用户名: 密码: 验证码:
基于MCMC方法的概念性流域水文模型参数优选及不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概念性流域水文模型不仅在水循环研究领域有着重要的地位,在与水循环相关的其它领域也发挥着越来越重要的作用。无论是水文与水资源、环境和生态等重大问题的决策,还是防洪抗旱等均离不开水文模型的支撑。概念性流域水文模型的预报精度与模型结构及模型参数取值密切相关,因此,如何选取适用于指定研究区域的模型结构及模型参数是确保概念性流域水文模型预报精度的重要前提。鉴于此,本文在研究模型结构适用性的基础上,针对复杂非线性流域水文模型参数优选问题的难解性,引入融合马尔可夫链蒙特卡罗方法的优化算法,系统开展了模型参数优选、参数不确定性及模型输出的不确定性等研究,主要研究内容和结论如下:
     (1)选取RRMT中9个降雨.径流模型组合,并采用SCE-UA优化算法及3个模型评价目标函数,对长江流域的岷江、嘉陵江及乌江流域开展模型结构适用性研究。根据模型结构的复杂度以及模型的预报能力对模型结构进行综合评价,选出适用于指定研究区域的模型结构。
     (2)在系统研究SCEM-UA算法基础上,采用自适应Metropolis采样替代SCEM-UA算法中的Metropolis-annealing采样,提出了新的SCEAM-UA算法,该算法能在每一次迭代过程后自适应地调整协方差和接受率策略。通过实例研究发现,SCEAM-UA算法较好地克服了“早熟收敛”问题,搜索性能要优于传统SCEM-UA算法。此外,基于改进SCEAM-UA算法采样,对岷江、嘉陵江及乌江流域CMD-3PAR模型参数进行了敏感性分析,为模型参数的准确取值奠定基础。
     (3)从算法的搜索效率、求解质量、算法稳定性等方面对SCE-UA、SCEM-UA、SCEAM-UA、DE-MC及DREAM等算法进行了比较分析,得出:DREAM和SCEAM-UA算法的优化性能优于DE-MC和SCEM-UA算法。在分析比较不同算法的性能基础上,初步建立了流域水文模型参数优选方法的评价指标体系,为选择高效的流域水文模型参数优选算法提供了科学依据。此外,对RRMT的优化模块进行拓展开发,嵌入新的SCEM-UA、SCEAM-UA、DE-AM、DREAM及MODREAM等算法,进一步增强了RRMT优化模块的功能。
     (4)将DREAM算法应用于岷江、嘉陵江及乌江流域CMD-3PAR模型的参数优选,研究发现:DREAM算法能有效推求模型参数后验分布,适用于参数先验信息较少的复杂流域水文模型参数优选及不确定性分析。在DREAM算法基础上引入多目标优化思想,综合考虑水量平衡、水文特征曲线、洪峰流量等水文过程的不同要素,提出了一种基于改进适应度分配策略和外部存档方案的多目标DREAM算法,并以岷江、嘉陵江及乌江流域为例,对CMD-3PAR模型进行了自动参数优选,通过对比单目标优选与多目标优选结果发现:MODREAM算法可在较短时间内生成大量的非劣解供决策者评价优选,更能反映流域实际水文特征,使得模型计算流量与实测流量过程更加吻合,优于传统的单目标DREAM算法。
     综上所述,融合MCMC方法的优化算法能较好地处理复杂非线性流域水文模型参数优选问题,适用于模型参数后验分布的推求,给流域水文模型参数优选的不确定性研究带来了广阔的前景。
The conceptual hydrological model not only plays an important role in research area in relation to hydrological cycle but also plays an increasing role in other areas related with hydrological cycle. Decision-making for major issues with respect to hydrology and water resources, environment, ecology, as well as flood control and drought prevention cannot be made without the support of hydrological model. Simulation accuracy of conceptual hydrological model is highly related with model structure and model parameters, therefore, appropriate selection of model structure and model parameters should be highlighted to ensure the performance of conceptual hydrological models for the specific research areas. A systematic research on assessment of model structure and parameter optimization based on Markov chain Monte Carlo method is carried out, focusing on uncertainty analysis of model structure, parameter and model output. The main contents and research results are as follows:
     (1) The applicability of nine rainfall-runoff models selected from RRMT has been tested on three catchments in the Yangtze River basin (Min River, Jialing River and Wu River Basin), using the SCE-UA optimization algorithm and three performance criteria which measure different aspects of the system behavior. A comprehensive assessment of model structures is given with regard to model complexity and model performance. The model structure with the highest ranking score is proposed as potentially the most suitable for rainfall-runoff simulation in the Min River, Jialing River and Wu River Basin.
     (2) The Metropolis-annealing scheme in the SCEM-UA algorithm is replaced with a new strategy of adaptive Metropolis sampling, herein forming a new SCEAM-UA algorithm. The newly developed SCEAM-UA algorithm adaptively updates the covariance strategy and acceptance rate during sampling. The case studies show that SCEAM-UA algorithm counters the problem of premature convergence, and the search performance is better than the traditional SCEM-UA algorithm. In addition, sensitivity analysis of model parameters are carried out based on the sampling from SCEAM-UA algorithm for the Min River, Jialing River and Wu River Basin, which can lay good foundation for uncertainty analysis of model parameter.
     (3) SCE-UA, SCEM-UA, SCEAM-UA, DE-MC and DREAM are compared in aspects of search efficiency, solution quality and stability, the results indicate that DREAM and SCEAM-UA algorithm have better performance than DE-MC and SCEM-UA algorithm. Assessment index system of selecting parameter optimization methods for complex hydrological models is established on the basis of intercomparison on different algorithms, from which appropriate selection of parameter optimization method can therefore benefit. In addition, the optimization module of RRMT is further developed, embedded with SCEM-UA, the newly developed SCEAM-UA, DE-AM, DREAM and MODREAM, further enhancing the function of RRMT optimization module.
     (4) DREAM algorithm is applied in the CMD-3PAR parameter optimization, which is shown to be capable of inferring the posterior distribution of model parameters and solving the parameter optimization problem and uncertainty analysis for complex hydrological models. Moreover, a new Multi-objective DREAM algorithm with emphasis on overall consideration of water balance, characteristic of hydrographs and peak flow, is proposed based on the concept of modified fitness assignment and external archive strategy, and is illustrated with case studies of parameter optimization of CMD-3PAR hydrological model for the Min River, Jialing River and Wu River Basin. The results show that MODREAM is capable of generating a lot of non-dominated solutions with wide and uniform distribution for decision-makers and is better than the single objective DREAM in achieving accurate simulation of hydrographs and seeking the real hydrological characteristics of the River Basin.
     In summary, traditional optimization method combined with MCMC algorithm can readily cope with the complex nonlinear parameter optimization problems of hydrological model. Moreover, it is capable of inferring the posterior distribution of model parameters, bringing a broad prospect for the uncertainty analysis of model parameter.
引文
[1]芮孝芳,蒋成煜,张金存.流域水文模型的发展[J].水文.2006,26(3):22-26.
    [2]Beven K, Binley A. The future of distributed models:model calibration and uncertainty prediction [J]. Hydrological Process,1992, (6):279-298.
    [3]European Commission. Communication on the Precautionary Principle [R]. Europe,2000.
    [4]Sivapalan M, Takeuchi K, Franks S W, et al. IAHS Decade on Predictions in Ungauged Basins (PUB),2003-2012:Shaping an Exciting Future for the Hydrological Sciences [J].Hydrological Sciences Journal.2003,48(6),857-880.
    [5]陈守煜.模糊水文学[J].大连理工大学学报,1981(1):93-97.
    [6]张继国,刘新仁.水文水资源中不确定性的信息熵分析方法综述[J].河海大学学报,2000,28(6):32-37.
    [7]孙秀玲,霍太英,褚君达.水环境容量的不确定性分析计算[J].人民黄河,2005,27(3):34-36.
    [8]张洪刚,郭生练,何新林,等.水文预报不确定性的研究进展与展望[J].石河子大学学报:自然科学版.2006,24(1):15-21.
    [9]Kobold M, Suselj K. Precipitation forcasts and their uncertainty as input into hydrological models [J]. Hydrology and Earth System Sciences,2005,9(4):322-332.
    [10]Walker W E, Harremoes P, Rotmans J, et al. Defining uncertainty, a conceptual basis for uncertainty management in model-based decision support [J]. Integrated Assessment,2003,4 (1):5-17.
    [11]张洪刚,郭生练,王才君,等.概念性流域水文模型参数优选技术研究[J].武汉大学学报(工学版),2004,37(3):18-26.
    [12]Beven K J, Binley A. The future of distributed models:Model calibration and uncertainty prediction [J]. Hydrological Processes,1992,6(3):279-298.
    [13]Thiemann M, Trosset M, Gupta H, et al. Bayesian recursive parameter estimation for hydrologic models [J]. Water Resources Research,2001,37(10):2521-2535.
    [14]曹飞凤,许月萍,玄英姬,等.流域决策的不确定性分析[J].浙江大学学报:工学版.2009,43(1):188-192.
    [15]Loague K M, Freeze R A. A comparison of rainfall-runoff modelling techniques on small upland catchments [J]. Water Resources Research,1985,21 (2):229-248.
    [16]Vreugdenhil C B. Accuracy and reliability of numerical river models [J]. Journal of American Water Resources Association,2002,38(4):1083-1095.
    [17]Wasserman L. Bayesian model selection and model averaging [J]. Journal of Mathematical Psychology,2000(44):92-107.
    [18]Zio E, Apostolakis G. Two methods for the structured assessment of model uncertainty by experts in performance assessment of radioactive waste repositories [J]. Reliability Engineering and System Safety,1996(54):225-241.
    [19]叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93-104.
    [20]杨晓华.参数优选算法研究及其在水文模型中的应用[D].河海大学,2002.
    [21]Beven, K. A manifesto for the equifinality thesis [J]. Journal of Hydrology.2006(320):18-36.
    [22]Beven K J. Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems [J]. Journal of Hydrology.2001(249):11-29.
    [23]Beven K J. Calibration, validation and equifinality in hydrological modeling [J]. Anderson, M.G. and Bates, P.D. (eds.), Validation in hydrological modelling, John Wiley & Sons, Chichester, U.K. (2001 a),43-55.
    [24]Free J, Beven A M, Ambrolse, B. Bayesian estimation of uneertainty in runoff predietion and the value of data:An application of the GLUE approach [J]. Water Resources Research,1996, 32(7):2161-2173.
    [25]Kuczera G. Parent E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models:the Metropolis algorithm [J]. Journal of Hydrology,1998,211(1-4):69-85.
    [26]程声通,陈毓龄.环境系统分析[M].北京:高等教育出版社,1990.
    [27]王建平,程声通,贾海峰.基于MCMC法的水质模型参数不确定性研究[J].环境科学,2006,27(1):24-30.
    [28]Sherman L K. Stream flow from rainfall by the unit hydrograph method [J]. Engineering News Records,1933,14:446-460.
    [29]Horton R E. The role of infiltration in the hydrological cycle [J]. Trans. AGU,1933,189-202.
    [30]Penman H L. Natural evaporation from open water. Bare Soil and Grass [R]. Proceedings of the Royal Meteorological Society (series A), London.1948,193:120-145.
    [31]Crawford N H, Linsley R K. Digital simulation in hydrology:Standford Watershed Model Ⅵ [R]. Technical Report, Department of Civil Engineering, Standford University,1966.
    [32]Burnash R J C, Ferral R L, McGuire R A. A generalized streamflow simulation system: Conceptual modeling for digital computers [J].1973.
    [33]Finnerty B D, Smith M B, Seo D J, et al. Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs [J]. Journal of Hydrology.1997,203(1):21-38.
    [34]Gan T Y, Burges S J. Assessment of soil-based and calibrated parameters of the Sacramento model and parameter transferability [J]. Journal of Hydrology.2006,320(1):117-131.
    [35]Laurenson E M, Mein R G. Chapter 5:RORB:Hydrograph synthesis by runoff routing [M], in Computer models of watershed hydrology, edited by Singh V P, Wwater Resources Publications, Littleton Colo,1995.
    [36]Dawdy D R, Schaake J C, Alley W M. Users' guide for distributed routing rainfall-runoff model [R]. USGS Water Resources Invest. Rep. No.78-90. Gulf Coast Hydroscience Center, NSTL, Miss.1978.
    [37]Rossman L. Stormwater Management Model User's Manual Version 5.0 Cincinnati, OH: National Risk Management Research Laboratory,2005.
    [38]Sugawara M., et al. "Tank model and its application to Bird Creek, Wolombi Brook, Bikin River, Kitsu River, Sanga River and Nam Mune." Research Note, National Research Center for Disaster Prevention [J]. Kyoto, Japan,1974,11:1-64.
    [39]Bergstrom S. The HBV model-its structure and applications. SMHI Rep. RH, No.4.Norrkoping, Sweden.1992.
    [40]Beven K J, Kirkby M J.A physically based, variable contributing area model of basin hydrology [J]. Hydrological Bulletin,1979,24(1):43-69.
    [41]赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    [42]Hydrologic Engineering Center (HEC). Hydrologic modeling system HEC-HMS users' manual, Version 2 [R]. Engineering, U.S. Army Corps of Engineering. Davis Calif,2000.
    [43]Leavesley G H, Lichty R W, Troutman B M, et al. Precipitation-runoff Modelling System-user's Manual [J]. US Geological Survey Water Resources Investigation Report,1983.
    [44]Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European hydrological system-Systeme Hydrologique Europeen, "SHE",1:history and philosophy of a physically-based, distributed modeling system. Journal of Hydrology,1986,87:45-59.
    [45]Wood E F, Lettenmaier D P, Zartarian V G. A land-surface hydrology parameterization with subgrid variability for general circulation models [J]. J. Geophys. Res,1992,97:2717-2728.
    [46]Todini E. New trends in modeling soil processes fromhillslopes to GCM scales [R]. The role of water and hydrological cycle in global change, H.R. Oliver and S.A.Oliver, eds., NATO Advanced Study Institute, Series 1:Global, Kluwer Academic, Dordrecht, The Netherlands.1995.
    [47]Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and Water Assessment Tool Theoretical Documentation Version 2000 [M]. Temple, Texas:Texas Water Resources Institute, College Station,2002,19-506.
    [48]WMO. Intercomparision of conceptual models used in operational hydrological forecasting [R]. Operational Hydrology Report No.7, WMO-Publ., No.429, WMO, Geneva, Switzerland.1975.
    [49]Franchini, M. Pacciani, M. Comparative analysis of several conceptual rainfall-runoff models [J]. Journal of Hydrology.1991,122:161-219.
    [50]Gan T Y, Dlamini E M, Biftu G F. Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling [J]. Journal of Hydrology.1997,192:81-103.
    [51]Freeze R A, Harlan R L. Blueprint of a physically-based digitally-simulated hydrological response model [J]. Journal of Hydrology,1969,9:237-258.
    [52]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展.2002,21(4):341-348.
    [53]Morris E M. Forecasting flood flows in grassy and forested basins using a deterministic distributed mathematical model [A]. Hydrological Forecasting [C]. IAHS Publication,1980, 129:247-255.
    [54]王中根,刘昌明,黄友.SWAT模型的原理、结构及应用研究[J].地理科学进展.2003,22(1):79-86.
    [55]Srinivasan R, Arnold J G, Jones C A. Hydrologic modeling of the United States with the Soil and Water Assessment Tool [R].Water Resources Development.1988,4(3):315-325.
    [56]Manguerra H B, Engel B A. Hydrologic parameterization of watersheds for runoff prediction using SWAT. Journal of the American Water Resources Association.1998,34(5):1149-1162.
    [57]Soil Conservation Service (SCS) computer model for project formulation hydrology [R]. Tech.Release No.20, USDA, Washington, D. C.1983.
    [58]Rockwood, D M. Theory and practice of the SSARR model as related to analyzing and forecasting the response of hydrologic systems [J]. Applied modeling in catchment hydrology, V.P.Singh, ed., Water Resources Publications.Colo.,87-106.1982.
    [59]Kouwen N. WATFLOOD/SPL.Hydrological model and flood forecasting system [R]. Department of Civil Engineering, University of Wwaterloo, Waterloo,Ont.2000.
    [60]舒畅,刘苏峡,莫兴国,等.新安江模型参数的不确定性分析[J].地理研究,2008,27(2):343-352.
    [61]曾彩华,陈晓宏,王高旭.新安江模型与衰减记忆最小二乘法耦合洪水模型的应用[J].中山大学学报(自然科学版).2006,45(1):121-124.
    [62]Martins Y O, Li Z J. Effects of optimization characteristics and variable antecedent catchment's state on parameter calibration of the Xin'anjiang model [J]. Journal of Southeast University.2003, 19(4):399-404.
    [63]张小琴,包为民.新安江模型与水动力学模型结合的区间入流动态修正研究[J].中国农村水利水电,2008,6:37-41.
    [64]赵人俊,王佩兰.子洲径流实验站产流产沙分析[J].人民黄河,1980,2(2):15-19.
    [65]黄国如,芮孝芳,石朋.泾洛渭河流域产汇流特性分析[J].水利水电科技进展,2004,24(5):21-23.
    [66]程根伟.新安江岩溶水文模型[J].水电能源科学,1991.
    [67]李致家,姚成,汪中华.基于栅格的新安江模型的构建和应用[J].河海大学学报(自然科学版),2007,35(2):131-134.
    [68]袁飞,任立良.栅格型水文模型及其应用[J].河海大学学报:自然科学版,2004,32:483-487.
    [69]刘金涛,梁忠民.坡地径流入渗机制对水文模拟的影响分析[J].水科学进展,2009,20(4):467-472.
    [70]文康,金管深,李琪,等.地表径流过程的数学模拟[M].北京:水力电力出版社,1991.
    [71]关志成.寒区流域水文模拟研究[D].河海大学,2002.
    [72]晋华.双超式产流模型的理论及应用研究[D].中国地质大学,2006.
    [73]胡和平,汤秋鸿,雷志栋,等.干旱区平原绿洲散耗型水文模型—Ⅰ模型结构[J].水科学进展,2004,15(2):140-145.
    [74]梁忠民,施晔,李彬权,等.基于统计理论的产流模型[J].水科学进展,2009,20(6):789-793.
    [75]金鑫,郝振纯,张金良.水文模型研究进展及发展方向[J].水土保持研究.2006,13(4):197-199.
    [76]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997(5):5-10.
    [77]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997(1):94-98.
    [78]沈晓东,王腊春,谢顺平.基于栅格数据的流域降雨-径流模型[J].地理学报,1995,50(3):264-271.
    [79]任立良,刘新仁.数字高程模型在流域水系拓扑结构计算中的应用[J].水科学进展,1999,10(2):129-134.
    [80]郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [81]王中根,刘昌明,左其亭,等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5):430-439.
    [82]李兰,钟名军.基于GIS的LL-Ⅱ分布式降雨-径流模型的结构[J].水电能源科
    学,2003,21(4):35-38.
    [83]夏军,王纲胜,等.分布式时变增益流域水循环模拟[J].地理学报,2003,58(5):789-796.
    [84]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用[J].地理学报,2004a,59(1):143-154.
    [85]李致家,张珂,姚成.基于GIS的DEM和分布式水文模型的应用比较[J].水利学报,2006,37(8):1022-1028.
    [86]刘昌明,王中根,郑红星,等.HIMS系统及其定制模型的开发与应用[J].中国科学E辑:技术科学,2008,38(3):350-360.
    [87]刘昌明,杨胜天,温志群,等.分布式生态水文模型EcoHAT系统开发及应用[J].中国科学E辑:技术科学,2009,39(6):1112-1121.
    [88]徐宗学,等.水文模型[M].科学出版社,2009.
    [89]武震,张世强,张小文.流域水文模型参数识别的现代优化方法研究进展[J].冰川冻土,2008,30(1):64-71.
    [90]Holland J H. Adaptation in natural and artificial systems [M]. University of Michigan Press, Ann. Arbor, Michigan.1975.
    [91]Back T, Schwefel H P. Evolutionary Strategies Ⅰ:Variants and Their ComPutational ImPlementation. In:Genetic Algorithms in Engineering and Computer Science, winter G(ed), Wiley,1995,111-126.
    [92]Schwefel H P, Back T. Evolutionary Strategies Ⅱ:Theoretieal Aspects. In:Genetic Algorithms in Engineering and Computer Science, winter G(ed), Wiley,1995,127-140.
    [93]Forgel D B. An anlysis of evolutionary programming. In:Proceeding of 1st Annual Conference of Evolutionary Programming,1992,43-51.
    [94]Duan Q Y, Gupta V K, Sorooshian S. Effective and efficient global optimization for conceptual rainfall-runoff models [J]. Water Resources Research,1992(28):1015-1031.
    [95]倪长健.免疫进化算法[J].西南交通大学学报,2003,38(1):87-91.
    [96]Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces [R]. International Computer Science Institute,1995.
    [97]Vrugt J A, Gupta H V, Bouten W, et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters [J]. Water Resources Research,2003,39(8),1201, doi:10.1029/2002WR001642.
    [98]Ter Braak C J F. A Markov chain Monte Carlo version of the genetic algorithm differential evolution:easy Bayesian computing for real parameter spaces [J]. Statistical Computing. 2006,16,239-249.
    [99]Vrugt J A, ter Braak C J F, Gupta H V, et al. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? [J]. Stochastic Environmental Research and Risk Assessment,2008,1-16.
    [100]Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. NJ:Addison-Wesley,1989.
    [101]金菊良,丁晶.遗传算法及其在水科学中的应用[M].四川:四川大学出版社,2000.
    [102]杨晓华,杨志峰,郦建强,等.水文模型参数识别算法研究及展望[J].自然科学进展,2006,16(6):657-661.
    [103]杨晓华,陆桂华,郦建强.混合加速遗传算法在流域模型参数优化中的应用[J].水科学进展,2002,13(3):340-344.
    [104]Wang Q J. The genetic algorithm and its application to calibrating conceptual rainfall-runoff models [J]. Water Resource Research,1991,27(9):2467-2471.
    [105]Franchi M J. Using genetic algorithm combined with a local method for the automatic calibration of conceptual rainfall runoff models [J]. Hydrological Science Journal, 1996,41(1):21-40.
    [106]Cooper V A, Nguyen V T V, Nicell J A. Evaluation of global optimization methods for conceptual rainfall-runoff model calibration [J]. Water Science and Technology.1997.36(5): 53-60.
    [107]武新宇,程春田,赵鸣雁.基于并行遗传算法的新安江模型参数优化率定方法[J].水利学报,2004,11:85-90.
    [108]陆桂华,郦建强,杨晓华.水文模型参数优选遗传算法的应用[J].2004,2:50-56.
    [109]Duan Q Y, Gupta V K, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization [J]. Journal of Optimization Theory and Application,1993,76(3): 501-521.
    [110]Kuczera G. Efficient subspace probabilistic parameter optimization for catchment models [J]. Water Resources Research,1997,32(12):3513-3524.
    [111]Hapuarachchi H P, Li Z J, Wang S H. Application of SCE-UA method for calibrating the Xinanjiang Watershed model [J]. Journal of Lake Sciences,2001,12(4):304-313.
    [112]王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78.
    [113]张礼兵,金菊良,刘丽.基于实数编码的免疫遗传算法研究[J].运筹与管理,2004,13(4):17-20.
    [114]杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能.2008,21(4):506-513.
    [115]Fan H Y, Lampinen J. A trigonometric mutation operation to Differential Evolution [J]. Journal of Global Optimization,2003,27(1):105-129.
    [116]Mendes R, Mohais A S. DynDE:A Differential Evolution for dynamic Optimization Problems. Proceedings of the Congress on Evolutionary Computation [J]. Edinburgh, UK,2005, 3:2808-2815.
    [117]Liu J H, Lampinen J. A Fuzzy Adaptive Differential Evolution Algorithm [J]. Soft Computing: A Fusion of Foundations, Methodologies and Applications,2005,9(6):48-462.
    [118]吴亮红,王耀南,袁小芳,等.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902.
    [119]Chakraborty U K, Das S and Konar A. DE with Local Neighborhood, In Proceedings of Congress on Evolutionary Computation [M]. New York:IEEE Press,2006.
    [120]王文川,徐冬梅,邱林.差分进化算法在马斯京根模型参数优选中的应用[J].水利科技与经济,2009,15(9):756-758.
    [121]Beven K. Rainfall-Runoff modeling [M]. The Primer. John Wiley and Sons, Chichester,UK.
    (2001).
    [122]Kirkpatrick S, Gelatt C D Jr, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983,220:671-680.
    [123]董纯,康玲,侯国祥.基于遗传模拟退火法的马斯京根方程参数估计[J].华中科技大学学报(自然科学版).2002,30(10):20-22.
    [124]孟新华,涂启玉,周年华,等.基于遗传模拟退火算法的新安江模型参数优选[J].水电自动化与大坝监测.2009,33(3):64-67.
    [125]Kennedy J. Eberhart R. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway.1995,1942-1948.
    [126]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究[J].水力发电学报,2006,25(2):94-98.
    [127]江燕,刘昌明,胡铁松,等.新安江模型参数优选的改进粒子群算法[J].水利学报,2007,38(10):1200-1206.
    [128]杨道辉,马光文,刘起方,等.基于粒子群优化算法的BP网络模型在径流预测中的应用[J].水力发电学报,2006,25(2):65-68.
    [129]任斌,丰镇平.改进遗传算法与粒子群优化算法及其对比分析[J].南京师范大学学报:工程技术版.2002,2(2):14-20.
    [130]沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报.2005,34(5):696-699.
    [131]Nagesh K D, Janga R M. Multipurpose reservoir operation using particle swarm optimization [J]. Journal of Water Resources Planning and Management.2007,133(3):192-201.
    [132]Glover F. Future paths for interger programming and links to artifical intelligence [J]. Computers and Operations Research,1986,13:533-549.
    [133]张力明.人工神经网络[M].上海:复旦大学出版社,1989.
    [134]张洪刚,郭生练,刘攀,等.概念性水文模型多目标参数自动优选方法研究[J].水文,2002,22(1):12-16.
    [135]郑金华.多目标进化算法及其应用[M].科学出版社,2007.
    [136]Madsen H. Automatic calibration of a conceptual rainfall-runoff models using multiple objectives [J] Journal of Hydrology,2000,235(3):276-288.
    [137]Yapo P O, Gupta H V, Sorooshian S. Multi-objective global optimization for hydrologic models [J]. Journal of Hydrology,1998,204(1-4):83-97.
    [138]Cheng C T, Ou C P, Chau K W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration [J]. Journal of Hydrology,2002, 268:76-86.
    [139]Vrugt J A, Gupta H V, Bastidas L A, Bouten W, Sorooshian S. Effective and efficient algorithm for multiobjective optimization of hydrologic models [J]. Water Resources Research,2003, 39(8):1-19.
    [140]李向阳.水文模型参数优选及不确定性分析方法研究[D].大连理工大学,2005.
    [141]Gill M K, Kaheil Y H, Khalil A, et al. Multiobjective particle swarm optimization for parameter
    estimation in hydrology [J]. Water Resources Research,2006,42(7):pp.W 07417.
    [142]张文明,董增川,朱成涛,等.基于粒子群算法的水文模型参数多目标优化研究[J].水利学报,2008,39(5):528-534.
    [143]陈垌烽,张万昌,吴波.多目标遗传单纯形算法在概念性水文模型参数优化中的应用[J].水土保持通报.2008,28(3):107-112.
    [144]Moore R J. Real-time flood forecasting systems:Perspectives and prospects [M]. In Casale R. and Margottini C. (eds.). Floods and Landslides:Integrated risk assessment. Springer-Verlag, Berlin,1999, p.147-189.
    [145]Moore, R. J. The PDM rainfall-runoff model [J]. Hydrology and Earth System Sciences,2007, 11(1):483-499.
    [146]Evans J P, Jakeman A J. Development of a simple, Catchment-scale,] model [J]. Environmental Modelling & Software.1998,3:385-393.
    [147]Ye W, Bates B C, Viney N R, et al. Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments [J]. Water Resources Research,1997,33(1):153-166.
    [148]Jakeman A J, Hornberger G M. How much complexity is warranted in a rainfall-runoff model? [J]. Water Resources Research.1993,29(8):2637-2649.
    [149]Drane N. The development of a simple conceptual rainfall-runoff model for an ephemeral catchment in Southern England:Assessing the impacts of climate change scenarios on the hydrological system [D]. M.Sc. Thesis, Civil and Environmental Engineering Department, Imperil College London.2000.
    [150]Fedora M A, Beschta R L. Storm runoff simulation using an antecedent precipitation index (API) model [J]. Journal of Hydrology,1989,112(1-2):121-133.
    [151]Lees M J. Data-based mechanistic modelling and forecasting of hydrological systems [J]. Journal of Hydroinformatics.2000,02(1):15-34.
    [152]Chow V T, Maidment D R, Mays L W. Applied Hydrology [M]. McGraw-Hill, USA,1988.
    [153]Young P C, Parkinson S, Lees M J. Simplicity out of complexity in environmental modelling: Occam's razor revisited [J]. Journal of Applied Statistics.1996,23:165-210.
    [154]陈泽方,许全喜.岷江流域水沙变化特性分析[J].人民长江,2006,37(12):65-67.
    [155]李龙成,陈光兰,岑静,等.长江上游岷江流域水沙变化特征分析[J].人民长江,2008,39(20):42-44.
    [156]王渺林,刘德春,易瑜.岷江流域水资源安全问题探讨[J].水资源研究,2005,26(2):4-5.
    [157]王渺林,傅华.嘉陵江径流长期变化分析及预报[J].重庆交通学院学报,2006,25(6):135-138.
    [158]丁文峰,张平仓,任洪玉.近50年来嘉陵江流域径流泥沙演变规律及驱动因素定量分析[J].长江科学院院报,2008,25(3):23-27.
    [159]张明波,张新田,余开金.乌江流域水文气象特性分析[J].水文,1999,6:53-56.
    [160]王梦.乌江流域水资源开发中的岩溶地质问题探讨[J].2008,29(24):55-56.
    [161]Refsgaard J C, Knudsen J. Operational validation and intercomparison of different types of hydrological models [J]. Water Resources Research.1996,32(7):2189-2202.
    [162]Nash J E, Sutcliffe J V. River flow and forecasting through conceptual models 1:A discussion of
    principles [J]. Journal of Hydrology,1970(10):282-290.
    [163]Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images [J]. Transactions on Pattern Analysis and Machine Intelligence.1984,6:721-741.
    [164]Besag J. Markov Chain Monte Carlo Methods for Statistical Inference [J]. Markov Chain Monte Carlo:innovations and applications in statistics, physics, and bioinformatics.2004:1-16.
    [165]龚光鲁,钱敏平.应用随机过程教程及其在算法与智能计算中的应用[M].北京,清华大学出版社,2003.
    [166]Bates B C, Campbell E P. A Markov chain Monte-Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling [J]. Water Resources Research. 2001,37(4):937-947.
    [167]卫晓婧,熊立华,万民,等.融合马尔可夫链-蒙特卡洛算法的改进通用似然不确定性估计估计方法在流域水文模型中的应用[J].水利学报,2009,40(4):464-480.
    [168]Haario H, Saksman E, Tamminem J. An adaptive Metropolis algorithm [J]. Bernoulli,2001,7 (2):223-242.
    [169]Marshall L, Nott D, Sharma A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling [J]. Water Resources Research,2004,40, W02501. doi:10.1029/2003WR002378.
    [170]Blasone R S, Vrugt J A, Madsen H, et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling[J]. Advances in Water Resources,2008, 31:630-648.
    [171]Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6:721-741.
    [172]Gelfand A E, Smith A F M. Sampling based approach to calculating marginal densities [J]. Journal of the American Statistical Association,1990,85:398-409.
    [173]Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equations of state calculations by fast computing machines [J]. J. Chem. Phys.,1953,21,1087-1091.
    [174]Hastings W K. Monte Carlo sampling methods using Markov chains and their applications [J]. Biometrika,1970,57,97-109.
    [175]Gilks W R, Best N G, Tan K K C. Adaptive rejection Metropolis sampling for Gibbs sampling [J]. Applied Statistics.1995,44:455-72.
    [176]Gelman A G, Roberts G O, Gilks W R. Efficient Metropolis jumping rules [J]. In J. M. Bernardo, J. O. Berger, A. F. David and A. F. M. Smith (eds), Bayesian Statistics V, 1996,599-608.Oxford:Oxford University Press.
    [177]Thiemann M, Trosset M, Gupta H, et al. Bayesian recursive parameter estimation for hydrological models [J]. Water Resources Research,2001,37 (10),2521-2535.
    [178]Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences [J].Statistic Science,1992(7):457-472.
    [179]Roberts G O, Rosenthal J S. Optimal scaling for various Metropolis-Hastings algorithms [J]. Statistical Science.2001,16(4):351-367.
    [180]Vrugt J A, ter Braak C J F, Clark M P, et al. Treatment of input uncertainty in hydrologic modeling:Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research,2008,44(W00B09):1-15.
    [181]蔡毅,邢岩,胡丹.敏感性分析综述[J].北京师范大学学报(自然科学版),2008,44(1):9-16.
    [182]邓义祥,富国,于涛,等.改进的RSA方法在参数全局灵敏度分析中的应用[J].环境科学研究.2008,21(3):40-43.
    [183]Hornberger G, Spear R. An approach to the preliminary analysis of environmental systems [J]. Environmental Management,1981(12):7-18.
    [184]Wagener T, Kollat J. Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox [J]. Environmental Modeling and Software, 2007(22):1021-1033.
    [185]曹飞凤,袁伟,楼章华.富阳地区水资源自然支持力分析评价[J].自然资源学报,2007,22(5):800-807.
    [186]De Jong K A. Analysis of the behavior of a class of genetic adaptive systems [D]. Ann Arbor: Univ. Michigan,1975.
    [187]孙瑞祥,屈梁生.遗传算法优化效率的定量评价[J].自动化学报,2000,26(4):552-556.
    [188]孟红云.多目标进化算法及其应用研究[D].西安电子科技大学.2005.
    [189]Das I, Dennis J. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems [J]. Structural optimization,1997, 14(1):63-69.
    [190]Khu S T, Madsen H. Multiobjective calibration with Pareto preference ordering:An application to rainfall-runoff model calibration [J]. Water Resources Research,2005,41(3):W03004.
    [191]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach [J]. IEEE Transactions on Evolutionary Computation,1999,3 (4): 257-271.
    [192]雷德明,严新平.多目标智能优化算法及其应用[M].科学出版社,2009.
    [193]Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning [M]. Addison-Wesley-Longman, Reading, Mass,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700