用户名: 密码: 验证码:
饮水型砷暴露人群砷甲基化模式及其与机体氧化应激状态关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     砷及其化合物是国际癌症研究机构(IARC)确认的人类致癌物。长期饮用高砷水可导致砷性皮肤损伤及皮肤癌,并与全身其他多组织器官的肿瘤、心血管疾病、糖尿病及儿童智力损伤的发生有关。目前,全球约有2亿人因长期饮用高砷水而面临健康威胁。然而,高砷暴露人群的砷中毒易感性有所不同。作为一种外来化合物,砷在体内的代谢转化与其毒性的发生发展关系密切。饮用水中的砷主要是无机砷(iAs),iAs在人体内发生以甲基化为主的生物转化,可产生多种具有不同毒性和靶器官的代谢产物。流行病学调查发现,对砷进行二甲基化能力较强或尿中一甲基砷(MMA)相对含量较少的人群患砷暴露相关疾病的风险较低,这提示砷中毒易感性与砷甲基化模式有关。因此,砷甲基化模式的研究对于进一步探索砷中毒的发病机制和预防砷中毒的发生都具有重要意义。氧化应激学说是砷中毒发病机制的重要理论之一。砷甲基化是否会影响机体的氧化应激状态,是否通过对氧化应激状态的影响而导致人群砷中毒易感性差异,尚缺乏相关报道。本研究通过对我国亚急性和慢性饮水型砷暴露人群的调查研究,分析不同特征人群砷甲基化特点,探讨谷胱甘肽硫转移酶ω-1(GSTO1)和谷胱甘肽硫转移酶ω-2(GSTO2)基因多态性对砷甲基化的影响。同时,以人群血抗氧化物和尿DNA氧化损伤标记物反映砷暴露对机体氧化应激状态的影响,并分析机体氧化应激状态与砷甲基化模式和GSTO1、GSTO2基因多态性之间的联系。
     方法
     1、研究对象
     (1)亚急性砷暴露人群:76名研究对象来自2004年12月辽宁省阜新市某铜冶炼厂因排污管破裂污染饮用水[水砷含量为(48.5±43)mg/L]引发亚急性砷中毒事件时,阜新市中心医院收治的患者。
     (2)慢性高砷暴露人群:研究对象来自内蒙古呼和浩特市周边3个不同饮用水砷浓度的高砷暴露村(乃莫板、口肯板和什力格图)。3村均采用集中供水方式为本村居民提供生活用水,供水水源为各自村中的深井,井水砷浓度分别为0.09mg/L、0.16 mg/L和0.24 mg/L。已知高砷暴露时间分别为7年、7年、6年。参与研究的调查对象为:0.16 mg/L砷暴露组108人,0.09 mg/L砷暴露组100人,0.24 mg/L砷暴露组72人。
     (3)慢性低砷暴露(对照)人群:来自内蒙古呼和浩特市土默特左旗田家营村,该村亦为集中供水,水砷浓度0.02 mg/L,低于中国农村饮用水砷最高允许浓度0.05 mg/L。
     2、流行病学调查
     亚急性与慢性砷暴露比较分析人群:亚急性砷中毒病人资料从阜新市中心医院获得。对与之比较的慢性砷暴露人群采用横断面调查,收集人群饮水方式、饮水量、疾病史等信息。
     慢性饮水型砷暴露人群砷甲基化模式与氧化应激状态分析研究对象:通过调查问卷获得研究对象的吸烟、饮酒、饮食习惯、饮水方式与每日饮水量、疾病史等信息。由专业医师对调查对象进行体检,并依据《中国砷中毒诊断标准》(WS/T211-2001)进行砷中毒症状检查。
     3、样品采集
     (1)尿液样品:采集亚急性砷中毒患者在收治入院未进行治疗时的尿样;采集慢性砷暴露人群的即时尿样。上述样品均放置于0-4℃冰盒中运送回实验室,-80℃保存待测。
     (2)血液样品:采集人群空腹静脉血5 ml,加入肝素包被的抗凝管,根据不同实验目的现场分装,于液氮中保存运送回实验室,-80℃保存待测。
     4、尿形态砷分析
     尿液样品与2mol/LNaOH等体积比混合,于100℃恒温消化3 h,采用冷井捕集-氢化物发生-原子吸收分光光度法测定样品中iAs、MMA、二甲基砷(DMA)和三甲基砷(TMA)含量,并以各形态砷含量之和作为总砷(TAs)含量。以苦味酸法检测尿中的肌酐(Cr)水平以校正尿砷含量。用尿中不同形态砷所占总砷百分比(iAs%、MMA%和DMA%)和2个砷甲基化率指标[一甲基化率(FMR)和二甲基化率(SMR)]反映机体砷甲基化模式。
     5、基因型分析
     采用聚合酶链式反应-限制性片断长度多态性(PCR-RFLP)方法检测GSTO1基因A140D和GSTO2基因N142D的基因多态性。
     6、全血还原型谷胱甘肽(GSH)含量与超氧化物歧化酶(SOD)活性测定
     以5,5'-二硫代-2-硝基苯甲酸(DTNB)法测定全血GSH含量;采用亚硝酸盐形成法测定SOD活性;以氰化物高铁血红蛋白形成法测定血红蛋白水平,对血GSH含量和SOD活性进行校正。
     7、尿8-羟基-2'-脱氧鸟苷(8-OHdG)水平测定
     采用酶联免疫吸附法测定尿8-OHdG含量,以尿Cr水平对其进行校正。
     8、统计分析
     用SPSS 11.0对数据进行统计分析。对自身不服从正态分布并且转化后依然不服从或近似正态分布的数据采用非参数检验:2组间比较采用Mann-Whitney U检验:3组间比较采用Kruskal-Wallis H检验。对转化后服从或近似正态分布的数据进行参数检验:采用单因素方差分析和LSD法比较2组以上数值变量间是否具有统计学差异;采用t检验比较2组间数值变量是否具有统计学差异。应用多元线性回归模型,分析机体氧化应激状态与砷甲基化能力的联系强度和相关性。
     结果
     1、亚急性砷暴露与慢性高砷暴露和慢性低砷暴露(对照)人群砷甲基化模式比较
     不同类型砷暴露人群中均发现尿形态砷构成比均存在明显的个体差异;尿中各种形态砷和TAs含量在亚急性砷中毒人群中最高,在慢性低砷暴露人群中最低,且各组间差异均具有统计学意义(P<0.05);尿iAs%和MMA%从高到低为:亚急性砷暴露人群>慢性高砷暴露人群>慢性低砷暴露人群;而DMA%、FMR和SMR在3组人群中从高到低为:慢性低砷暴露人群>慢性高砷暴露人群>亚急性砷暴露人群。上述指标在各组间差异均有统计学意义(P<0.05)。
     2、亚急性与慢性高、低砷暴露人群尿8-OHdG水平比较
     亚急性砷暴露人群尿8-OHdG水平显著高于慢性高砷和低砷暴露人群(P<0.05),慢性高砷暴露人群尿8-OHdG水平显著高于慢性低砷暴露人群(P<0.05)。
     3、饮用水砷浓度对尿砷和砷甲基化模式的影响
     尿中各种形态砷与TAs含量比较结果为:0.16 mg/L砷暴露组>0.09 mg/L砷暴露组>0.02 mg/L砷暴露组,且各组间差异均有统计学意义(P<0.05)。0.16 mg/L和0.09 mg/L2个高砷暴露组人群尿iAs%和MMA%均显著高于0.02 mg/L低砷暴露组(P<0.05),而DMA%、FMR和SMR均显著低于0.02 mg/L砷暴露组(P<0.05);0.16 mg/L砷暴露组人群仅尿DMA%和SMR显著高于0.09 mg/L砷暴露组(P<0.05)。
     4、儿童与成人尿砷含量与砷甲基化模式的比较
     0.16 mg/L和0.09 mg/L2个高砷暴露组儿童尿TAs含量与同组成人相比均无统计学差异(P>0.05),儿章尿MMA%均显著低于同组成人(P<0.05),而DMA%和SMR均显著高于同组成人(P<0.05)。0.02 mg/L低砷暴露组儿童尿TAs含量显著高于成人(P<0.05),尿形态砷构成比和砷甲基化率与成人相比无统计学意义(P>0.05)。
     5、男性与女性尿砷含量与砷甲基化模式的比较
     同一砷浓度暴露条件下,未见男性与女性在尿形态砷含量和砷甲基化模式上存在统计学差异(P>0.05)。
     6、砷暴露时间对尿砷含量和砷甲基化模式的影响
     0.16 mg/L砷暴露组25名儿童和39名成人在砷暴露7年和9年尿TAs含量均无显著差异(P>0.05)。儿章与成人砷暴露9年时尿iAs%和MMA%均显著高于砷暴露7年(P<0.05),而DMA%、FMR和SMR均显著低于砷暴露7年(P<0.05)。砷暴露7年时,尿iAs%具有显著差异(P<0.05)的3组人群在砷暴露9年时尿iAs%差异无统计学意义;砷暴露2年前后,机体相对砷甲基化模式发生改变。
     7、砷甲基化模式的家庭相关性
     各形态砷百分比和2次砷甲基化率在兄弟姐妹和父母子女间均呈现显著相关性(P<0.05),在夫妻间未发现上述指标具有显著相关性。
     8、GSTO1基因A140D和GSTO2基因N142D基因多态性与砷甲基化模式的关系
     同一砷暴露组内,GSTO1基因A140D或GSTO2基因N142D基因型不同的人群在尿形态砷含量及砷甲基化能力上均无统计学差异(P>0.05)。
     9、砷暴露对血GSH含量和SOD活性的影响
     0.16 mg/L砷暴露组儿童与成人血GSH含量均显著低于0.09mg/L和0.02 mg/L砷暴露组儿童与成人(P<0.05),0.09mg/L与0.02 mg/L砷暴露组儿童和成人血GSH差异无统计学意义(P>0.05);同一砷暴露组内,仅0.09 mg/L砷暴露儿童与成人血GSH含量差异具有统计学意义(儿章>成人,P<0.05)。
     0.1 6 mg/L砷暴露组儿童与成人血SOD活性均显著低于0.09 mg/L砷暴露组(P<0.05),0.09 mg/L砷暴露组儿童和成人SOD活性均高于0.02 mg/L砷暴露组(P值分别为<0.05和=0.074)。同一砷暴露组内儿童与成人血SOD活性无显著统计学差异(P>0.05)。
     10、砷暴露对人群尿8-OHdG水平的影响
     不同砷浓度暴露组成人尿8-OHdG水平比较:0.1 6 mg/L砷暴露组>0.09 mg/L砷暴露组>0.02 mg/L砷暴露组,且各组间差异具有统计学意义(P<0.05);0.16mg/L和0.09 mg/L砷暴露组间儿童尿8-OHdG水平无显著差异,但均显著高于0.02mg/L砷暴露组(P<0.05)。高砷暴露9年时,儿章与成人尿8-OHdG水平均显著高于砷暴露7年(P<0.05)。
     11、砷甲基化模式与GSH、SOD和8-OHdG的相关性
     儿章与成人尿8-OHdG水平均与iAs%、MMA%呈显著正相关,与尿DMA%、FMR和SMR呈显著负相关;儿童与成人全血GSH均与iAs%、MMA%呈显著负相关,儿章全血GSH含量与FMR呈显著正相关,成人全血GSH含量与尿DMA%、FMR和SMR呈显著正相关;仅在成人中观察到血SOD活力与尿iAs%和MMA%呈显著负相关,与尿DMA%、FMR和SMR呈显著正相关。
     12、GSTO1基因A140D和GSTO2基因N142D基因多态性与机体氧化应激状态的关系
     同一砷暴露组内,GSTO1基因A140D或GSTO2基因N142D基因型不同的人群在血GSH含量、SOD活力和尿8-OHdG水平上均无统计学差异(P>0.05)。
     结论
     1、人体的砷甲基化能力随砷暴露剂量率升高或暴露时间延长而降低;同样砷浓度暴露水平下,砷甲基化模式无显著性别差异,儿童的砷甲基化能力高于成人,机体的砷甲基化模式与GSTO1 A140D或GSTO2 N142D的基因多态性无关。除遗传因素外,外源性因素对砷甲基化模式的影响不容忽视。
     2、高砷暴露可使人体抗氧化能力下降,DNA氧化损伤加重,且砷所致DNA氧化损伤可随砷暴露剂量率的升高或暴露时间的延长而加重。
     3、砷暴露人群的氧化应激状态与砷甲基化模式关系密切,这可能是砷甲基化模式多样性影响砷中毒易感性的重要原因。
Objective
     Arsenic has been identified as a human carcinogen by the International Agency for Research on Cancer(IARC).The long exposure to arsenic in drinking water can cause the classical dermal stigmata and even skin cancers,and also is related to the development of cancers of several organs,cardiovascular diseases,diabetes and the impairment of intelligence in children.It is estimated that 200 million people are being under the threat of high arsenic in drinking water in the world.However,the susceptibility to arsenicosis is different in subjects exposed to high arsenic.Arsenic is a xenobiotic,and the metabolism of arsenic in the body may be closely related to the development of its toxicity.The prime biotransformation of inorganic arsenic(iAs) in human bodies is methylation,which results in arsenic metabolites different in toxicity and target organs.Epidemiological studies have suggested that subjects with higher secondary arsenic methylation capacity or lower relative content of monomethylated arsenic(MMA) in the urine have lower risk of arsenic-related diseases.The susceptibility to arsenicosis is at least partly related to the pattern of arsenic methylation.Thus,the study on factors influencing arsenic methylation is essential to the further study on the mechanism and the prevention of arsenicosis.Oxidative stress is one of the most important theories in the mechanism of arsenicosis.Could arsenic methylation pattern affect the status of oxidative stress? Is it possible that arsenic methylation pattern related to the susceptibility to arsenicosis through oxidative stress? These answers remain unclear.The present study was conducted in subjects exposed to arsenic through drinking water subacutely and chronically in China.Arsenic methylation pattern among different kinds of populations,as well as effects of polymorphisms of glutathione S-transferases omega 1(GSTO1) and glutathione S-transferases omega 2(GSTO2) genes on arsenic methylation pattern,were studied. In addition,the status of oxidative stress status for study subjects were assessed on the bases of antioxidants in blood and oxidants DNA lesions in urine.Associations of oxidative stress with arsenic methylation pattern and polymorphisms of GSTO1 and GSTO2 were also analyzed.
     Methods
     1.Study subjects
     (1)Subacute arsenic-exposed subjects:76 subjects were from patients admitted to the Centre Hospital of Fuxin in accidental subacute arsenic poisoning of Fuxin in December,2004.In the accident,pollution of drinking water was caused by the leakage of arsenic-containing waste from the drain pipe in a copper-smelting factory.The concentration of arsenic in the polluted well water was(48.5±4.3) mg/L.
     (2)Chronic high arsenic-exposed subjects:The subjects were from 3 high arsenic-exposed villages(Naimoban,Koukenban and Shiligetu) near hohhot in Inner Mongolia,China.In these villages,centralized tap-water systems were established and supplied water to all villagers for daily life for at least 6 years.Unfortunately,the tap-water contained high concentrations of arsenic,as much as 0.09 mg/L,0.16 mg/L and 0.24 mg/L,respectively.100 subjects in 0.09 mg/L arsenic-exposed group,108 subjects in 0.16 mg/L arsenic-exposed group,and 72 subjects in 0.24 mg/L arsenic-exposed group were recruited in this study.
     (3)Chronic low arsenic-exposed(control) subjects:The subjects were from Tianjiaying village around Hohhot in Inner Mongolia,China.Centralized tap-water with 0.02 mg/L arsenic,less than the maximum allowable concentration of arsenic in drinking water(0.05 mg/L) in rural of China,was provided in this village.
     2.Epidemiological investigation
     Study on the subacute and chronic arsenic-exposed subjects:data on subacute arsenic-exposed subjects were obtained from the Central Hospital of Fuxin.Cross sectional studies were conducted in the chronic arsenic-exposed subjects compared with the subacute exposed,in which data on drinking method,daily ingestion of water, disease history were collected.
     Study on arsenic methylation and oxidative stress of subjects chronically exposed to high arsenic in drinking water:Data on age,sex,smoking,drinking,dietary habits, daily water ingestion,medical history and others were obtained by questionnaire. Trained doctors conducted detailed physical examinations and arsenicosis identification according to the Diagnosis Standards on Arsenicosis of China(WS/T211-2001).
     3.Sample collection
     (1)Urine samples:Urine samples of subacute arsenic-exposed subjects were collected prior to any therapeutic intervention after they were admitted to the hospital. Spot urine samples of chronic arsenic-exposed subjects were collected.All urine samples were shipped to lab in 0-4℃ice box and kept in-80℃before analysis.
     (2)Blood samples:15 ml of fasting venous blood was taken from the study subjects,inoculated into anticoagulated tubes(containing heparin) and aliquoted.Then the samples were shipped to lab in liquid nitrogen and kept in-80℃before analysis.
     4.Determination of arsenic metabolites
     Urine samples were mix with 2 mol/L NaOH(1/1,v/v) and digested at 100℃for 3 h.Then cold trap hydride generation-atomic absorption spectrometry were applied to determine the content of iAs,MMA,dimethylated arsenic(DMA) and trimethylated arsenic(TMA).The total arsenic(TAs) content was calculated by summing up the content of all above arsenicals.The levels of urinary creatinine(Cr) determined with jaffe assay were used to correct the concentrations of arsenic in the urine.Proportions of urinary arsenicals(iAs%,MMA%and DMA%) and the 2 arsenic methylation ratios [first methylation ratio(FMR) and secondary methylation ration(SMR)]were used to assess arsenic methylation capacity of the body.
     5.Genotype analysis
     Polymerase Chain Reaction/Restriction fragment length polymorphism (PCR/RFLP) was used to detect polymorphisms of GSTO1 and GSTO2 genotypes.
     6.Determination of redued glutashione(GSH) content and superoxide dismutase(SOD) activity in blood
     5,5'-dithiobis-2-nitrobenzoic acid(DTNB) method and nitrite-generating method were used to determine GSH content and SOD activity in blood,respectively.levels of haemoglobin were assayed to correct GSH content and SOD activity。
     7.Determination of urinary 8-hydroxy-2'-deoxyguanosine(8-OHdG) levels
     Enzyme linked immunobsorbentassy(ELISA) Kit was applied for the determination of urinary 8-OHdG levels.Urinary Cr levels determined with jaffe assay were used to correct urinary 8-OHdG levels.
     8.Statistical analysis
     Statistical analysis was conducted by using the SPSS software(version 11.0). Nonparametric tests were applied to data which were not fit or approximately fit normal distribution even after transformation.Mann-Whitney U test and Kruskal-Wallis H test were used to determine the statistical significance for the differences between 2 and 3 groups,respectively.Parametric tests were applied to data which were fit or approximately fit normal distribution after transformation.One-way ANOVA and LSD test were performed to determine the statistical significance for the differences among 3 groups.T-test was used to determine the statistical significance for the differences between 2 groups.Multiple linear regression analyses were applied to assess the associations of oxidative stress status with arsenic methylation pattern.
     Results
     1.Comparison of arsenic methylation pattern among subacute, chronic high and low arsenic-exposed subjects
     Individuals in subacute and chronic arsenic-exposed groups were all different in concentrations and proportions of urinary arsenic metabolites.Concentrations of urinary arsenicals and TAs were highest for subacute arsenic-exposed subjects and lowest for chronic low arsenic-exposed subjects,and the differences between groups were statistically significant(P<0.05);The order of urinary iAs%and MMA%values, from highest to lowest,was as follows:subacute arsenic-exposed subjects>chronic high arsenic exposed subjects>chronic low arsenic-exposed subjects;The order of DMA%,FMR and SMR values,from highest to lowest,was as follows:chronic low arsenic exposed subjects>chronic high arsenic exposed subjects>subacute arsenic-exposed subjects.All above differences between groups were statistically significant(P<0.05).
     2.Comparison of urinary 8-OHdG levels among subacute,chronic high and low arsenic-exposed subjects
     The levels of urinary 8-OHdG were highest for subacute arsenic-exposed subjects and lowest for chronic low arsenic-exposed subjects,and the differences were statistically significant(P<0.05).
     3.Urinary arsenic concentrations and arsenic methylation pattern of subjects chronically exposed to different levels of arsenic in drinking water
     The order of urinary arsenic concentrations of for the 3 groups was as follows: 0.16 mg/L-arsenic-exposed subjects>0.09 mg/L-arsenic-exposed subjects>0.02 mg/L-arsenic-exposed subjects,and the differences were statistically significant(P<0.05).The values of urinary iAs%and MMA%were significantly higher,whereas the values of DMA%,FMR and SMR were significantly lower(P<0.05) in 0.16 mg/L and 0.09 mg/L high arsenic-exposed subjects,compared with 0.02 mg/L low arsenic-exposed subjects.Only the values of urinary DMA%and SMR were significantly different between 0.16 mg/L and 0.09 mg/L arsenic exposed groups,both of which were higher for the 0.16 mg/L-exposed(P<0.05).
     4.Urinary arsenic concentrations and arsenic methylation pattern of children and adults
     In 0.16 mg/L and 0.09 mg/L high arsenic-exposed groups,children and adults were not significantly different in urinary TAs concentration(P>0.05);however, children were significantly lower in the values of urinary MMA%(P<0.05),but significantly higher in the values of DMA%and SMR(P<0.05) than adults of the same group.In 0.02 mg/L low arsenic-exposed group,children were significantly higher in urinary TAs concentration than adults(P<0.05);no significant difference in proportions of urinary arsenicals or arsenic methylation ratios was observed between children and adults(P>0.05).
     5.Gender differences in urinary arsenic concentrations and arsenic methylation pattern
     No statistical difference was absorbed in urinary arsenic concentrations and arsenic methylation pattern between males and females in the same arsenic-exposed group(P>0.05).
     6.Variations of urinary arsenic concentrations and arsenic methylation capacity in high arsenic-exposed population over 2 years
     For both children and adults,there was no significant variation in the average concentration of urinary TAs over the 2 years.On the whole,iAs%and MMA%were significantly elevated,but DMA%,FMR and SMR were significantly decreased for 9-year exposed subjects,compared with that of 7-year exposed subjects(P<0.05).The significant difference in urinary iAs%(P<0.05) of 3 subgroups after 7-year exposure to arsenic disappeared after 9-years exposure to arsenic.Arsenic methylation pattern of individuals,relative to the entire population,altered over the 2 years.
     7.Family correlation of arsenic methylation pattern
     The proportions of urinary arsenicals and the 2 arsenic methylation ratios were significantly correlated between siblings,as well as between parents and children(P<0.05).Correlation of arsenic methylation capacity was not observed between couples.
     8.The relationship between arsenic methylation pattern and the genotypes of GSTO1 and GSTO2
     There were no significant differences in urinary arsenic profile among individuals who carried with different genotypes in A140D site of GSTO1 gene or different genotypes in N142D site of GSTO2 gene(P>0.05).
     9.Effect of arsenic exposure on blood GSH content and SOD activity
     Blood GSH content were significantly lower for 0.16 mg/L-arsenic-exposed children and adults compared with the 009 mg/L-and 0.02 mg/L-arsenic-exposed(P<0.05).Significant difference between children and adults of the same group was only found in 0.09 mg/L-arsenic-exposed group,in which children had significantly higher blood GSH content than adults(P<0.05).Blood SOD activity was significantly lower for 0.16 mg/L-arsenic-exposed Children and adults compared with the 0.09 mg/L arsenic exposed(P<0.05).The increase of blood SOD activity was observed in 0.09 mg/L arsenic exposed children and adults compared with the 0.02 mg/L arsenic exposed,however the difference was only significant between children.No significant difference in blood SOD activity was found between children and adults if the same group.
     10.Effect of arsenic exposure on urinary 8-OHdG levels Among the 3 studied groups,urinary 8-OHdG levels were highest for the 0.16 mg/L-arsenic-exposed adults and lowest for the 0.02 mg/L-arsenic-exposed adults.All above differences between groups were statistically significant(P<0.05).Children in 0.16 mg/L and 0.09 mg/L were not significantly different in urinary 8-OHdG levels,but both had significantly higher urinary 8-OHdG levels than the 0.02 mg/L-arsenic-exposed(P<0.05).Urinary 8-OHdG levels were significantly increased for children and adults with 9-year exposure to arsenic,compared with that with 7-year exposure to arsenic(P<0.05).
     11.Association of arsenic methlyation capacity with GSH,SOD and 8-OHdG
     The levels of urinary 8-OHdG were significantly positively correlated with the values of urinary iAs%,MMA%,but negatively correlated with the values of urinary DMA%,FMR and SMR for both children and adults.The content of blood GSH was significantly negatively correlated with the value of urinary iAs%and MMA%for both children and adults.In children,significant positive correlation of blood GSH with FMR was observed,and in adults significant positive correlation of blood GSH with urinary DMA%,FMR and SMR.Significant correlation of blood SOD activity with proportions of urinary arsenic metabolites and the 2 methylaton ratios was only observed in Adults.
     12.The relationship between oxidative stress and the genotypes of GSTO1 and GSTO2
     No significant differences were found in blood GSH content,SOD activity or urinary 8-OHdG among individuals who carried with different genotypes in A140D site of GSTO1 gene or different genotypes in N142D site of GSTO2 gene.
     Conclusion
     1.Arsenic methylation capacity decreases with the increase in the dose rate or the time of arsenic exposure.Male and female are not different in arsenic methylation pattern,while children have higher arsenic methylation capacity than adults,when exposed to the same level of arsenic in drinking water.In addition,the variability of arsenic methylation pattern is not affected by polymorphism of GSTO1 A140D or GSTO2 N142D.The effects of exogenous factors on arsenic methylation capacity could not be ignored besides genetic factors.
     2.The exposure to high levels of arsenic in drinking water results in the decrease of anti-oxidant capacity,but the aggravation of oxidative DNA lesions in human bodies. Oxidative DNA lesions elevate with the increase in the dose rate or the time of arsenic exposure.
     3.The oxidative stress status of arsenic-exposed population is closely related to arsenic methylation capacity,which underlies the possible mechanism of relationship between variability of arsenic methylation pattern and susceptibility to arsenicosis.
引文
1 IARC(International Agency for Research on Cancer).Some Drinking Water Disinfectants and Contaminants,Including Arsenic.IARC Monogr Eval Carcinog Risk Hum.2004;84:269-477.
    2 Cullen WR,Reimer KJ.Arsenic speciation in the environment.Chemical Review.1989;89(4):713-774.
    3 Valenzuela OL,Borja-Aburto VH,Garcia-Vargas GG,et al.Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic.Environ Health Perspect.2005;113(3):250-254.
    4 NRC(National Research Council).Arsenic in Drinking Water.Update National Academy Press.2001,Washington DC.
    5 孙殿军,王丽华,姜树林等.中国大陆地方性砷中毒病情与防治动态、现状的分析.中国地方病防治杂志.2002;17(2):107-108.
    6 Tondel M,Rahman M,Magnuson A,et al.The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh.Environ Health Perspect.1999;107(9):727-729.
    7 Bates MN,Smith AH,Hopenhayn-Rich C.Arsenic ingestion and internal cancers:a review.Am J Epidemiol.1992;135(5):462-476.
    8 Chen CJ,Hsu LI,Wang CH,et al.Biomarkers of exposure,effect,and susceptibility of arsenic-induced health hazards in Taiwan.Toxicol Appl Phannacol.2005;206(2):198-206.
    9 Tseng CH.Cardiovascular disease in arsenic-exposed subjects living in the arseniasis-hyperendemic areas in Taiwan.Atherosclerosis.2008;199(1):12-18.
    10 Coronado-Gonzalez JA,Del Razo LM,Garcia-Vargas G,et al.Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico.Environ Res.2007;104(3):383-389.
    11 Wasserman GA,Liu X,Parvez F,et al.Water arsenic exposure and intellectual function in 6-year-old children in Araihazar,Bangladesh.Environ Health Perspect.2007;115(2):285-289.
    12 Aposhian HV,Zakharyan RA,Avram MD,et al.A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species.Toxicol Appl Pharmacol.2004;198(3):327-335.
    13 Hayakawa T,Kobayashi Y,Cui X,et al.A new metabolic pathway of arsenite:arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19.Arch Toxicol.2005;79(4):183-191.
    14 Naranmandura H,Suzuki N,Suzuki KT.Trivalent arsenicals are bound to proteins during reductive methylation.Chem Res Toxicol.2006;19(8):1010-1018.
    15 李冰,陆春伟,孙贵范.不同砷化合物对血管内皮细胞毒性的研究.卫生研究.2006;35(6):700-702.
    16 Styblo M,Del Razo LM,Vega L,et al.Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.Arch Toxicol.2000;74(6):289-299.
    17 Nesnow S,Roop BC,Lambert G,et al.DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species.Chem Res Toxicol.2002;15(12):627-1634.
    18 Petrick JS,Ayala-Fierro F,Cullen WR,et al.Monomethylarsonous acid (MMA(Ⅲ))is more toxic than arsenite in Chang human hepatocytes.Toxicol Appl Pharmacol.2000;163(2):203-207.
    19 Kuroda K,Yoshida K,Yoshimura M,et al.Microbial metabolite of dimethylarsinic acid is highly toxic and genotoxic.Toxicol Appl Pharmacol.2004;198(3):345-353.
    20 Ford M.Arsenic.In:Goldfrank's Toxicologic Emergencies (Goldfrank LR,Flomenbaum NE,Lewin NA,et al,eds).McGraw-Hill,New York.2002,7th edn.
    21 Hopenhayn-Rich C,Biggs ML,Smith AH,et al.Methylation study of a population environmentally exposed to arsenic in drinking water.Environ Health Perspect.1996;104(6):620-628.
    22 Tseng CH,Huang YK,Huang YL,et al.Arsenic exposure,urinary arsenic speciation,and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan.Toxicol Appl Pharmacol.2005;206(3):299-308.
    23 Huang YK,Tseng CH,Huang YL,et al.Arsenic methylation capability and hypertension risk in subjects living in arseniasishyperendemic areas in southwestern Taiwan.Toxicol Appl Pharmacol.2007;218(2):135-142.
    24 Chen YC,Su HJ,Guo YL,et al.Arsenic methylation and bladder cancer risk in Taiwan.Cancer Causes Control.2003;14(4):303-310.
    25 Chen YC,Guo YL,Su HJ,et al.Arsenic methylation and skin cancer risk in southwestern Taiwan.J Occup Environ Med.2003;45(3):241-248.
    26 Chen YC,Su HJ,Guo YL,et al.Interaction between environmental tobacco smoke and arsenic methylation ability on the risk of bladder cancer.Cancer Causes Control.2005;16(2):75-81.
    27 Steinmaus C,Bates MN,Yuan Y,et al.Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States.J Occup Environ Med.2006;48(5):478-488.
    28 Vahter M.Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity.Toxicol Lett.2000;112-113:209-217.
    29 Vahter M.Variation in human metabolism of arsenic.In:Arsenic Exposure and Health Effects Ⅲ (Chappell WR,Abernathy CO,Calderon RL,eds).Oxford,UK:Elsevier Science Ltd.,1999,pp:267-279.
    30 Yamauchi H,Yamamura Y.Metabolism and excretion of orally administered dimethylarsinic acid in the hamster.Toxicol Appl Pharmacol.1984;74(1):134-140.
    31 Heinrich-Ramm R,Schaller KH,Horn J,et al.Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS)treatment of an acute arsenic trioxide poisioning.Arch Toxicol.2003;77(2):63-68.
    32 Lai VW,Sun Y,Ting E,et al.Arsenic speciation in human urine:are we all the same? Toxicol Appl Pharmacol.2004;198(3):297-306.
    33 Sur R,Dunemann L.Method for the determination of five toxicologically relevant arsenic species in human urine by liquid chromatography-hydride generation atomic absorption spectrometry.J Chromatogr B Analyt Technol Biomed Life Sci.2004;807(2):169-176.
    34 Razo LM,Garcia-vargas GG,Gonsebatt ME,et al.Altered profile of urinary arsenic metabolites in adults with chronic arsenism.Arch Toxicol.1997;71(4):211-217.
    35 Csanaky I,Nemeti B,Gregus Z.Dose-dependent biotransformation of arsenite in rats-not S-Adenosylmethionine depletion impairs arsenic methylation at high dose.Toxicology.2003;183(1-3):77-91.
    36 Yamauchi H,Aminaka Y,Yoshida K,et al.Evaluation of DNA damage in patients with arsenic poisoning:urinary 8-hydroxydeoxyguanine.Toxicol Appl Pharmacol.2004;198(3):291-296.
    37 Rahman M,Vahter M,Wahed MA,et al.Prevalence of arsenic exposure and skin lesions.A population-based survey in Matlab,Bangladesh.J Epidemiol Community Health.2006;60(3):242-248.
    38 Kadono T,Inaoka T,Murayama N,et al.Skin manifestations of arsenicosis in two villages in Bangladesh.Int J Dermatol.2002;41(12):841-846.
    39 Ahmad SA,Sayed MH,Faruquee MH,et al.Arsenicosis:sex differentials.J Prev Soc Med.1999;18(1):35-40.
    40 Hadi A,Parveen R.Arsenicosis in Bangladesh:prevalence and socio-economic correlates.Public Health.2004;118(8):559-564.
    41 Loffredo CA,Aposhian HV,Cebrian ME,et al.Variability in human metabolism of arsenic.Environ Res.2003;92(2):85-91.
    42 Thomas DJ,Li J,Waters SB,et al.Arsenic (+3 oxidation state)methyltransferase and the methylation of arsenicals.Exp Biol Med (Maywood).2007;232(1):3-13.
    43 Whitbread AK,Tetlow N,Eyre HJ,et al.Characterization of the human Omega class glutathione transferase genes and associated polymorphisms.Pharmacogenetics.2003;13(3):131-144.
    44 Mukherjee B,Salavaggione OE,Pelleymounter LL,et al.Glutathione S-transferase omega 1 and omega 2 pharmacogenomics.Drug Metab Dispos.2006;34(7):1237-1246.
    45 Gamble MV,Liu X,Ahsan H,et al.Folate,homocysteine and arsenic metabolism in Bangladesh.Environ Health Perspect.2005;113(12):1683-1688.
    46 Hughes MF.Biomarkers of exposure:a case study with inorganic arsenic.Environ Health Pespect.2006;114(11):1790-1796.
    47 Del Razo LM,Garcia-Vargas GG,Vargas H,et al.Altered profile of urinary arsenic metabolites in adults with chronic arsenicism.A pilot study.Arch Toxicol.1997;71(4):211-217.
    48 Lin S,Shi Q,Nix FB,et al.A novel S-adenosyl-L-methionine:arsenic(Ⅲ)methyltransferase from rat liver cytosol.J Biol Chem.2002;277(13):10795-10803.
    49 Styblo M,Del Razo LM,LeCluyse EL,et al.Metabolism of arsenic in primary cultures of human and rat hepatocytes.Chem Res Toxicol.1999;12(7):560-565.
    50 Chowdhury UK,Rahman MM,Sengupta Mk,et al.Pattern of excretion of As compounds [arsenite,arsenate,MMA(V),DMA(V)]in urine of children compared to adults from an arsenic exposed area in Bangladesh.J Environ Sci Health.2003;38(1):87-113.
    51 Chung JS,Kalman DA,Moore LE,et al.Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water.Environ Health Perspect.2002;110(7):729-733.
    52 Concha G,Vogler G,Nermell B,et al.Intra-individual variation in the metabolism of inorganic arsenic.Int Arch Occup Environ Health.2002;75(8):576-580.
    53 Tice RR,Yager JW,Andrews P,et al.Effect of hepatic methyl donor status on urinary excretion and DNA damage in B6C3F1 mice treated with sodium arsenite.Mutat Res.1997;386(3):315-334.
    54 Weinshilboum R.Pharmacogenetics of methylation:relationship to drug metabolism.Clin Biochem.1988;21(4):201-210.
    55 Yu L,Kalla K,Guthrie E,et al.Genetic variation in genes associated with arsenic metabolism:glutathione S-transferase omega 1-1 and purine nucleoside phosphorylase polymorphisms in European and indigenous Americans.Environ Health Perspect.2003;111(11):1421-1427.
    56 Fu S,Wu J,Chen F,et al.Polymorphisms of Glutathione S-transferases Omega-1 among ethnic populations in China.BMC Genet.2008;10;9:29.
    57 Tanaka-Kagawa T,Jinno H,Hasegawa T,et al.Functional characterization of two variant human GSTO 1-ls (Ala 140Asp and Thr217Asn).Biochem Biophys Res Commun.2003;301(2):516-520.
    58 Steinmaus C,Carrigan K,Kalman D,et al.Dietary intake and arsenic methylation in a U.S.population.Environ Health Perspect.2005;113(9):1153-1159.
    59 Kristiansen J,Christensen JM,Iversen BS,et al.Toxic trace element reference levels in blood and urine:influence of gender and lifestyle factors.Sci Total Environ.1997;204(2):147-160.
    60 Kitchin KT,Ahmad S.Oxidative stress as a possible mode of action for arsenic carcinogenesis.Toxicol Lett.2003;137(1-2):3-13.
    61 Irshad M,Chaudhuri PS.Oxidant-antioxidant system:role and significance in human body.Indian J Exp Biol.2002;40(11):1233-1239.
    62 Athar M.Oxidative stress and experimental carcinogenesis.Indian J Exp Biol.2002;40(6):656-667.
    63 Nandi D,Patra RC,Swamp D.Oxidative stress indices and plasma biochemical parameters during oral exposure to arsenic in rats.Food Chem Toxicol.2006;44(9):1579-1584.
    64 Liu SX,Athar M,Lippai I,et al.Induction of oxyradicals by arsenic:implication for mechanism of genotoxicity.Proc Natl Acad Sci USA.2001;98(4):1643-1648.
    65 Shi H,Hudson LG,Ding W,et al.Arsenite causes DNA damage in keratinocytes via generation ofhydroxyl radicals.Chem Res Toxicol.2004;17(7):871-878.
    66 Applegate LA,Luscher P,Tyrrell RM.Induction of heme oxygenase:a general response to oxidant stress in cultured mammalian cells.Cancer Res.1991;51(3):974-978.
    67 Valko M,Rhodes CJ,Moncol J,et al.Free radicals,metals and antioxidants in oxidative stress-induced cancer.Chem Biol Interact.2006;160(1):1-40.
    68 Nishikawa T,Wanibuchi H,Ogawa M,et al.Promoting effects of monomethylarsonic acid,dimethylarsinic acid and trimethylarsine oxide on induction of rat liver preneoplastic glutathione S-transferase placental form positive foci:a possible reactive oxygen species mechanism.Int J Cancer.2002;100(2):136-139.
    69 Kessel M,Liu SX,Xu A,et al.Arsenic induces oxidative DNA damage in mammalian cells.Mol Cell Biochem.2002;234-235(1-2):301-308.
    70 Schwerdtle T,Walter I,Mackiw I,et al.Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA.Carcinogenesis.2003;24(5):967-974.
    71 Pi J,Yamauchi H,Kumagai Y,et al.Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water.Environ Health Perspect.2002;110(4):331-336.
    72 Wu MM,Chiou HY,Wang TW,et al.Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan.Environ Health Perspect.2001;109(10):1011-1017.
    73 Masella R,Di Benedetto R,Vari R,et al.Novel mechanisms of natural antioxidant compounds in biological systems:involvement of glutathione and glutathione-related enzymes.J Nutr Biochem.2005;16(10):577-586.
    74 Afzal M,Afzal A,Jones A,et al.A rapid method for the quantification of GSH and GSSG in biological samples.In:Oxidative Stress Biomarkers and Antioxidant Protocols (Armstrong D,Eds).Humana Press,New Jersey.2002;pp:l 17-122.
    75 Cheng KC,Cahill DS,Kasai H,et al.8-Hydroxyguanine,an abundant form of oxidative DNA damage,causes G-T and A-C substitutions.J Biol Chem.1992;267(1):166-172.
    76 Kasai H.Analysis of a form of oxidative DNA damage,8-hydroxy-2-deoxyguanosine,as a marker of cellular oxidative stress during carcinogenesis.Mutat Res.1997;387(3):147-163.
    77 Nebert DW,Vasiliou V.Analysis of the glutathione S-transferase (GST)gene family.Hum Genomics.2004;1(6):460-464.
    78 Yang P,Ebbert JO,Sun Z,et al.A role of the glutathione metabolic pathway in lung cancer treatment and prognosis:a review.J Clin Oncol.2006;24(11):1761-1769.
    79 Kolsch H,Linnebank M,Lutjohann D,et al.Polymorphisms in glutathione S-transferase omega-1 and AD,vascular dementia,and stroke.Neurology.2004;63(12):2255-2260.
    80 Barr DB,Wilder LC,Caudill SP,et al.Urinary creatinine concentrations in the U.S.population:implications for urinary biologic monitoring measurements.Environ Health Perspect.2005;113(2):192-200.
    81 Sun GF.Arsenic contamination and arsenicosis in China.Toxicol Appl Pharmacol.2004;198(3):268-271.
    82 Heck JE,Chen Y,Grann VR,et al.Arsenic exposure and anemia in Bangladesh:a population-based study.J Occup Environ Med.2008;50(1):80-87.
    83 Levonen AL,Laakso J,Vaskonen T,et al.Down-regulation of renal glutathione synthesis by systemic nitric oxide synthesis inhibition in spontaneously hypertensive rats.Biochem Pharmacol.2000;59(4):441-443.
    84 Gebel TW,Leister M,Schumann W,et al.Low-level self-tolerance to arsenite in human HepG2 cells is associated with a depressed induction of micronuclei.Mutat Res.2002;514(1-2):245-255.
    85 Evans MD,Dizdaroglu M,Cooke MS.Oxidative DNA damage and disease:induction,repair and significance.Mutat Res.2004;567(1):1-61.
    86 Kimura S,Yamauchi H,Hibino Y,et al.Evaluation of urinary 8-hydroxydeoxyguanine in healthy Japanese people.Basic Clin Pharmacol Toxicol.2006;98(5):496-502.
    87 Loft S,Poulsen HE.Cancer risk and oxidative DNA damage in man.J Mol Med.1996;74(6):297-312.
    88 Wong RH,Kuo CY,Hsu ML,et al.Increased levels of 8-hydroxy-2-deoxyguanosine attributable to carcinogenic metal exposure among schoolchildren.Environ Health Perspect.2005;113(10):1386-1390.
    89 Bau DT,Wang TS,Chung CH,et al.Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite.Environ Health Perspect.2002;110(suppl 5):753-756.
    90 Mo J,Xia Y,Wade TJ,et al.Chronic arsenic exposure and oxidative stress:OGG1 expression and arsenic exposure nail selenium,and skin hyperkeratosis in inner Mongolia.Environ Health Perspect.2006;114(6):835-841.
    91 Memisoglu A,Samson L.Base excision repair in yeast and mammals.Mutat.Res.2000;451(1-2):39-51.
    92 Fujino Y,Guo X,Liu J,et al.Chronic arsenic exposure and urinary 8-hydroxy-2'-deoxyguanosine in an arsenic-affected area in Inner Mongolia,China.J Expo Anal Environ Epidemiol.2005;15(2):147-152.
    93 Soto-Reyes E,Del Razo LM,Valverde M,et al.Role of the alkali labile sites,reactive oxygen species and antioxidants in DNA damage induced by methylated trivalent metabolites of inorganic arsenic.Biometals.2005;18(5):493-506.
    94 Kligerman AD,Doerr CL,Tennant AH,et al.Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic:induction of chromosomal mutations but not gene mutations.Environ Mol Mutagen.2003;42(3):192-205.
    95 Dopp E,Hartmann LM,Florea AM,et al.Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO)cells.Toxicol Appl Pharmacol.2004;201(2):156-165.
    96 Hopenhayn-Rich C,Browning SR,Hertz-Picciotto I,et al.Chronic arsenic exposure and risk of infant mortality in two areas of Chile.Environ Health Perspect.2000;108(7):667-673.
    97 Smith AH,Goycolea M,Haque R,et al.Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water.Am J Epidemiol.1998;147(7):660-669.
    1 Yamauchi H,Fowler BA.Human Health and Ecosystem Effects.Arsenic in the Environment,New York:35-43.
    2 Le XC,Lu X,Ma M,et al.Speciation of key arsenic metabolic intermediates in human urine.Anal Chem.2001;72(21):5172-5177.
    3 Le XC,Ma M,Cullen WR,et al.Determination of monomethylarsonous acid,a key arsenic methylation intermediate,in human urine.Environ Health Perspect.2000;108(11):1015-1018.
    4 Mandal BK,Organ V,Suzuki KT.Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal,India.Chem Res Toxico.2001;14(4):371-378.
    5 Del Razo LM,Styblo M,Cullen WR,et al.Determination of bivalent methylated arsenicals in biological matrices.Toxicol Appl Pharmacol.2001;174(3):282-293.
    6 Aposhian HV,Zakharyan RA,Avram MD,et al.A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in detoxication of the trivalent arsenic species.Toxicol Appl Pharmacol.2004;198(3):327-335.
    7 Hayakawa T,Kobayashi Y,Cui X,et al.A new metabolic pathway of arsenite:arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19.Arch Toxicol.2005;79(4):183-191.
    8 Kedderis GL,Elmore AR,Crecelius EA,et al.Kinetics of arsenic methylation by freshly isolated B6C3F1 mouse hepatocytes.Chem Biol Interact.2006;161(2):139-145.
    9 Naranmandura H,Suzuki N,Suzuki KT.Trivalent arsenicals are bound to proteins during reductive methylation.Chem Res Toxicol.2006;19(8):1010-1018.
    10 Kobayashi Y,Hirano S.Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenicmetabolites in rat bile.Toxicol Appl Pharmacol.2008;232(1):33-40.
    11 Rami R,Rumpler A,Goessler W,et al.Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh.Toxicol Appl Pharmacol.2007;222(3):374-380.
    12 Villa-Bellosta R,Sorribas V.Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.Toxicol Appl Pharmacol.2008;232(1):125-134.
    13 Styblo M,Serves SV,Cullen WR,et al.Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols.Chem Res Toxicol.1997;10(1):27-33.
    14 Chouchane S,Snow ET.In vitro effect of arsenical compounds on glutathione-related enzymes.Chem Res Toxicol.2001;14(5):517-522.
    15 Lin S,Cullen WR,Thomas DJ.Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase.Chem Res Toxicol.1999;12(10):924-930.
    16 Lin S,Del Razo LM,Styblo M,et al.Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes.Chem Res Toxicol.2001;14(3):305-311.
    17 Petrick JS,Jagadish B,Mash EA,et al.Monomethylarsonous acid (MMA(Ⅲ))and arsenite:LD(50)in hamsters and in vitro inhibition of pyruvate dehydrogenase.Chem Res Toxicol.2001;14(6):651-656.
    18 Styblo M,Del Razo LM,Vega L,et al.Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.Arch Toxicol.2000;74(6):289-299.
    19 Styblo M,Vega L,Germolec DR,et al.Metabolism and toxicity of arsenicals in cultured cells.In:Arsenic Exposure and Health Effects,Oxford:Elsevier,1999;311-323.
    20 Petrick JS,Ayala-Fierro F,Cullen WR,et al.Monomethylarsonous acid (MMA(Ⅲ))is more toxic than arsenite in Chang human hepatocytes.Toxicol Appl Pharmacol.2000;163(2):203-207.
    21 Dopp E,Hartmann LM,Florea AM,et al.Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO)cells.Toxicol Appl Pharmacol.2004;201(2):156-165.
    22 Kitchin KT.Recent advances in arsenic carcinogenesis:modes of action,animal model systems,and methylated arsenic metabolites.Toxicol Appl Pharmacol.2001;172(3):249-261.
    23 Styblo M,Drobna Z,Jaspers I,et al.The role of biomethylation in toxicity and carcinogenicity of arsenic:a research update.Metals Environ Health Pespect.2002;110 (suppl 5):767-771.
    24 Vega L,Styblo M,Patterson R,et al.Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes.Toxicol Appl Pharmacol.2001;172(3):225-232.
    25 Hopenhayn-Rich C,Smith AH,Goeden HM.Human studies do not support the methylation threshold hypothesis for the toxicity of inorganic arsenic.Environ Res.1993;60(2):161-177.
    26 Vather M.Genetic polymorphism in the biomethylation of inorganic arsenic and its role in toxicity.Toxicol Lett.2000;112-113:209-217.
    27 Vahter M.Variation in human metabolism of arsenic.In:Arsenic Exposure and Health Effects Ⅲ (Chappell WR,Abernathy CO,Calderon RL,eds).Oxford,UK:Elsevier Science Ltd.,1999;pp:267-279.
    28 Tseng CH,Huang YK,Huang YL,et al.Arsenic exposure,urinary arsenic speciation,and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan.Toxicol Appl Pharmacol.2005;206(3):299-308.
    29 Huang YK,Tseng CH,Huang YL,et al.Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan.Toxicol.Appl.Pharmacol.2007;218(2):135-142.
    30 Chen YC,Guo YL,Su HJ,et al.Arsenic methylation and skin cancer risk in southwestern Taiwan.J Occup Environ Med.2003;45(3):241-248.
    31 Chen YC,Su HJ,Guo YL,et al.Interaction between environmental tobacco smoke and arsenic methylation ability on the risk of bladder cancer.Cancer Causes.2005;16(2):75-81.
    32 Fujino Y,Guo X,Liu J,et al.Chronic arsenic exposure and urinary 8-hydroxy-2'-deoxyguanosine in an arsenic-affected area in Inner Mongolia,China.J Expo Anal Environ Epidemiol.2005;15(2):147-152.
    33 Shraim A,Cui X,Li S,et al.Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou,PR China.Toxicol Lett.2003;137(1-2):35-48.
    34 Sun G,Xu Y,Li X,et al.Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia,China.Environ Health Perspect.2007;115(4):648-652.
    35 Chowdhury UK,Rahman MM,Sengupta MK,et al.Pattern of excretion of arsenic compounds [arsenite,arsenate,MMA (V),DMA (V)]in urine of children compared to adults from an arsenic exposed area in Bangladesh.J Environ Sci Health A Tox Hazard subst Environ Eng.2003;38(1):87-113.
    36 Li L,Ekstrom E,Goessler W,et al.Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant bangladeshi women.Environ Health Perspect.2008;116(3):315-321.
    37 Steinmaus C,Carrigan K,Kalman D,et al.Dietary intake and arsenic methylation in a U.S.population.Environ Health Perspect.2005;113(9):1153-1159.
    38 Heck JE,Gamble MV,Chen Y,et al.Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh.Am J Clin Nutr.2007;85(5):1367-1374.
    39 Gamble MV,Liu X,Ahsan H,et al.Folate and arsenic metabolism:a double-blind,placebo-controlled folic acid-supplementation trial in Bangladesh.Am J Clin Nutr.2006;84(5):1093-1101.
    40 Waters SB,Devesa V,Fricke MW,et al.Glutathione modulates recombinant rat arsenic (+3 oxidation state)methyltransferase-catalyzed formation of trimethylarsine oxide and trimethylarsine.Chem Res Toxicol.2004;17(12):1621-1629.
    41 Chung JS,Kalman DA,Moore LE,et al.Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water.Environ Health Perspect.2002;110(7):729-733.
    42 Hernandez A,Xamena N,Surralles J,et al.Role of the Met287Thr polymorphism in AS3MT gene on the metabolic arsenic profile.Mutat Res.2008;637(1-2):80-92.
    43 Steinmaus C,Moore LE,Shipp M,et al.Genetic polymorphisms in MTHFR667 and 1298,GSTM1 and Tl,and metabolism of arsenic.J Toxicol Environ Health A.2007;70(2):159-170.
    44 McCarty KM,Chen YC,Quamruzzaman Q,et al.Arsenic Methylation,GSTT1,GSTM1,GSTP1 polymorphisms and skin lesions.Environ Health Perspect.2007;115(3):341-345.
    45 Meza MM,Yu L,Rodriguez YY,et al.Developmentally restricted genetic determinants of human arsenic metabolism:association between urinary methylated arsenic and CYT19 polymorphisms in children.Environ Health Perspect.2005;113(6):775-781.
    46 Schlawicke Engstrom K,Broberg K,Concha G,et al.Genetic polymorphisms influencing arsenic Methylation:evidence from Angentina.Environ Health Perspect.2007;115(4):599-605.
    47 Lindberg AL,Kumar R,Goessler W,et al.Metabolism of low-dose inorganic arsenic in Europe.Environ Health Perspect.2007;115(4):1081-1086.
    48 Radabaugh TR,Sampayo-Reyes A,Zakharyan RA,et al.Arsenate reductase Ⅱ.Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems.Chem Res Toxicol.2002;15(5):692-698.
    49 Gregus Z,Nemeti B.Purine nucleoside phosphorylase as a cytosolic arsenate reductase.Toxicol Sci.2002;70(1):13-19.
    50 Nebert DW,Vasiliou V.Analysis of the glutathione S-transferase (GST)gene family.Hum Genomics.2004;1(6):460-464.
    51 Hayes JD,Flanagan JU,Jowsey IR.Glutathione transferases.Annu Rev Pharmacol Toxicol.2005;45:51-88.
    52 Yang P,Ebbert JO,Sun Z,et al.A role of the glutathione metabolic pathway in lung cancer treatment and prognosis:a review.J Clin Oncol.2006;24(11):1761-1769.
    53 Strange RC,Spiteri MA,Ramachandran S,et al.Glutathione-S-transferase family of enzymes.Mutat Res.2001;482(1-2):21-26.
    54 Board PG,Coggan M,Chelvanayagam G,et al.Identification,characterization and crystal structure of the Omega class glutathione transferases.J Biol Chem.2000;275(32):24798-24806.
    55 Whitbread AK,Tetlow N,Eyre HJ,et al.Characterization of the human Omega class glutathione transferase genes and associated polymorphisms.Pharmacogenetics.2003;13(3):131-144.
    56 Zakharyan RA,Sampayo-Reyes A,Healy SM,et al.Human monomethylarsonic acid (MMA(V))reductase is a member of the glutathione-S-transferase superfamily.Chem Res Toxicol.2001;14(8):1051-1057.
    57 Schmuck EM,Board PG,Whitbread AK,et al.Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants:implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases.Pharmacogenet Genomics.2005;15(7):493-501.
    58 Yu L,Kalla K,Guthrie E,et al.Genetic variation in genes associated with arsenic metabolism: glutathione S-transferase omega 1-1 and purine nucleoside phosphorylase polymorphisms in European and indigenous Americans.Environ Health Perspect.2003;111(11):1421-1427.
    59 Marahatta SB,Punyarit P,Bhudisawasdi V,et al.Polymorphism of glutathione S-transferase omega gene and risk of cancer.Cancer Lett.2006;236(2):276-281.
    60 De Chaudhuri S,Ghosh P,Sarma N,et al.Genetic variants associated with arsenic susceptibility:study of purine nucleoside phosphorylase,arsenic (+3)methyltransferase,and glutathione S-transferase omega genes.Environ Health Perspect.2008;116(4):501-505.
    61 Takeshita H,Fujihara J,Takastuka H,et al.Diversity of glutathione S-transferase omega a (A MOD)and 2 (N142D)gene polymorphisms in world populaions.Clin Exp Pharmacol Physiol.2009;36(3):283-286.
    62 Marnell LL,Garcia-Vargas GG,Chowdhury UK,et al.Polymorphisms in the human monomethylarsonic acid (MMA V)reductase/hGSTOl gene and changes in urinary arsenic profiles.Chem Res Toxicol.2003;16(12):1507-13
    63 Mukherjee B,Salavaggione OE,Pelleymounter LL,et al.Glutathione S-transferase omega 1 and omega 2 pharmacogenomics.Drug Metab Dispos.2006;34(7):1237-1246.
    64 Lin S,Shi Q,Nix FB,et al.A novel S-adenosyl-L-methionine:arsenic(Ⅲ)methyltransferase from rat liver cytosol.J Biol Chem.2002;277(13):10795-10803.
    65 Styblo M,Del Razo LM,Vega L,et al.Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.Arch Toxicol.2000;74(6):289-299.
    66 Thomas DJ,Waters SB,Styblo M.Elucidating the pathway for arsenic methylation.Toxicol Appl Pharmacol.2004;198(3):319-326.
    67 Frosst P,Blom HJ,Milos R,et al.A candidate genetic risk factor forvascular disease:a common mutation in methylenetetrahydrofolate reductase.Nature Genetics.1995;10(1):111-113.
    68 Wlodarczyk B,Spiegelstein O,Gelineau-van Waes J,et al.Arsenic-induced congenital malformations in genetically susceptible folate binding protein-2 knockout mice.Toxicol Appl Pharmacol.2001;177(3):238-246.
    69 Csanaky I,Gregus Z.Species variations in the biliary and urinary excretion of arsenate,arsenite and their metabolites.Comp Biochem Physiol C Toxicol Pharmacol.2002;131(3):355-365.
    70 Hughes MF,Kenyon EM,Edwards BC,et al.Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate.Toxicol Appl Pharmacol.2003;191(3):202-210.
    71 Cohen SM,Arnold LL,Eldan M,et al.Methylated arsenicals:the implications of metabolism and carcinogenicity studies in rodents to human risk assessment.Crit Rev Toxicol.2006;36(2):99-133.
    72 WHO.Arsenic and arsenic compounds.2nd ed.Environmental Health Criteria 224.Geneva: World Health Ognization,2001.
    73 Li W,Wei C,Zhang C,et al.A survey of arsenic species in Chinese seafood.Food Chem Toxicol.2003;41(8):1103-1110.
    74 Waalkes MP,Liu J,Ward JM,et al.Animal models for arsenic carcinogenesis:inorganic arsenic is a transplacental carcinogen in mice.Toxicol Appl Pharmacol.2004;198(3):377-384.
    75 Waalkes MP,Liu J,Diwan BA.Transplacental arsenic carcinogenesis in mice.Toxicol Appl Pharmacol.2007;222(3):271-280.
    76 Shen J,Liu J,Xie Y,et al.Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure.Toxicol Sci.2007;95(2):313-320.
    77 Bredfeldt TG,Jagadish B,Eblin KE,et al.Monomethylarsonous acid induces transformation of human bladder cells.Toxicol Appl Pharmacol.2006;216(1):69-79.
    78 Valenzuela OL,Borja-Aburto VH,Garcia-Vargas GG,et al.Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic.Environ Health Perspect.2005;113(3):250-254.
    79 Steinmaus C,Yuan Y,Bates MN,et al.Case-control study of bladder cancer and drinking water arsenic in the Western United States.Am J Epidemiol.2003;158(12):1193-1201.
    80 Bates MN,Rey OA,Biggs ML,et al.Case-control study of bladder cancer and exposure to arsenic in Argentina.Am J Epidemiol.2004;159(4):381-389.
    81 Smith AH,Marshall G,Yuan Y,et al.Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood.Environ Health Perspect.2006;114(8):1293-1296.
    82 Marshall G,Ferreccio C,Yuan Y,et al.Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water.J Natl Cancer Inst.2007;99(12):920-928.
    83 Liaw J,Marshall G,Yuan Y,et al.Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile.Cancer Epidemiol Biomarkers Prev.2008;17(8):1982-1987.
    84 Liao CM,Shen HH,Chen CL,et al.Risk assessment of arsenic-induced internal cancer at long-term low dose exposure.J Hazard Mater.2009;165(l-3):652-663.
    85 Baastrup R,Sorensen M,Balstram T,et al.Arsenic in drinking-water and risk for cancer in Denmark.Environ Health Perspect.2008;116(2):231-237.
    86 Rahman M,Vahter M,Sohel N,et al.Arsenic exposure and sge and sex-specific risk for skin lesions:a population-based case-referent study in Bangladesh.Environ Health Perspect.2006;114(12):1847-1852.
    87 Lindberg AL,Rahman M,Per LA,et al.The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure.Toxicol Appl Pharmacol.2008;230(1):9-16.
    88 Liu J,Waalkes MP.Liver is a target of arsenic carcinogenesis.Toxicol Sci.2008;105(1): 24-32.
    89 Arteel GE,Guo L,Schlierf T,et al.Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice.Toxicol Appl Pharmacol.2008;226(2):128-139.
    90 Santra A,Chowdhury A,Ghatak S,et al.Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine.Toxicol Appl Pharmacol.2007;220(2):146-155.
    91 Chen CJ,Wang SL,Chiou JM,et al.Arsenic and diabetes and hypertension in human populations:a review.Toxicol Appl Pharmacol.2007;222(3):298-304.
    92 Paul DS,Harmon AW,Devesa V,et al.Molecular mechanisms of the diabetogenic effects of arsenic:inhibition of insulin signaling by arsenite and methylarsonous acid.Environ Health Perspect.2007;115(5):734-742.
    93 Mazumder DN,Steinmus C,Bhattacharaya P,et al.Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water.Epidemiology.2005;16(6):760-765.
    94 Parvez F,Chen Y,Brandt-Rauf PW,et al.Nonmalignant respiratory effects of chronic arsenic exposure from drinking water among never-smokers in Bangladesh.Environ Health Perspect.2008;116(2):190-195.
    95 Lantz RC,Chau B,Sarihan P,et al.In utero and postnatal exposure to arsenic alters pulmonary structure and function.Toxicol Appl Pharmacol.2009;235(1):105-13.
    96 Wang CH,Hsiao CK,Chen CL,et al.A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases.Toxicol Appl Pharmacol.2007;222(3):315-326.
    97 Mumford JL,Wu K,Xia Y,et al.Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study.Environ Health Perspect.2007;115(5):690-694.
    98 Kwok RK,Mendola P,Liu ZY,et al.Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia,China.Toxicol Appl Pharmacol.2007;222(3):337-343.
    99 von Ehrenstein OS,Poddar S,Yuan Y,et al.Children's intellectual function in relation to arsenic exposure.Epidemiology.2007;18(1):44-51.
    100 Wasserman GA,Liu X,Parvez F,et al.Water arsenic exposure and intellectual function in 6-year-old children in Araihazar,Bangladesh.Environ Health Perspect.2007;115(2):285-289.
    101 Wang SX,Wang ZH,Cheng XT,et al.Arsenic and fluoride exposure in drinking water:children's IQ and growth in Shanyin county,Shanxi province,China.Environ Health Perspect.2007;115(4):643-647.
    102 Rosado JL,Ronquillo D,Kordas K,et al.Arsenic exposure and cognitive performance in Mexican schoolchildren.Environ Health Perspect.2007;115(9):1371-1375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700