island tobanding island to massive island through the increasing content of Si.
     Studies of alloying(Si and Mo) agent's effect on transition temperatureof bainite by determining CCT curve were carried out in low carbon steel. Theresults showed that the beginning transition temperature of bainite can befurther depressed though the increasing content of Si. And Si had week effect
    on the beginning transition temperature of bainite when the content of Si wasabove 1.4%. Critical cooling velocity falled down when more Si was added inlow content of Si steel. The curve of high temperature transition in CCTfigure was postponed and the beginning transition temperature of martensitewas depressed though the adding of Mo. Cooling velocity domain of bainitetransition of Mo steel is wider than Mo free steel. All of the above results hadlaid a foundation for the extensive use Mn-bainitic steel as structural steel.
引文
[1] 唐代明.非调质钢的发展概况与其特征的变化.钢铁钒钛,1996,17(3):53~57
    [2] 瞿国鸿.非调质钢的发展及开发策略.重庆钢铁高等专科学校学报,1999, 14(1):12~17
    [3] 董成瑞,金同哲.非调质钢研究与应用的新进展.特殊钢,1996,4:6~10
    [4] 赵丽萍,于春海,段锐.非调质钢分类的研究,吉林农业大学学报.1992,21(4):78~80,84
    [5] 王勇,何光楚,揭晓华.非调质钢的性能与发展及在汽车上的应用. 湖北汽车工业学院学报,1999,13(4):65~69,77
    [6] 雍歧龙,马鸣图,吴宝榕.微合金-物力和力学冶金.北京:机械工业出版社,1989:591~616
    [7] 中国金属学会特殊钢分会微合金非调质钢委员会.微合金非调质钢汇编.北京:19~64
    [8] 山本俊郎.热处理,1983,23(2):13
    [9] 何光楚,顾教有. 东风汽车公司系列非调质钢零件研究与应用.第十一届汽车材料年会论坛文集.十堰:东风汽车公司,1998:106~118
    [10] R. W. K. Honeycombe, F. B. Pickering. Ferrite and Bainite in Alloy Steel. Met. Trans., 1971, 3(209): 476~478
    [11] Y. Ohmori, H. Ohtani, T. Kunitake. Tempering of the bainite and the bainite/martensite duplex structure in low-carbon low-alloy steel. Met. Sci. J., 1974, 8(11): 357~366
    [12] 李代锺. 钢中的非金属夹杂物. 北京:科学出版社,1983. 199~211
    [13] 邦立武郎.钢的混合组织与韧性. 日本金属学会会报,1975,14(9):689~697
    [14] Y. Tomita. Effect of microstructure on plan-strain fracture toughness of AISI 4340 steel. Metall. Trans., 1988, 19A(10): 2513~2521
    [15] D. P. Edwards. Toughness of Martensite and Bainite in a 3%Ni-Cr-Mo-v Steel. JISI, 1969, 207: 1494
    [16] Y. Tomita. Effect of microstructure on fracture toughness JⅠc of heat-treated 0.4-Cr-Mo-Ni structural low alloy steel. Mater. Sci. Techn., 1990, 6(4): 349~355
    [17] Luerssen G. V., Greene O. V. Torsion Impact Properties of Carbon Tool Steel. Trans. ASM, 1935,23: 861
    [18] Grossmann M. A. Toughness and Fracture of Hardened Steels. Trans. AIME, 1946, 167: 39~79
    [19] Klingler L. J., Barnett W. J., Frohmberg R. P., et al. The Embritttlement of Alloy Steel at High Strength Levels. Trans. ASM, 1954, 46: 1557~1598
    [20] Capus J. M.. Carbide Precipitation, Impurity Elements, and the Embrittlement of High-strength Martensitic Alloy Steels. J. Iron and Steel Inst. 1963, 201: 53~54
    [21] C. L. Briant, Banerji S. K.. Tempered Martensite Embrittlement and Intergranular Fracture in an Ultra-high Strength Sulfur Doped Steel. Met. Trans. 1981, 12A(2): 309~319
    [22] R. M. Horn. Ritchie R.O. Mechanisms of Tempered Martensite Embrittlement in Low Alloy Steels. Metall. Trans. 1976, 9A(8): 1039~1053
    [23] 胡光立,华文军,康沫狂,等. 回火对 40CrMnSiMoVA 钢贝氏体等温淬火后残余奥氏体稳定性的影响. 航空材料,1985,5(1):1~6
    [24] Grossmann M.A. Toughness and Fracture of Hardened Steels. Trans. AIME,1946,167: 39~79
    [25] 石德珂.金属材料及强度专集(第二集). 西安:西安交通大学出版社,1982. 237~240
    [26] J.P.Nayloy, R.Blondeau.The respective roles of the packet size and the lath width on toughness. Metall. Trans., 1976,7A(6): 891~894
    [27] 《金属机械性能》编写组. 金属机械性能. 北京:机械工业出版社,1982. 111~118
    [28] 田忠学. 我国特殊钢行业现状. 特殊钢,2000,21(4):1~4
    [29] 肖椿霖,刘辉航. 弹簧工业的发展与弹簧失效预防对策. 见:中国机械工程学会等编. 全国机电装备失效分析预测预防战略研讨会论文集. 北京:中国科学技术协会,1992. 369~381
    [30] 韩建中,韩晖,高伟等. 高性能新型弹簧钢在汽车弹簧上的应用研究. 汽车技术,2000,(12):24~26
    [31] 张毅杰. 汽车变截面板簧生产情况初探. 新疆钢铁,2000,(1):25~27
    [32] F. P. Pickering. Physical Metallurgy and the Design of Steels. Applied Science Publishers Ltd. London, 1980
    [33] Luerssen G. V., Greene O. V. Torsion Impact Properties of Carbon Tool Steel. Trans. ASM, 1935,23: 861
    [34] Grossmann M. A.. Toughness and Fracture of Hardened Steels. Trans. AIME, 1946, 167: 39~79
    [35] Klingler L. J., Barnett W. J., Frohmberg R. P., et al. The Embritttlement of Alloy Steel at High Strength Levels. Trans. ASM, 1954, 46: 1557~1598
    [36] Capus J. M.. Carbide Precipitation, Impurity Elements, and the Embrittlement of High-strength Martensitic Alloy Steels. J. Iron and Steel Inst. 1963, 201: 53~54
    [37] C. L. Briant, Banerji S. K.. Tempered Martensite Embrittlement and Intergranular Fracture in an Ultra-high Strength Sulfur Doped Steel. Met. Trans. 1981, 12A(2): 309~319
    [38] R. M. Horn. Ritchie R.O. Mechanisms of Tempered Martensite Embrittlemet in Low Alloy Steels. Metall. Trans. 1976, 9A(8): 1039~1053
    [39] 胡光立,华文军,康沫狂,等. 回火对 40CrMnSiMoVA 钢贝氏体等温淬火后残余奥氏体稳定性的影响. 航空材料,1985,5(1):1~6
    [40] Grossmann M.A.. Toughness anf Fracture of Hardened Steels. Trans. AIME,1946,167: 39~79
    [41] 蔡乾煌. 工程力学. 北京:高等教育出版社,1992. 155~237
    [42] J.P.Nayloy, R.Blondeau.. Metall. Trans., 1976,7A(6): 891~894
    [43] Luerssen G. V., Greene O. V.. Torsion Impact Properties of Carbon Tool Steel. Trans. ASM, 1935,23: 861
    [44] 黄维刚,方鸿生,郑燕康. 硅对 Mn-B 系空冷贝氏体钢组织与性能的影响. 金属热处理学报,1997,18(1):8~13
    [45] 鈴木三千彦,ばね. 材料の发展动向. 特殊鋼,1989,38(7):12~16
    [46] V. T. T. Miihkinen, D. V. Edmonds. Microstructural examination of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Techn., 1987, 3(6): 422~431
    [47] V. T. T. Miihkinen, D. V. Edmonds. Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Techn., 1987, 3(6): 432~440
    [48] V. T. T. Miihkinen, D. V. Edmonds. Tensile deformation of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Techn., 1987, 3(6): 441~449
    [49] H. K. D. H. Bhadeshia, D. N. Edmonds. Bainite in silicon steel: new composition-property approach,part1.Met. Sci., 1983, 17(9): 411~419
    [50] H. K. D. H. Bhadeshia, D. N. Edmonds. Bainite in silicon steel: new composition-property approach,part2. Met. Sci., 1983, 17(9): 420~425
    [51] H. K. D. H. Bhadeshia. Bainite in Steels. The Institute of Meterials. Carlton House Terrace London, 1992.371
    [52] 康沫狂,杨思品,管敦惠. 钢中贝氏体. 上海:上海科学技术出版社,1990. 372~380
    [53] R.L.Bodnar, K.A.Taylor. .Structure/Property Relationship in Medium-Carbon Bainitic Steels for Thick Sections Iron and Steel Maker, 1990, 17(8): 47~63
    [54] Tomita Y. Okabayashi K. Improvement in lower temperature mechanical properties of 0.40PctC-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite. Metall. Trans., 1983, 14A(3): 485~492
    [55] 汪学瑶. 新型非调质钢的发展. 特殊钢,2001,22(2):1~6
    [56] 张明星,康沫狂. 硅对低碳贝氏体钢组织和性能的影响. 金属学报,1993,29(1):A6~10
    [57] 方鸿生,刘东雨,白秉哲,等. 空冷贝氏体钢的发展前景. 稀有金属材料与工程,2001,30(增刊),135~142
    [58] 方鸿生,邓海金. 低碳 Fe-Mn-B 钢粒状贝氏体的组织及其强韧性. 机械工程材料,1981,5(2):5~14
    [59] 杨志刚,方鸿生,王家军. 新型锰硼系低碳贝氏体非调质钢连杆和货叉的研制. 机械工程材料,1993,17(6):18~20
    [60] 杨志刚,陈秀云,方鸿生. 预硬型贝氏体塑料模具钢基本性能的研究. 金属热处理,1993,(6):7~10
    [61] 方鸿生,杨业元,姜忠良.贝氏体钢磨球与我国磨球材料. 兵器材料科学与工程. 1993,16(5):1~10
    [62] 方鸿生,郑燕康,周欣. 中碳贝氏体/马氏体复相组织的强韧性研究. 金属热处理学报,1986,7(1):10~18
    [63] 杨柳,方鸿生,陈南平. 锰-硼钢等温转变曲线河湾形状及其形成机制探讨. 清华大学学报(自然科学版),1988,28(2):93~99
    [64] 本溪钢铁公司第一炼钢厂,清华大学机械系金属材料教研组. 钢的过冷奥氏体转变曲线,第一图册. 本溪:本溪钢铁公司第一炼钢厂出版,1978. 79~83
    [65] 郑燕康. 中碳 Mn-B 系贝氏体钢强韧性的研究:[硕士学位论文]. 北京:清华大学机械系,1983
    [66] 黄维刚,方鸿生,郑燕康. 硅和少量钼对 Mn-B 系贝氏体钢转变动力学的影响. 金属热处理,1997,(10):25~28
    [67] M. E. Bush, P. M. Kelly. Strengthening Mechanism in Bainitic Steels. Acta Met., 1971, 19(12): 1363~1368
    [68] D. W. Smith, R. F. Hehemann. Influense of Structural Parameter on the Yiels Strength of Temperd Martensite an Lower Bainite. J. Iron Steel Inst., 1971,209: 476~479
    [69] 桂立军. 中碳空冷贝氏体/马氏体复相组织疲劳性能研究:[学士学位论文]. 北京:清华大学机械系,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700