用户名: 密码: 验证码:
小麦抗条锈病种质的鉴定及其抗性相关基因的差异表达和克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是世界上栽培面积最广且最重要的粮食作物之一,其产量直接关系世界的粮食安全。由条形柄锈菌(Puccinia striiformis f.sp.tritici)引起的条锈病是世界及中国影响小麦生产的重要病害之一,发掘、研究、利用蕴藏于小麦后备种质资源的抗条锈病资源以及研究抗条锈病种质的抗性分子机理对于小麦抗条锈病研究和育种具有重要的理论意义和实践价值。
     本研究以西藏半野生小麦(T. aestivum ssp. tibetanum Shao)、西藏小麦地方品种和普通小麦-奥地利黑麦(Secale cereale L.)衍生系为材料,对其进行条锈病抗性鉴定,评价种质资源的遗传多样性、对筛选的抗条锈病种质进行分子细胞遗传的鉴定;以筛选的小麦-黑麦免疫条锈病材料NR1121为主要研究对象,利用抑制消减杂交方法构建条锈菌侵染小麦苗期叶片的SSH-cDNA文库,应用生物信息学方法对获得抗性相关基因表达的EST序列进行比对,分析抗性相关基因表达谱,筛选抗性相关新基因;采用半定量RT-PCR与实时荧光定量PCR分析新基因的表达模式,克隆抗性新基因;利用大麦条斑病毒(BSMV)构建新基因的病毒诱导的基因沉默(VIGS)载体进行RNAi表达分析,验证新基因的功能。研究结果如下:
     1.以136份西藏半野生小麦、119份西藏地方小麦品种和70份小麦-黑麦衍生系为材料,根据对条锈菌小种条中32(CY32)的抗性鉴定结果,筛选出苗期与成株期均高抗条锈病的西藏半野生小麦2份(隆子折达7,隆子折达10)以及小麦-奥地利黑麦衍生系NR1121。利用内含子切接点引物(Intron-splice junction primers,ISJ)和长随机引物的PCR分子标记技术分析遗传多样性。结果表明,在26个ISJ引物和300个引物组合中,33(11%)个引物或组合的PCR产物具有多态性。在西藏半野生小麦中共扩增出333条稳定清晰的条带,243(72.97%)条具有多态性条带;在西藏地方小麦品种中共扩增出316条稳定清晰的条带,197(62.34%)条具有多态性条带。西藏半野生小麦的遗传多样性高于西藏地方小麦品种;多态性丰富的ISJ标记较好的反应了西藏半野生小麦与西藏地方小麦品种之间遗传差异。
     2.采用细胞学、C-分带、GISH、SSR、SCAR、STS和A-PAGE等方法对小麦-黑麦免疫条锈病的衍生系NR1121进行了鉴定。NR1121和奥地利黑麦对CY32免疫,其普通小麦亲本陕麦611和携带Yr9的洛夫林10、洛夫林13、秦麦9号、丰抗8号、陕229和偃师9号均高感。NR1121形态学和细胞学稳定,2n=42=21Ⅱ;C-分带表明NR1121有一对奥地利黑麦的1R染色体;以奥地利黑麦总基因组DNA为探针的原位杂交结果显示,NR1121含有2条奥地利黑麦染色体;SCAR(AF1和AF4引物对以及SCM-9)标记和STS(ω-sec-p3/ω-sec-p4)标记表明,NR1121携带黑麦1R的遗传物质;A-PAGE结果显示,NR112ω区的Gli-B1位点具有黑麦特征带,说明NR1121含有黑麦1RS遗传物质。鉴定结果表明,NR1121是一个免疫条锈菌小种CY32的小麦-黑麦1R二体异代换系,它携带的抗条锈病基因来源于奥地利黑麦,该基因可能是一个不同于Yr9的新抗条锈病基因。
     3.采用SSH技术构建了CY32侵染NR1121苗期叶片(非亲和互作)SSH-cDNA文库。在正交文库中随机挑取350个阳性克隆、测序,获得96条高质量EST序列,GenBank序列号为GO254150~GO254231、GR884577~GR884584和GT270714~GT270718。利用NCBI的BLASTX分析96条EST序列表明,78(81.2%)条EST找到同源性>90%的蛋白,其中已知蛋白功能的EST序列50条,主要涉及代谢(12.8%)、能量(9.0%)、信号转导(6.4%)、抗病防御(16.7%)、转运(5.1%)、蛋白质合成加工与储藏(5.1%)、转录(5.1%)、细胞结构(2.6%)和免疫(1.3%);未知功能的EST占35.9%。发现了与衰老联系蛋白、泛素蛋白连接酶2(Uubiquitin protein ligase 2, UPL2)、成熟酶K、膜转运蛋白YKT61和腺苷甲硫氨酸脱羧酶(S-adenosylmethionine decarboxylase, SAMDC)、丝氨酸/苏氨酸蛋白激酶SNT7(Serine/threonine protein kinase SNT7,S/PKSNT7)基因一致性高的EST序列。经文库比对,得到条锈病抗性相关蛋白22个,其中与抗病信号传导相关的蛋白5个,过敏性坏死反应(HR)体系表达蛋白1个,系统获得性抗性(SAR)体系病程相关蛋白13个以及SAR体系诱导防卫蛋白3个。
     4.反交文库中随机挑取150个阳性克隆、测序,获得69条高质量EST序列,GenBank序列号为GR884585~GR884652。69条EST分析表明,57(82.6%)条EST找到同源性>90%的蛋白,已知蛋白功能的EST序列28条。主要涉及代谢(12.3%)、能量(14.0%)、信号转导(7.0%)、抗病防御(1.8%)、转运(5.3%)、蛋白质合成加工与储藏(5.7%)、细胞结构(3.8%)和免役(1.9%);未知功能的EST占48.2%。经文库比对,得到条锈病抗性相关蛋白9个,其中与抗病信号传导相关的蛋白4个,HR体系表达蛋白1个,SAR体系病程相关蛋白3个,SAR体系诱导防卫蛋白1个。
     5.以酰基辅酶A合成酶(Acyl-coenzyme A synthetase,AcsA)和谷胱甘肽硫转移酶(Glutathione-S-transferase,GST)、脂转移蛋白(Lipid transfer protein,LTP2)和细胞色素P450(Cytochrome P450,CP450)、UPL2、S/PKSNT7、丝氨酸羧甲基转移酶(Serine hydroxy methyl transferas,SHMT)和SAMDC等8个候选基因为研究对象,利用半定量RT-PCR和实时荧光定量PCR分析了条锈菌侵染后它们在陕麦611(亲和反应)与NR1121(非亲和反应)中的表达模式。半定量RT-PCR与实时荧光定量PCR两种分析候选基因表达模式的结果基本一致;但是在条锈菌侵染后的非亲和反应与亲和反应中的它们表达时间和表达量有较大差异。条锈菌侵染后,AcsA在非亲和反应与亲和反应中均于24hpi(hours post inoculation)上调表达至最高水平,仅仅是表达量存在差异。GST、LTP2、CP450、UPL2、S/PKSNT7、SHMT和SAMDC基因在两种组合中的表达量和表达模式不同,在非亲和反应中均在24 hpi或48hpi上调表达较高水平;而在亲和反应中延迟至72hpi或更晚上调表达、或者呈下调表达(UPL2、SAMDC)。正是由于转运与抗病信号转导类和病害防御类等7个候选基因在关键的24 hpi至48 hpi特异上调表达(非亲和反应),参与了小麦的抗条锈病反应。结果表明条锈菌侵染后24 hpi至48 hpi是小麦苗期(非亲和反应)抗性相关基因表达的关键时期,可能是构建垂直抗CY32小麦材料SSH-cDNA文库的最佳时期。
     6.利用电子克隆、RACE和RT-PCR方法相结合,分别克隆了新的小麦腺苷甲硫氨酸脱羧酶(TaSAMDC2,GU016570)和丝氨酸/苏氨酸蛋白激酶SNT7基因(TaSNT7,GU574209)。TaSAMDC2基因cDNA序列全长2003 bp,5′非翻译区区域和一个带有Poly(A)的3′非翻译区区域分别长553和283 bp;该基因的开放阅读框为1167 bp,编码388个氨基酸,编码的氨基酸序列包含酶原剪切位点和PEST结构域。TaSAMDC2的基因组序列全长2539 bp,位于5′UTR存在526 bp的内含子序列,内含子的剪切位点均符合真核生物GT-AG规则。同源序列分析表明,TaSAMDC 2与来自大麦、水稻(Oryza sativa L.)、玉米(Zea mays L.)、一粒小麦(T. monococcum L.)4种植物SAMDC蛋白的相似性分别为95.0%、85.0%、80.0%和80.0%。TaSNT7基因cDNA序列与基因组序列均为1555 bp,TaSNT7基因的开放阅读框为1035 bp,编码344个氨基酸的多肽。同源序列分析表明,TaSNT7基因与水稻、玉米、茄属(Solanum lycopersicum)和烟草(Nicotiana tabacum)同源性分别为84.0%、84.0%、25.0%和25.0%。利用中国春缺体-四体系,将TaSNT7基因定位在小麦1D染色体上。
     7.利用VIGS体系分析了TaSNT7和TaSAMDC 2基因的功能,明确它们在小麦抗条锈病病程中的作用。对BSMV转染抗病植株后的转录物进行实时荧光定量PCR检测发现,BSMV-TaSNT7和BSMV-TaSAMDC2转染的小麦中检测到较低基因的转录物,表明TaSNT7基因和TaSAMDC2基因发生了沉默和部分沉默;小麦植株表型结果初步证实了TaSNT7基因参与了小麦的抗条锈病反应。
Common wheat(Triticum aestivum L.)is the most widely grown food crop. Its production directly affects food security in the world. Stripe rust, caused by the obligate biotroph fungus Puccinia striiformis f. sp. Tritici Eriks (Pst), is one of the most destructive disease in common wheat production worldwide. Therefore, it is urgent to identify new stripe rust resistance germplasm and genes, broaden the spectrum of disease-resistant varieties, and study gene expression profiling and pattern for dissecting the regulatory mechanism and transcriptional networks that underlie phenotypic responses.
     T. aestivum ssp. tibetanum Shao, Tibetan wheat landraces (T. aestivum L.) and common wheat-Austrila rye (Secale cereale L.) derivatives as materials, their stripe rust resistance and germplsm genetic diversity were analyzed. Molecular cytogenetic identification of screened germplasm wheat- S. cereale derivative NR1121 immune to stripe rust was done. A SSH(Suppression subtractive hybridization)-cDNA library was constructed with the seedling leaves from wheat germplasm NR1121 infected by Chinese Pst race CY32. Resistance-related ESTs from SSH-cDNA library were anlyzed by bioinformatics methods, and resistance-related gene expression profiles was obtained, and then resistance-related novel genes were screened. The expression pattern of novel genes were analyzed by the semi-quantitative RT-PCR and real-time PCR, and the novel genes were cloned. The function of novel genes was verified by VIGS (Virus induced gene silencing) system constructed with BSMV (Barley stripe mosaic virus). The main results are as follows:
     1. Based on the identification results resistant to Pst isolation CY32 at seedling and adult, two T. Tibetanum Shao accessions(Longzizheda7and Longzizheda10) highly resistant to Pst and wheat- S. cereale derivative NR1121 immune to Pst were screened from 136 T. Tibetanum Shao accessions, 119 Tibetan wheat landraces and 70 wheat- S. cereale derivatives. The genetic diversities of 136 T. Tibetanum Shao accessions and 119 Tibetan wheat landraces were detected by using PCR method with ISJ (intron-splice junction) primers and long random primers. The results indicated 33(11%) primers or primer combinations out of 26 ISJ primers and 300 primer combinations could yield polymorphic bands. 333 good bands were produced from T. Tibetanum Shao accessions and 243(72.97%) bands were polymorphic. 316 good bands were produced from Tibetan wheat landraces and 197(72.97%) bands were polymorphic. The genetic diversities of T. Tibetanum Shao accessions were more than that of Tibetan wheat landraces. The genetic difference between T. Tibetanum Shao and Tibetan wheat landraces were identified by high polymorphic ISJ markers.
     2. S.cereal chromation in NR1121 was detected by chromosome karyotyping, C-banding, GISH (genomic in situ hybridization), SSR, SCAR, STS and A-PAGE. NR1121 and Austrian rye were immune to Pst isolate CY32 and Shaanmai 611 and six wheat cultivars (Lovrin 10,Lovrin 13,Qingmai No.9,Fengkang No.8,Shaan229 and Yanshi No. 9) with Yr9 were highly susceptible to CY32. NR1121 was stable in cytology with chromosome numbers 2n=42=21Ⅱ. Giemsa C-banding result showed that one pair of rye 1R chromosomes was detected in NR1121. GISH results with Austrian rye genomic DNA as a probe showed that two chromosomes of NR1121 was transferred from S.cereal. SCAR (primer combination AF1 and AF4, and primer SCM-9) and STS (primer combinationω-sec-p3 andω-sec-p4) markers indicated that NR1121 possessed chromatin of rye 1R chromosome. A-PAGE results indicated that Gli-B1 inωregion of NR1121 had the specific band of Austrian rye 1R short chromosome arm. All the results demonstrated that NR1121 was a wheat-S. cereale 1R disomic substitution line and immune to CY32. The resistant gene in NR1121 was derived from Austrian rye and probably had a new gene differing from Yr9.
     3. A SSH-cDNA library was constructed with the seedling leaves from NR1121 infected by Chinese Pst race CY32. From the forward library, 350 positive clones were randomly selected for plasmid extraction and sequencing, and 96 ESTs (expressed sequence tags) were obtained after removing repeated and redundancy sequences and submitted to GenBank. Accession numbers of GenBank were from GO254150 to GO254231, GR884577 to GR884584 and GT270714 to GT270718. BlastX alignment revealed that 78 of 96 ESTs predicted genes had more than 90% similarity to proteins and 50 ESTs with known function were involved in metabolism (12.8%), energy (9.0%), disease/defense (16.7%), signal transduction (6.4%), transportation (5.1%), protein synthesis, destination and storage (5.1%), transcription (5.1%), cell growth/division (2.6%), and the immune system (1.3%). The function of 35.9% ESTs were not known. ESTs with a high similarity to sequences of senescence-related proteins, UPL2 (Ubiquitin-protein ligase 2), maturase K, membrane transporter YKT61, SAMDC (S-adenosylmethionine decarboxylase), and S/PKSNT7 (Serine/threonine protein kinase SNT7) were discovered. There were 22 ESTs associated with stripe rust resistance, including 5 ESTs for signal transduction, 1 for HR (Hypersensitive necrosis reaction) system, and 16 for SAR (Systemic acquired resistance) system, respectively.
     4. A total of 150 positive clones were randomly chosen from the inverse SSH-cDNA library and sequenced. 69 ESTs were obtained after removing repeated and redundancy sequences and submitted to GenBank. Accession numbers of GenBank were from GR884585 to GR884652. BlastX alignment revealed that 57(82.6%) of 69 ESTs predicted genes had 90% similarity to known genes and ESTs with known function were involved in metabolism (12.3%), energy (14.0%), disease/defense (1.8%), signal transduction (7.0%), transportation (5.3%), protein synthesis, destination and storage (5.17%), cell growth/division (3.8%), and the immune system (1.9%). The function of 48.2% ESTs was not known. There were 9 ESTs associated with stripe rust resistance, including 4 ESTs for signal transduction, 1 for HR system, and 4 for SAR system, respectively.
     5. The expression pattern of eight genes, which may participate in energy metabolism, disease resistance and defense, transportation, and signal transduction, were analyzed in Shaanmai 611 (Compatible interaction) and NR1121 (Incompatible interaction) by the semi-quantitative RT-PCR and real-time PCR. These genes were AcsA (Acyl-coenzyme A synthetase), GST ( Glutathione-S-transferase ) , LTP2 (Lipid transfer protein), CP450 (Cytochrome P450), UPL2, S/PKSNT7, SHMT (Serine hydroxy methyl transferas) and SAMDC. The results from semi-quantitative RT-PCR and real-time PCR of eight predicated genes were consistent with each other. The expression time and level of these genes were obviously different between Shaanmai 611 and NR1121. The genes AcsA was up-regulated to their highest expression level at 24 hpi(hours post inoculation) after Pst infection in Shaanmai 611 and NR1121, but the expression level was different. The expression level and time of the genes GST, LTP2, CP450, UPL2, S/PKSNT7, SHMT and SAMDC were different in between Shaanmai 611 and NR1121. These six genes were up-regulated to their highest expression level at 24 hpi or 48 hpi after Pst infection in NR1121, but the gene UPL2 and SAMDC were down- regulated and the other five genes up-regulated to their highest level at 72 hpi or later in Shaanmai 611. The results demonstrated that GST, LTP2, CP450, UPL2, S/PKSNT7, SHMT and SAMDC were highly induced at 24 hpi or 48 hpi after Pst infection in NR1121, suggesting they are transcriptionally activated for the host defense response. The key expression stage of resistance-related genes were from 24 hpi to 48 hpi in NR1121 seedling (Incompatible interaction) after Pst infection, which could be the optimal stage constructed seedling SSH-cDNA library of wheat resistant (Race specific) to CY32.
     6. Two new wheat genes, which were SAMDC gene designated as TaSAMDC2(GenBank accession number is GU016570) and S/PKSNT7 gene designated as TaSNT7(GenBank accession number is GU574209), were isolated from NR1121with in silico cloning,RT-PCR and RACE techniques. The cDNA complete sequence of TaSAMDC2 was 2003 bp in length and its 5' untranslated region (5'-UTR) and 3' untranslated region (3'-UTR) with Poly(A) were 553 and 283 bp , rsspectively. Open reading frame (ORF) of TaSAMDC2 gene was 1167 bp and encoded 388 amino acids containing conserved sequence with the proenzyme cleavage site and one typical conserved PEST domain of pathogenesis related protein SAMDC family. The genome DNA complete sequence of TaSAMDC2 was 2539 bp in length and its 5'-UTR contained 526bp intron with the splicing sites of GT-AT bi-nucleotidesequence. Homologous analysis found that TaSAMDC2 were 95.0%, 85.0%, 80.0% and 80.0% of sequence similarity with SAMDC proteins from barley(Hordeum vulgare L.), rice (Oryza sativa L.), maize (Zea mays L.) and wheat (T. monococcum L.), respectively. The cDNA and genome DNA complete sequence of TaSNT7 was 1555 bp in length. Open reading frame (ORF) of TaSNT7 gene was 1035 bp and encoded 388 amino acids. Homologous analysis found that TaSNT7 were 84.0%, 84.0%, 25.0% and 25.0% of sequence similarity with S/PKSNT7 proteins from rice (Oryza sativa L.), maize (Zea mays L.), solanum (Solanum lycopersicum) and tobacco (Nicotiana tabacum) , respectively. TaSNT7 was located on 1D chromosome by Chinese spring nullisomic-tetrasomic lines.
     7. With the established VIGS system, function analysis of two genes, TaSAMDC2 and TaSNT, were carried out in order to clarify their role during wheat in response to Pst attack. RNA was reversely transcripted into cDNA and BSMV recombination system was constructed to inoculate wheat. Real-time PCR results indicated that the low transcription products were detected in wheat inoculated by BSMV-TaSNT7 and BSMV-TaSAMDC2, which suggesting that TaSNT7 and TaSAMDC2 genes were silenced or partially silenced. Phenotype results indicated that the gene TaSNT7 played a role in stripe rust resistance pathway in wheat.
引文
蔡习文.1994.荆州黑麦染色体分析及C显带核型.华中农业大学学报,13(1):90~92
    陈晓红,牛永春,胡宝忠.2004.用变性PAGE-银染法鉴定小麦抗条锈基因的Yr5的RAPD标记.遗传学报,31(3):270~274
    陈英,黄敏仁,诸葛强等.2002.植物抗病信号传导途径及其相互作用.南京林业大学学报(自然科学版),26(3):85~91
    楚秀生,黄承彦,杨平平,单承荣.1997.外源DNA导入普通小麦变异株系的性状及蛋白质分析. 山东农业科学,1:15~17
    崔运兴,马缘生.1990.中国特有小麦的酯酶同工酶.植物学报,32(1):39~44
    董宏平,彭建令,余晓江,赵静,王颖,董汉松.2003.植物抗病性信号传导调控基因的克隆与表达检测方法的研究.南京农业大学学报,26(4):30~35
    董玉琛.2000.小麦的基因源.麦类作物学报,20(3):78~81
    高海波.2006.小麦-中间偃麦草抗锈病易位系的创制及分子生物学鉴定. [博士学位论文].内蒙古:内蒙古农业大学硕士论文
    高玉龙,郭旺珍,王磊,张天真.2007.一个棉花β-1,3-葡聚糖酶基因全长cDNA的克隆与特征分析.作物学报,33:1310~1315.
    郭长虹,石锐,王同昌张艳,张百臣,唐力平,李集临. 2001.小麦-黑麦异代换及小麦种内易位系的分子细胞遗传学检测.西北植物学报,21(3):413~418
    范文艳,姜述君.2005.植物抗病性及抗病信号转导的研究进展.中国农学通报, 21(2):249~253
    郝小燕,王红玲,刘春,麻浩.2006.改进的ISTA麦醇溶蛋白聚丙烯酰胺凝胶电泳方法在小麦品种真实性和纯度鉴定中的应用.种子,25(2):10~12,16
    郝彦玲,朱本忠,栾春光,刘宽庆,罗云波.2006.向日葵种子特异性启动子Hads10G1的克隆及其功能验证.农业生物技术学报,14(6):922~925
    侯永翠,郑有良,魏育明,刘登才,兰秀锦.2001.黑麦属醇溶蛋白遗传多样性研究.四川农业大学学报,19(2):109~111
    胡建广,赵相山,刘军,袁自强,杨金水. 1999.玉米苹果酸脱氢酶基因的分离与结构分析.植物学报,41(1):40~44.
    黄亨履,翁跃进,张贤珍,陆平.2002.西藏半野生小麦遗传多样性研究进展以及原位保存的建议.植物遗传资源科学,3(2):28~33
    黄雪玲,喻修道,屈志鹏,王晓杰,韩青梅,黄丽丽,康振生.2007.小麦成株抗条锈性抑制差减杂交文库构建及表达序列标签分析.农业生物技术学报, 15:976~981
    井长勤,陈荣振,冯国华,刘东涛,张会云.2005.52个重要小麦品种抗条锈基因的推导.江苏农业学报, 21(1):30~34
    贾燕涛.2003.植物抗病信号转导途径.植物学通报, 20(5):602~608
    兰秀锦,魏育明,郑有良刘登才,周永红.2001.中国半野生小麦的酯酶同工酶分析.四川农业大学学报,19(2):122~125
    李广存,金黎平.2004.谢开云等抑制差减杂交(SSH)技术及其在植物基因分离上的应用.中国生物工程杂志,24(9):26~32
    李洪杰,朱至清,张艳敏,郭北海,文玉香,贾旭.1998.组织培养诱导的普通小麦-黑麦代换系和附加系分子细胞遗传学检测.植物学报,40(1):37~41
    李立会,李秀全,杨欣明.2000.小麦种质资源描述规范和数据标准.北京:中国农业出版社, 50~60
    李懋学,张赞平.1996.作物染色体及其研究技术.北京:中国农业出版社
    李强,王保通,王芳,井金学,李高宝,刘亚萍.2005.2004年新育成小麦品种(系)成株期抗条
    锈性鉴定分析.西北农林科技大学学报(自然科学版),33(增):14~16
    李强,王保通,王芳,井金学,任亚琴,王辉.2007.2000~2006年新育成小麦品种(系)抗条
    锈性鉴定分析.麦类作物学报,(6):1128~1131
    李文风,牛永春,昊立人. 2001.植物抗病基因克隆与功能研究进展.生命科学,4: 151~153
    李效尊,袁晓君,蒋苏,杜辉,潘俊松,何欢乐,吴爱忠,蔡润.2007.黄瓜序列特征性扩增区域标记(SCAR)的开发.分子植物育种,5(3):393~402
    李星.2008.小麦抗叶锈病基因Lr41差异表达研究.[博士学位论文].保定:河北农业大学
    李雪莉,郑有良,魏育明,周永红,刘登才,兰秀锦.2000.小麦抗白粉病优质高产T1BL.1RS易位系的鉴定与分析.四川农业大学学报,18(3):205~208
    李振岐,曾士迈.2002.中国小麦锈病.北京:中国农业出版社, 41~50,164~173
    李振歧.1980.我国小麦品种抗条锈丧失原因及其解决途径.中国农业科学,(3)72~77
    李振声,容珊,钟冠昌.1985.小麦远缘杂交.北京:科学出版社, 84~129
    李慧,丛郁,常有宏. 2010,番茄植物络合素合酶基因全长cDNA的克隆及其表达特点. 江苏农业学报,26 :136~142
    廖勇,张增艳,杜丽璞,徐惠君,姚乌兰,石建业,任正隆,辛志勇.2007.中间偃麦草RAR1基因的分离及其在小麦背景中的功能分析.中国农业科学,40:1667~1674
    刘博,崔素萍,王晓杰黄丽丽,康振生.2007.条锈菌诱导的小麦β1,3葡聚糖酶基因编码区的克隆及原核表达.西北农林科技大学学报(自然科学版),35(6):125~129
    刘春燕,王伟权,陈庆山,杨翠平,李文滨,辛大伟,金振国,宋英博.2005.大豆花叶病毒胁迫诱导的消减文库构建及初步分析.生物工程学报,21(2):320~322
    刘桂丰,侯英杰,王玉成,褚延广.2005.干旱胁迫下刚毛柽柳消减文库的构建及分析.植物研究, 1:69~73
    刘建中,李滨,李继云,李振声.1997.黑麦染色体组有效利用土壤潜在磷基因的遗传分析.遗传学报,24(6):519~523
    刘乐承,向珣,曹家树.2006.白菜雄性不育相关基因BcMF4基因功能的RNAi验证.遗传,28(11):1428~1434
    刘强,张贵友,陈受宜.2000.植物转录因子的结构与调控作用.科学通报,45(14):1465~1474
    刘树兵.2005.小麦近等基因导入系的建立及高大山羊草与小麦杂交后代的鉴定.[博士后学位论文]北京:中国农业科学院
    刘松洁,商鸿生,李振岐.1991.小麦低反应型抗条锈性的组织病理学研究.西北农林科技大学学报(自然科学版),19(S):11~16
    刘天明,胡银岗,张宏,宋国琦,林凡云,吉万全.2006.条锈菌诱导的抗锈小麦种质的基因表达分析.西北植物学报,26(3):0521~0526
    刘晓东,张增艳,辛志勇,刘艳.2005.蚜虫诱导的小麦基因cDNA的克隆及其表达特性分析.作物学报,4:523~525
    刘晓东,张增艳,姚乌兰,辛志勇.2005.在小麦上实施大麦条斑病毒诱导的基因沉默.作物学报,31(11):1518~1520
    刘晓斐,徐久振,侯宇清,詹树萱,葛晓春,曹凯鸣.1999.水稻脂质转移蛋白基因的分离和分析.植物学报,41(7):736~740
    刘旭,史娟,张学勇,马缘生,贾继增.2001.小麦耐盐种质的筛选鉴定和耐盐基因的标记.植物学报,43(9):948~954
    刘彦锋,刘瑛,李娜.2005.植物抗病基因工程的研究进展及前景展望.生物技术通报,5: 7~10
    刘志勇,王孝宣,高建昌,国艳梅,杜永臣,叶雪凌.2008.番茄S-腺苷蛋氨酸脱羧酶基因SlSAMDC1的克隆与序列分析.园艺学报,35(8):1137~1146
    逯腊虎,李振兴,倪中福,彭惠茹,聂秀玲,孙其信.2007.小麦杂种优势群研究Ⅵ.普通小麦与穗分枝小麦、轮回选择后代材料、西藏半野生小麦和斯卑尔脱小麦早熟诱变系的SSR分子标记遗传差异研究.麦类作物学报,27(2):201~206
    骆蒙,孔秀英,霍纳新,周荣华,贾继增.2001.基于抑制差减杂交方法的小麦抗白粉病相关基因表达谱研究.科学通报,47(16):1237~1241
    骆蒙,孔秀英,霍纳新,周荣华,贾继增.2002.小麦抗白粉病侵染初期的表达序列标签分析.遗传学报,29(6):525~530
    罗明武,邓柳红.2010.巴西橡胶树磷脂酰肌醇转移蛋白cDNA的克隆及其序列分析.基因组学与应用生物学, 29: 164~169
    马渐新,周荣华,贾继增.1997.用基因组原位杂交和RFLP标记鉴定小麦-簇毛麦抗白粉病代换系.遗传学报,24(5):447~452
    马金彪,王晓杰,于秀梅,徐亮胜,韩青梅,黄丽丽.2007.康振生条锈菌诱导的小麦叶片cDNA文库构建及表达序列标签分析.植物病理学报,37(3):265~270
    马淑娟,喻树迅,范术丽,宋美珍.2007.转棉花叶绿体Cu/Zn-SOD基因烟草的获得及其功能的初步验证.分子植物育种,5(3):319~323
    马啸,任正隆,晏本菊,张怀琼.2005.小麦-黑麦远缘杂交后代高分子麦谷蛋白亚基变异分析.种子,24(10):4~7
    马有志,徐琼芳,辛志勇,李连成,富田因则,中田升,安室喜正,福井希一.2001.应用C-分带-原位杂交技术定位黑麦45SrRNA基因.亚洲植物染色体研究新进展:第一届亚洲植物染色体学术讨论会论文集(福井希一,辛志勇主编).北京:中国农业科学技术出版社,1:317~321
    秘彩莉,温小杰,张学勇,刘旭. 2009,小麦类CTR1基因的克隆和特性分析.中国农业科学, 42(11):3785~3794
    孟凡磊,强小林,佘奎军,唐亚伟,胡银岗.2007.西藏主要农区青稞品种的遗传多样性分析.作物学报,33(11):1910~1914
    孟凡荣,李永春,凌娜,王潇,司志飞,张艳霞,尹钧. 2009.两个小麦甲基结合蛋白基因cDNA全长克隆及其在种子中的表达特性.中国农业科学, 2009,42:4132~4138
    孟凡荣,李占英,凌娜,王潇,司志飞,尹钧,李永春.2010. TaMBD2基因cDNA全长克隆及其在小麦叶片和种子中的表达.麦类作物学报,,30(1):6~10
    彭艳,张金锐,刘勇,何光源.2006.西藏半野生小麦高分子量麦谷蛋白亚基组成分析.西北植物学报,26(4):0827~0831
    任树新,吴郁文,McIntosh R A,张翠兰,刘春江,Sharp P J,The T T,张炎.1997.抑制Pm8抗性表达的遗传学研究及Pm8抗性抑制基因的染色体定位.遗传学报,24(1):336~343
    任正隆.1991.黑麦种质导入小麦及其在小麦育种中的利用方式.中国农业科学,24(3):18~25
    任正隆.1993.小麦遗传背景对黑麦抗叶锈基因Lr26的抗性表达的影响.遗传学报,20(4): 312~316
    沈国顺,刘丽霞.2004.抑制性差减杂交技术(SSH)及其研究应用进展.中国兽医学报,24(5):511~514
    舒焕麟,杨足君,李光蓉. 2000.几个具有黑麦外源种质的小麦材料的遗传分析.四川农业大学学报,18(3):223~227
    宋敏,胡建民,何孔旺.2005.PCR定量方法概述.上海畜牧兽医通讯,2:18~19
    宋运贤,李春莲,陈耀锋,任惠莉,亢福仁,韩德俊,郭东伟,李振岐.2003.小麦抗条锈新种质的创制III小麦抗条锈新种质细胞遗传学初步鉴定.西北农林科技大学学报(自然科学版),31(5):9~13
    宋振巧,晏本菊,任正隆,张怀渝,傅体华.2001.小麦-黑麦远缘杂交后代储藏蛋白遗传变异分析.四川农业大学学报,19(4):411~414
    孙晓红,冯爱萍,陈明杰,潘迎捷.2006.草菇冷诱导相关基因的克隆与序列分析.菌物学报,25(1): 88~93
    万安民,赵中华,吴立人.2003.2002年我国小麦条锈病发生回顾.植物保护,29:5~8
    汪沛洪.1990.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,26:1~7
    王保通.2007.中国小麦条锈菌优势种群预测及主要流行菌系的AFLP指纹分析. [博士学位论文].杨凌:西北农林科技大学
    王二明,文玉香,魏荣瑄,胡含.1997.一个小麦/黑麦小片段染色体易位系的创制和鉴定.遗传学报,24(5):453~457
    王海燕.2005.云南、西藏与新疆小麦的遗传多样性研究. [博士学位论文].南京:南京农业大学
    王静,王献平,纪军,王志国,安调过,李俊明,张相岐.2006.小麦-黑麦1RS/1BL新易位系的创制和分子细胞遗传学鉴定.作物学报,32(1):30~33
    王力华,戴小枫,方宣均,戎均康,Paterson A H.2004.大丽轮枝菌毒素诱导表达陆地棉cDNA序列的克隆与定位.中国农业科学,37(10):1474~1480
    王晓娟,李兴林,王亚馥. 2000.高粱总DNA导入春小麦稳定后代高分子量谷蛋白亚基的变异.西北植物学报,20(6):979~983
    王彦华,侯喜林,申书兴.2007.白菜WRKY转录因子cDNA全长的克隆及分析.农业生物技术学报,15(5):810~815
    王艳飞,屈志鹏,张永红,马金彪,郭军,韩青梅,黄丽丽,康振生.2008.小麦与条锈菌非亲和互作的cDNA文库构建及表达序列标签分析.中国农业科学,41:3376~3381
    王玉成,李红艳,杨传平,张国栋.2007.cDNA微阵列技术研究干旱胁迫下柽柳基因的表达.植物研究,27(2):186~194
    王志国,安调过,李俊明,MARTS M L,纪军,钟冠昌,穆素梅.2004.小偃6号背景下黑麦遗传物质的荧光原位杂交分析.植物学报,46(4):436~442
    王志清,龙海,郑有良,颜泽洪,魏育明,兰秀锦.2005.西藏半野生小麦LMW-GS基因的克隆及序列分析.遗传学报,234(1):87~94
    王忠华,贾育林,夏英武.2004.植物抗病分子机制研究进展.植物学通报, 21(5):521~53
    魏春娣.2005.重要小麦农家品种抗条锈性遗传分析及RAPD分子标记. [硕士学位论文]吉林农业大学
    魏育明,郑有良,周荣华,贾继增. 1999.应用荧光原位杂交和RFLP标记检测多小穗小麦新种质10-A中的黑麦染色质.植物学报,41(7):722~725
    魏育明,郑有良,周荣华,周永红,颜泽洪,贾继增,张志清.2001.几种鉴定小麦背景中1BL/1RS易位染色体的分子标记方法比较研究.四川农业大学学报,19(1):10~14
    翁东旭,徐世昌,蔺瑞明,万安民,李景鹏,吴立人.2005.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记.遗传学报,32 (9):937~941
    吴金华.2008.小麦-黑麦抗白粉病衍生系遗传学分析及其抗性相关基因差异表达与克隆.[博士学位论文].杨凌:西北农林科技大学
    吴金华,胡银岗,王新茹,张宏,王长有,王秋英,吉万全, 2008.小麦抗白粉病SSH-cDNA文库中差异基因的表达模式.作物学报,34:2121~2125
    吴金华,王新茹,王长有,王秋英,吉万全.2009.含抗白粉病新基因普通小麦-黑麦1R二体异附加系的遗传学鉴定.农业生物技术学报,17 (1):153~158
    吴立人,牛永春.2000.我国小麦条锈病持续控制的策略.中国农业科学,33(5):1~7
    吴卫,郑有良,魏育明,周永红,刘登才.1999.利用RAPD技术分析小麦强优势组合亲本遗传差异. 四川农业大学学报,7(2):123~128
    伍玲,谭君,朱华忠.2007.四川近年小麦区试品系中Yr5、Yr10和Yr15的分子标记检测.西南农业学报,20(2):316~320
    武军,李立会,王辉,杨欣明,李秀全,刘伟华,李洪杰.2007.普通小麦-冰草衍生后代中抑制成穗新种质的外源物质检测与遗传分析.中国农业科学,40(4):850~854
    徐晨曦,姜静,刘甜甜,王玉成,刘桂丰,杨传平.2007.柽柳泛素结合酶基因(E2s)的序列分析及功能验证.东北林业大学学报,35(11):1~4
    徐乃瑜,严家骐,武军驻.2000.外源DNA导入小麦引起遗传变异的验证.武汉植物学研究, 18(5):351~355.
    许喜堂,赵惠青. 1999.控制小麦条锈病的现状与设想.北京农学院学报,14(2):8~12
    薛秀庄,王祥正,吉万全. 1993.小麦染色体工程与育种.河北:河北科学技术出版社,49~56.
    杨平,胡军,王玉成,尹维波,陈宇红,姜静,李集临,胡赞民.2007.紫杆柽柳谷胱甘肽硫转移酶基因的克隆及功能鉴定.农业生物技术学报,15:76~80
    杨新泉,宋星,杜金昆,倪中福,孙其信.2007.六倍体小麦(AABBDD)及其近缘种属野生二粒小麦和粗山羊草叶绿体SSR遗传差异研究.中国农业科学,40(7):1324~1330
    杨足君,李光蓉,蒋华仁,任正隆. 2001.普通小麦与非洲黑麦双二倍体中随体、醇溶蛋白和抗病性表达的染色体组相互作用研究.四川农业大学学报,19(4):340~343
    杨作民,解超杰,孙其信.2003.后条中32时期我国小麦条锈抗源之现状.作物学报29(2):161~168
    易图永,谢丙炎,张宝玺,高必达.2002.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用.生物技术通报,(2):16~20
    于秀梅,喻修道,屈志鹏,韩青梅,郭军,黄丽丽,康振生.2007.条锈菌诱导的小麦抑制差减杂交文库构建及其表达序列标签研究.植物病理学报,37(1):50~55
    张碧波,廖林正.2006.植物抗病基因工程研究.重庆文理学院学报(自然科学版),5(1):46~48
    张驰宇,徐顺高,黄新祥.2005.一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展,32(9):883~887
    张德礼,孙晓静,凌伦奖,陈润生,马大龙.2002.人类SR蛋白超家族新成员-SFRS12(SRrp508)的基因克隆和特性分析.遗传学报,29(5):377~383
    张二喜,李金昌,吕莉莉.2006.小麦地方品种资源对条锈病的抗性鉴定及评价.甘肃农业科技,7:9~11
    张岗,李依民,张毅,董艳玲,王晓杰,魏国荣,黄丽丽,康振生.2009.条锈菌诱导的小麦病程相关蛋白TaPR10基因的克隆及特征分析.中国农业科学,42(1):110~116
    张宏.2009.小麦抗条锈病基因遗传和表达分析以及相关基因分离验证.[博士学位论文].杨凌:西北农林科技大学
    张辉,贾继增.1996.用荧光原位杂交技术检测黑麦染色质.中国农业科学,29(2):90~93
    张立平,何中虎,刘建平,孙家柱,单福华,苏青.2004.分子生物学技术在普通小麦谷蛋白研究中的应用.麦类作物学报,24(2):121~126
    张丽娜,牛吉山,于玲.2005.用半定量RT-PCR方法分析小麦TaMlo-A1c基因的表达.西北植物学报,25(7):1368~1371
    张龙雨,李红霞,张改生,王俊生,韩艳芬,袁正杰,牛娜,马守才.2009.黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析.作物学报,35(9):1620~1627
    张文俊,Snap J W.1999.黑麦6R抗白粉病基因向小麦的渗进与鉴定.遗传学报,26(5):563~570
    张相岐,王献平,景建康,李燕,胡含.1995.三个小黑麦花粉株系的染色体组成分析与抗白粉病鉴定.遗传学报,22(5):387~393
    张向明,李丕顺,刘新琼.2007.稻瘟病抗性基因Pi36的表达分析.中南民族大学学报(自然科学版),26(4):32~34
    张学勇,陈淑阳,李振声.1990.普通小麦异代换系的产生和利用.遗传,12(4):40~44
    张毅,张岗,董艳玲,郭军,黄丽丽,康振生.2009.条锈菌诱导的小麦MBF1转录辅激活因子基因的克隆及其特征分析.作物学报,35(1):11~17
    张永红,屈志鹏,郑文明,王艳飞,徐亮胜,赵杰,黄丽丽,康振生.2007.小麦条锈菌cDNA文库构建和表达序列标签(ESTs)分析.植物病理学报,37(5):487~499
    张正斌.2001.小麦遗传学.北京:中国农业出版社
    赵建萍.2006. DNA分子标记在小麦抗病育种中的应用.陇东学院学报(自然科学版),16(1): 65~69
    郑靓,张正圣,陈利,万群,胡美纯,王威,张轲,刘大军,陈笑,魏新琦.2008.IT-ISJ标记及其在陆地棉遗传图谱构建中的应用.中国农业科学,41(8):2241~2248
    郑有良,兰秀锦,魏育明,颜泽洪,刘登才,王志容.1997.利用黑麦异源基因选育大穗型超高产小麦新品种研究.四川农业大学学报,15(2):166~170
    钟少斌,姚景侠.1992.一个小麦-黑麦染色体代换的细胞学鉴定.遗传学报,19(6):523~527
    朱国峰.1997.植物抗病基因的分子生物学研究进展.植物学报,39(6):561~569
    Autrique E, Nachit M M, Monneveux P, Tanksley S D, and Sorrels M E.1996.Genetic diversity in durum wheat based on RFLPs, morphophysiological traits and coefficient of parentage. Crop Sci. 36: 735~742
    Bantte K and Prasanna B M. 2003.Simple sequence repeat polymorphism in Quality Protein Maize (QPM) line. Euphytica, 129: 337~344Bell J N, Ryder T B, Wingate V P M, Bailey J A, and Lamb C J.1986.Differentical accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Molecular and Cellular Biology, 6(5): 1615~1623
    Bent A F, Kankel B N, Dahlbeck D, Brown K L, Schmidt R, Giraudat J, Leung J, and Staskawicz B J.1994.RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 265: 1856~1860
    Berger S. 2002. Jasmonate-related mutants of Arabidopsis as tools for studying stress Bernardo A, Bai G H, Guo P G, Xiao K, Guenzi A C, and Ayoubi P.2007.Fusarium graminearum-induced changes in gene expression between Fusarium head blight resistant and susceptible wheat cultivars. Funct Integr Genomics, 7:69~77
    Bevans M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl T M, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K D, Riege M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterh?ft A, Moores T, Jones, J D G, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H W, Klosterman S, Schueller C, and Chalwatzis N.1998. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391: 485~488
    Bhuiyan N H, Liu W P, Liu G S, Selvaraj G, Wei Y D, and King J.2007. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol. Biol., 64:305~318
    Bittner-Eddy P D, Crute I R, Holub E B, and Beynon J L.2000.RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica.Plant J,21: 177~188
    Botella M A, Parker J E. Frost L N, Bittner-Eddy P D, Beynon J L, Daniels M J, Holub E B, and Jones J D G.1998.Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell,10:1847~1860
    Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, and Steffenson B.2002.The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases.Pme Natl Acad Sci USA, 99: 9328~9333
    Burch-Smith T M,Anderson J C,Martin G B,and Dinesh-Kumar S P.2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants.The Plant Journal ,39(5):734~746
    Burton R A, Gibeaut D M, Bacic A, Findlay K, Roberts K, Hamilton A, Baulcombe D C, and Fincher G B. 2000.Virus-induced silencing of a plant cellulose synthase gene. The Plant Cell ,12(5):691~706
    Buschges R, Holiricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daele R, Van der Lee T, Diergaarde P, Groenendijk J, Toepsch S, Vos P, Salamini F, and Schulze-Lefert P.1997. The barley Mlo gene: a nove control element of plant pathogen resistance. Cell,88:695~705
    Cai D, Kieine M, Kifle S, Harloff H J, Sandal N N, Marcker K A, Klein-Lankhorst R M, Salentijn E M J, Lange W, Stiekema W J, Wyss U, Grundler F M W, and Jung C.1997. Positional cloning of a gene fornematode resistance in sugar beet. Science, 275: 832~834
    Callis J, Vierstra R D.2000. Protein degradation in signaling. Curr Opin Plant Biol, 3:381~386.
    Cao A Z, Li Q, Chen Y P, Zou X W, Wang X E, and Chen P D.2006. Screening resistance related gene to powdery mildew in Haynaldia villosa using barly genechip and studying its mechanism of resistance. Acta Agron.Sin.,32: 1444~1452
    Cao H, Gkazebrook J, Ckarke J, Volko S, and Dong X.1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88: 57~63
    Chen X M. 2005. Epidemiology and control of stripe rust puccinia striiformis f. sp. Triticion wheat. Canadian Journal of Plant Pathology,27: 314~337
    Chen Y P, Wang H Z, Cao A Z, Wang C M, and Chen P D.2006. Cloning of a Resistance Gene Analog from Wheat and Development of a Codominant PCR Marker for Pm21. Journal of Integrative Plant Biology, 48 :715~721
    Chen Y P, Wang H Z, Wang X E, Cao A Z, and Chen P D.2006.Cloning and expression of peroxisomal ascorbate peroxidase gene from wheat. Mol Biol Rep, 33: 207~213
    Chen Z, Malamy J, Henning J, Conrath U, Sánchez-Casas P, Silva H, Ricigliano J, and Klessig D K.1995.Induction, modification and transduction of the salicylic acid signal in plant defense response.Pros Natl Acad Sci U S A, 92: 4134~4137
    Chen Z, Silva H, and Klessig D F.1993.Involvement of reactive oxygen species in the induction of systemic acquired resistance by salicylic acid in plants.Science,242: 883~886
    Cheng C S, Samuel D, Liu Y J, Shyu J C, Lai S M, Lin K F, and Lyu P C. 2004. Binding mechanism of non specific lipid transfer proteins and their role in plant defense. Biochemistry, 43: 13628~13636
    Clarke J D, Volko S M, Ledford H, Ausubel F M, and Dong X N. 2000. Roles of salicylicacid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis.Plant Ce11,12. 2175~2190
    Courtney S E, Rider C C, and Stead A D. 1994. Changes in protein ubiquitination and the expression of ubiquitin encoding transcripts in daylily petals during ?oral development and senescence. Plant Physiol., 91:196~204
    Cowley T and Walters D R. 2002. Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp. hordei. Plant Cell Environ,25:461~468 de Barros L M, Soden A, Henschke P A, and Langridhe P.1996.PCR differentiation of commercial yeast strains using intron splic site primers. Appl Environ Microbiol,62:4514~4520
    Despres C, DeLong C, Glaze S, Liu En Wu, Fobert P R, and Liu EW.2000.The Arabidopsis NPRIINIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of ZIP transcription factors.Plant Cell,12:279~290
    Devoto A, Muskett P R, and Shirasu K.2003. Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol, 6:307~311
    Diatchenko L, Lau Y F, Campbell A P C, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, and Siebert P D.1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proceedings of National Academy Sciences of the USA, 93(12): 6025~6030
    Dixon M S, Jones D A, Keddie J S, Thomas C M, Harrison K Y, and Jones J D G. 1996.The tomato Cf2 disease resistance locus comprises two functional genes encoding leucine-rich repeat protein. Cell,84: 451~459
    Dou Q W, Chen P D, and Xie J F.2003.Cytological and molecular identification of alien chromosome in giant spike wheat germplasm. Acta Botanica Sinica, 45(9): 1109~1115
    Dr(?)ge Laser W, Kaiser A, Lindsay W P, Halkier B A, Loake G J, Doerner P, Dixon R A, and Lamb C.1997. Rapid stimulation of a soybean protein serine kinase which phsphorylates a novel bZIP DNA binding protein,G/HBFl,during the indution of early transcriptiondependent defenses. EMBO J. 16:726~738
    Durner J, Shah J, and Klessig D F.1997. Salicylic Acid and disease resistance in plants. Trends in plans science, 2: 266~277
    Fahima T, Sun G L, Beharav A, Krugman T, Beiles A, and Nevo E.1999. RAPD Polymorphism of wild emmer wheat populations, Triticum dicoccoides. Theor Appl Genet. 98:434~447
    Feuillet C,Travella S, and Stein N. 2003. Map-based isolation of the leaf rust disease resistaance gene Lrl0 from the hexaploid wheat (Triticum aestivum L.) genome, 100 (25):15253~15258
    Fire A, Xu S Q, Montgomery M K, Kostas S A, Driver S E, and Mello C C.1998. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature, 391: 806~811
    Franceschetti M, Hanfrey C, Scaramagli S, Torrigiani P, Bagni N, Burtin D, and Michael A J.2001. Characterization of monocot and dicot plant SadenosylL methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochem J, 353 (3): 403~409
    Friebe B, Jiang J, and Raupp W J.1996.Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91: 59~87.
    Friebe B, Kynast R G, Hatchett J H, Sears R G, Wilson D L, and Gill B S.1999. Transfer of wheat-rye translocation chromosomes conferring resistance to Hessian fly from bread wheat into durum wheat. Crop Science, 39: 1692~1696
    Frye C A, Tang D Z, and Innes R W.2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci., 98:373~378
    Fu D L, Uauy C, Blechl A, and Dubcovsky J. 2007.RNA interference for wheat functional gene analysis. Transgenic Res,16:689~701
    Fu D L, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X M, Sela H, Fahima T, and Dubcovsky J. 2009. A kinase start gene confers temperature dependent resistance to wheat stripe rust. Science, 323: 1357~1360
    Gassmamt W, Hinsch M E, and Staskawicz B J.1999.The Arabidopsis RPS4bacterial resistance gene is a member of the TIRNBSLRR family of disease resistancegenes.Plant 1,1999,20: 265~277
    Gill B S, Friber B, and Endo T R.1991.Standard katyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum) . Genome, 34(5):830~839
    Glickman M H and Ciechanover A.2002.The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev., 82:373~428
    Godge M R, Purkayastha A, Dasgupta I, and Kumar P P. 2008. Virus induced gene silencing for functional analysis of selected genes. Plant Cell Rep,27:209~219
    Goodman R N and Novacky A J.1994.The hypersensitive reaction in plants to pathogens.APS Press, St.Paul, MNHaanstra J P W, Wye C,Verbakel H, Meijer Dekens F, van den Berg P, Odinot P, van Heusden A W,
    Tanksley S, Lindhout P, and Peleman J.1999.Anintegrated high density RFLP-AFLP map of tomato based on two Lycopersicon esculentum×L. pennellii F2 populations. Theor Appl Genet,99:254~271
    Han F P, Liu B, Fedak G, Fedak G, and Liu Z H .2004.Genomic constitutionand variation in five partial amphiploids of wheat Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 109:1070~1076
    Hardie D.1999.Plant protein serine/threonine kinase: classification and functions. Annu.Rev.Plant Mol.Bio.,50:97~131
    Hawkins J D.1998. A survey on intron and exon length. Nucleic Acids Research.16:9893~9905
    Hein I, Barciszewska-Pacak M, Hrubikova Ka, Williamson S, Dinesen M, Soenderby I E., Sundar S, Jarmolowski A, Shirasu K, and Lacomme C. 2005. Virus Induced Gene Silencing Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley. Plant Physiology, 138(8) :2155~2164
    Hershko A and Ciechanover A. 1998.The ubiquitin system. Annu Rev Biochem, 67: 425~479
    Higuchi R, Dollinger G, Walsh P S, and Griffith R.1992.Simultaneous amplification and detection of specific DNA sequences. Bio/Technology. 10:413~417
    Higuchi R, Fockler C, Dollinger G, and Watson R.1993. Kinetic PCR analysis:Real time monitoring of DNA amplification reactions. Bio/Technology., 11:1026~1030 http://www.asyy.net/lsnyxx.asp /20051207 [2010-03-15]
    Hu W W, Gong H B, and Pua E C.2005.The pivotal roles of the plant Sadenosylmethionine decarboxylase 5′untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiology, 138: 276~286
    Huang X Q and R?der M S.2004. Molecular mapping of powdery resistance genes in wheat: a review. Euphytica, 137: 203~223
    Huang X Q, B?rner A, R?der M S, and Ganal M W.2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers .Theor Appl Genet.105:699~707
    Huminiecki L and Bicknell R.2000. In silico cloning of a novel endothelial specific genes. Genome Res,10(11):1786~1796
    Hunt M and Ryals J.1996.Systemic acquired resistance signal transduction.Crit Rev Plant Sci,15:583~606
    Hunt M D, Neuenschwander U H, Delaney T P, Weymann K B, Friedrich L B, Lawton K A, Steiner H Y, and Ryals J A G.1996. Recent advances in systemic acquired resistance research a review. Gene. 179:89~95
    Ingram J and Bartel D.1996. The molecular basis of dehydration tolerance in plant. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47:377~403
    Iqbal N, Caligari P D S, Miller T E, Reader S M.2000.Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor Appl Genet,101(8):1173~1179
    Jiang J and Gill B S.1993. Sequential chromosome banding and in situ hybridization analysis. Genome,36: 792~795
    Jin H, Liu Y, Yang K Y, Kim C Y, Baker B, and Zhang S.2003. Function of a nitrogen activated proteinkinase pathway in N gene mediated resistance in tobacco. The Plant Journal ,719~731.
    Jones D A, Harrison K, Wulff B B H, and Jones J D G. 1997.Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf4/9 Locus of Tomato. Cell, 91 (6): 821~832
    Kang Z S, Wang Y, Huang L L, Wei G R, and Zhao J. 2003.Histology and ultrastructure of incompatible combination between Puccinia striiformis and wheat cultivars with low reaction type resistance. Agri sci in China, 2: 1102~1113
    Kim H S and Ward R W.2000.Patterns of RFLP based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica, 115:197~208
    Kim Y J, Lee S H, Park K Y. 2004 .A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Letters, 578(3 )229~235
    Kofler R, Barto? J, Gong L, Stift G, SuchánkováP, ?imkováH, Berenyi M, Burg K, Dole?el J, and Lelley T. 2008.Development of microsatellite markers specific for the short arm of rye (Secal cereale L.) chromosome 1. Theor Appl Genet, 117: 915~926
    Kuraparthy V, Chhuneja P, Dhaliwal H S, Kaur S, Bowden R L and Gill1B S.2007.Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet,114:1379~1389
    Li G, and Quiros C F.2001.Sequence related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theoretical and Applied Genetics,103:455~461
    Li J L, Wang X P, Zhong L, and Xu X L.2006.Study on Homoeologous Chromosome Pairing and Transloca tion Induced by 5A/5R×6A/6R Wheat-Rye Substitution Lines.Acta Genetica Sinica,33(3): 244~250
    Li R G, Rimmer R, Buchwaldt L, Sharpe A G, Séeguin-Swartz G, Coutu C, and Hegedus D D.2004.Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: Expressed sequence taganalysis identifies genes associated with fungal pathogenesis. Fung. Genet. Biol. 41: 735~753
    Lin C S, Lai Y H, Sun C W, Liu N T, Tsay H S, Chang W C, and ChenJ J W.2006. Identification of ESTs differentially expressed in green and albino mutant bamboo(Bambusa edulis) by suppressive subtractive hybridization(SSH) and microarray analysis. Plant Cell Tiss Organ Cult, 86: 169~175
    Malamy J, Carr J P, Klessig D F, and Raskin I.1990.Salicylic acid:A likely endogenous signal in the resistance response oftobacco to viral infection.Science, 250: 1002~1004
    Marais G F, McCallum B, and Marais A S.2006. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica,149: 373~380
    Marais G F, McCallum B, Snyman J E, Pretorius Z A, and Marais A S.2005.Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant breeding,124 (6 ): 538~541
    Marais G F, Pretorius Z A, Wellings C R, McCallum B, and Marais AS.2005.Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica,143: 115~123.
    McDowell J M, Dhandaydham M, Long T A, Aarts M G M, Goff S, Holub E B, and Dangl J L 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistanceat the RPP8 locus of Arabidopsis. Plant Cell, 10: 1861~1874
    McIntosh C J. 1988.Catalogue of gene symbols for wheat. Proceeding of the 8th International wheat Genetics Symposium. Beijing China, 1360~1500
    McNeil J A, Johnson C V, Carter K C, Singer R H, and Lawrence J B.1991. Localizing DNA and RNA within nucleic and chromosome by fluorescence in situ hybridization. Genet. Anal Tech. Appl, 8: 41~58
    Mtraux J P, Singer H, Ryals J A, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, and Inverardi B.1990. Increase in salicylic cacid at theonset of systemic acquried resistance in cucumber.Science,250: 1004~1006
    Mukal Y, and Gill B S.1991. Detection of barly chromation added to wheat by genomic in situ hybridization. Genome, 34: 448~452
    Myeong M L, Lee S H, and Park K Y.1997. Characterization and expression of two members of the Sadenosylmethionine decarboxylase gene family in carnation ?ower.Plant Molecular Biology, 34: 371~382
    Nagaoka T and Ogihara Y.1997. Applicability of inter simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet,94:597~602
    Nei M and Li W. 1979.Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 76: 5269~5273
    Neuenschwander U, Lawton K, and Ryals J.1996.Systemic acquired resistance.Plant Microbe Interactions. 81~106
    Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill Macky R, and Hohn T M.2002. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet,106: 74~83
    Ouyang B, Yang T, Li H, Zhang L, Zhang Y Y , Zhang J H, Fei Z J, and Ye Z B.2007. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot,58: 507~520
    Palombi M A and Damiano C.2002.Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A.Chev). Plant Cell Rep,20: 1061~1066
    Payne P I, Holt L M, Worland A J and Law C N. 1982.Structural and genetical studies on the high molecular weight subunits of wheat glutenin in part 3.Telocentric mapping of the subunit genes on the long arm of the homoeologous group 1 chromosomes.Theoretical and Applied Genetics,63:129~138
    Payne P I, Nightingale M A, Krattiger A F and Holt L A.1987.The relationship between HMW glutenin subunit composition and the bread-making quality of British grown wheat varieties.Journal of Science of Food and Agriculture,40(1):51~65
    Paran I and Michelmore R W.1993.Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet., 85: 985~993
    Peng J H, Fahima T, R?der M S, Huang Q Y, Dahan A, Li Y C, Grama A, and Nevo E. 2000. High density molecular map of chromosome region harbouring striperust resistance genes YrH52 and Yr15 derived from wild emmer wheat. Genetica,109:199~210
    Rafalski A, Gidzinska M, and Wiyniewska I. 1997.PCR based systems for evaluation of relationships among maize inbreds. In: Tsaftaris A ed. Genetics, Biotechnology and Breeding of Maize and Sorghum. Royal Soc. Chem, Cambridge, UK, 106~111
    Reymond P,Weber H,Damond M,and Farmer E E.2000. Differential gene expression in response to mechanieal wounding and inseet feeding in Arabidopsis.The Plant Cell,12(5):707~720.
    R(?)der M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, and Ganal M W.1998. A microsatellite map of wheat.Genetics, 149:2007~2023
    Rogers S, Wells R, and Rechsteiner M. 1986.Amino acid sequences common to rapid degraded proteins: The PEST hypotheis. Science, 234(4774) : 364~368
    Rohlf J F. 2000.NTSYSpc: Numerical Taxonomy and Mulitivariate Analysis System. Version 2.1, Users Guide. Exeter Software, Setauket, New York
    Saal B and Wricke G.1999.Development of simple sequence repeat markers in rye (Secale cereale L.) .Genome. 42(5):964~972
    Saghai Maroof M A, Soliman K, Joregensen R A, and Allard R W.1984. Ribosomal DNA spacerlength polymerphisims in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA,81:8014~8018
    Salmeron J M, Rommens C M T, Scofield S R, Kim H S, Lavelle DT, Dahlbeck D, Staskawicz B J, and Oldroyd G E D.1996. Tomato prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the pto kinase gene cluster. Cell,86: 123~133
    Sasanuma T, Chabane K, Endo T R, and Valkoun J.2002.Genetic diversity of wheat wild relatives in the Near East detected by AFLP .Euphytica .127: 81~93
    Schlegel R, Melz G, and Mettin D.1986.Rye cytology, cytogenetics and genetics Current status. Theor Appl Genet, 72: 721~734
    Scofield S R, Li H, Brandt A S, and Gill B S.2005.Development of a Virus Induced Gene Silencing System for Hexaploid Wheat and Its Use in Functional Analysis of the Lr21 Mediated Leaf Rust Resistance Pathway. Plant Physiology, 138(8) :2165~2173
    Sears E R.1981.Transfer of alien material to wheat//Evans L T, Peacock W J. Wheat Science Today and Tomorrow, Cambridge :Cambridge University Press, 75~89
    Seo S, Okamoto M, Seoto H, Ishizuka K, Sano H, Ohashi Y.1995.Tabacco MAP kinase: A possible mediator in woud signal transduction pathways.Science,270:1988~1992
    Shannon C E and Weaver W.1949.The mathematical theory of communication. The University of Illino is, U rbana, Chicago, USA. 3~14
    Sharma H C and Gill B S.1983.Current status of wide hybridization in wheat. Euphytica, 32:17~31
    Sharp P J, Chao S, Desai S, and Gale M D.1989. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homologous chromosome. Theor. Appl. Genet, 78: 342~348
    Siebert P D, Chenchik A, and Kellogg D E.1995. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acid Res, 23: 1087~1088
    Sigh S and Sethi G S.1992. Expression of 17 rye (Secale cereale L.) traits in a range of durum wheat(Triticum durum Desf) and bread wheat (T. aestivum L.)genetic background. Euphytica, 60: 37~44
    signaling.Planta, 214(4):497~504
    Silke H, Thorsten J, Fritz K, and Christoph P. 2003.Quantification of photosynthetic gene expression in maize C3 and C4 tissues by real time PCR. Photosynthesis Research 75: 183~192
    Singh R P, Nelson J C, Sorrells M E .2000.Mapping Yr28 and other genes for resistance to stripe rustin wheat crop science,40(4) : 1148~1155
    Somer D J, Gustafson J P, and Filion W G.1992.The influence of the rye genome on expression of heat shock proteins in triticale.Theor Appl Genet,83: 987~993
    Song W N and Henry R.1994.Polymorphisms in amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor Appl Genet. 89:509~513
    Song W N and Henry R.1995.Molecular analysis of the DNA polymorphism of wild barley(Hordeum spontaneum) using the polymerase chain reaction. Genet Res Crop Evol.42:273~281
    Song W N and Langridge P. 1991.Identification and mapping polymorphism in cereals based on polymerase chain reaction. Theor Appl Genet. 82:209~216
    Song W Y, Pi L Y, Bureau T E, and Ronald P C.1998. Identification and characterization of 14 transposon like elements in the noncoding regions of members of the Xa21 family. Mol Gen Genet,258: 449~456
    Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, and Ronald P.1995.A receptor kinase-like protein encoded by the rice diseaseresistance gene Xa21.Science, 270: 1804~1806
    Spielmeyer W and Lagudah E S.2003. Homoeologous set of NBS-LRR genes located at leaf and stripe rust resistance loci on short arms of chromosome 1 of wheat. Funct. Integr. Genomics 3:86~90
    Stanley B A, Pegg A E, and Holm I.1989. Site of pyruvate formation and processing ofmammalian S2 adenosylmethionine decarboxylase proenzyme.The Journal of Biol ogical Chemistry, 264 (35) : 21073~21079
    Suzuki G, Yanagawa Y, Kwok S F, Matsui M Deng X W. 2002. Arabidopsis COP10 is a ubiquitin- conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis.Genes Dev, 16:554~559
    Uauy C, Brevis J C, Chen X M, Khan I, Jackson L, Chicaiza O, Distenfeld A,Fahima T & Dubcovsky J .2005. High temperature adult plant stripe rustresistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus GpcB1. Theor Appl Genet., 112:97~105
    Van Loon L C and Van Strien E A.1999.The families of pathogenesis related proteins, their activities and comparative analysis of PR1 type proteins. Physiol. Mol. Plant Pathol. 55: 85~97
    Vernooij B, Friedrich L, Morse A, Reist R, Kolditz Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J.1994. Salicylic acid is not the translocated signa (responsible for inducing systemic acquired resistanceis required in signal transduction.Plant Cell,6: 959~965
    Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G,Yang J X, Wang B T, Li G B, Bi Y Q, and Yuan Z Y. 2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp.tritici in China in 2002. Plant Dis., 88:896~904
    Wang H Y, Wang X E, Chen P D, and Liu D J.2007.Assessment of Genetic Diversity of Yunnan,Tibetan,and Xinjiang Wheat Using SSR Markers.Journal of Genetics and Genomics. 34(7),623~633
    Wang Z Y, Wang Y C, Chen X R, Shen G, Zhang Z G, Zheng X B.2006. Differential screening reveals genes differentially expressed in low and high virulence near isogenic Phytophthora sojae lines. Fungal Genet and Biol, 43(12): 826~839
    Ward R W, Yang Z L, and Kim H S. 1998.Comparative analyses of RFLP diversity in landraces ofTriticum aestivum and collections of T. taucshii from China and Southwest Asia. Theor Appl Genet., 96:312~318
    Warren R F, Henk A, Mowery P, Holub E, Innes R W.1998. A mutation within the leucine rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multipie bacterial and downy mildew resistance genes.Plant Cell,10: 1439~1452
    Wei L, Cao Y, Bai L H, Liang X, Deng T T, Li J, and Qiao D R. 2007. Cloning and expression of a gene coding for the major light-harvesting chlorophyll a/b protein of photosystem II in the green alga Dunaliella salina.J. Appl. Phycol.19:89~94
    Wei Y M, Zheng Y L, Liu D C, Zhou Y H, and Lan X J.2002.HMW glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genetic Resources and Crop Evolution .49:327~330
    Wei Y M, Zheng Y L, Zhou Y H, Liu D C, Lan X J, Yan Z H, and Zhang Z Q.2001. Genetic Diversity of Gli-1,Gli-2 and Glu-1 Alleles Among Chinese Endemic Wheats.Acta Botanica Sinica,43(8):834~839
    Whitham S, Dinesh-Kumar S P, Choi D, Hehl R, Corr C, Baker B.1994. The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell,78: 1101~1105.
    William M, Singh R P, Huerta-Espino J, Islas S O, and Hoisington D.2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 93:153~159
    Williams J G K, Kubelik A R, Livak K J, Rafalski J A, and Tingey S V.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,18:6531~6535.
    Wong Y Y, Ho C L, Nguyen P D, Teo S S, Harikrishna J A, Rahim R A, and Wong M C V L.2007.Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquatic Bot, 86: 117~122
    Wu H L , Ni Z F, Yao Y Y, Guo G G, and Sun Q X .2008. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivum L.). Progress in Natural Science,18(4): 697~705
    Xie Q, Guo H S, Dallman G, Fang S Y, Weissman A M, and Chua N H.2002. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 419:167~170
    Xing D H, Yen Y, Rudd J C, and Jin Y. 2000.Identification, cloning and sequencing of ESTs related to FHB resistance of wheat.In:2000 National Fusarium Head Blight Forum, Erlanger, KY, 10~12,62~63
    Yalpani N, Silverman P, Wilson T M A, Kleier D A, and Raskin I.1991. Salicylic acid is a systemic signal and an inducer of pathogenesis related protein in virus infected tobacco. Plant Cell,3:808~818
    Yen C, Zheng Y L, and Yang J L.1993. An ideotype for high yield breeding in theory and practice. In: li zhen sheng, xin zhi yong (eds), Proc.8th Intern. Wheat. Genet. Symp. Beijing, 1113~1117.
    Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono L, Kurata N, Yano M, Iwata N, and Sasaki T. 1998.Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. USA, 95: 1663~1668
    Yoshizawa Y, Toyoda K, Arai H, Ishii M, and Igarashi Y.2004.CO2responsive expression and gene organization of three ribulose1, 5bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH110. J Bacte rio. l186: 5685~5691
    Zhang S, Du H, and Klessig D F. 1999.Activation of tobacco SIP kinase by both a cell wall derived carbohydrate elicitor and purified proteinaceous eliicitor and purified proteinaceous elicitins from Phytophtohora spp .Plant cell,10:435~449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700