用户名: 密码: 验证码:
Mg_xZn_(1-x)O三元化合物的制备及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg_xZn_(1-x)O三元化合物是一种Ⅱ-Ⅵ族ZnO基半导体材料,室温下ZnO的禁带宽度约为3.3eV,MgO的禁带宽度约为7.8eV,Mg_xZn_(1-x)O薄膜的禁带宽度理论上可以从3.3eV到7.8eV连续可调,Mg_xZn_(1-x)O三元化合物禁带宽度的可调性,使Mg_xZn_(1-x)O三元化合物在紫外、可见光发射器件、日盲区紫外探测器等方面具有广阔的应用前景,成为当前的研究热点。
     本论文分别采用溶胶-凝胶旋涂法和射频磁控溅射法在蓝宝石、Si、石英玻璃和陶瓷等衬底上制备了不同组分的Mg_xZn_(1-x)O薄膜,通过光电子能量分散谱仪(EDS)、X射线衍射仪(XRD)和扫描电镜(SEM)表征了薄膜的组分、结构和表面形貌。通过紫外可见分光光度仪和紫外可见荧光光谱仪研究了薄膜的吸收、透射和发光性能。讨论了制备工艺对薄膜结构和光学性能的影响。采用光刻与湿化学刻蚀法在Si(111)/Mg_xZn_(1-x)O上制备了MSM结构的日盲区紫外探测器,采用霍尔测试仪和光谱响应测试系统研究了探测器的Ⅰ-Ⅴ特性和光谱响应特性。采用溶胶凝胶法制备了Mg_xZn_(1-x)O纳米粉体,并利用该粉体制备了Mg_xZn_(1-x)O陶瓷,采用XRD、分光光度仪和荧光光谱仪表征了纳米粉体和陶瓷的结构、发光性能和吸收、透过特性。取得以下主要研究成果:
     1.溶胶-凝胶旋涂法制备薄膜研究表明,在偏酸性条件下(pH值在6.5.7.0之间),溶液温度为80℃,升温速率为2-4℃/min,稳定剂0.3ml/g的条件下获得质量较好的溶胶。在120℃下干燥,在300℃下热处理30min,在600℃下灼烧1h获得较佳薄膜样品。
     2.溶胶-凝胶旋涂法制备的薄膜组分与设计的组成一致。薄膜的结构随x值变化,当x≤0.33时,Mg_xZn_(1-x)O薄膜为六方ZnO结构,当x≥0.5时,Mg_xZn_(1-x)O薄膜为立方MgO结构,当0.33     3.溶胶-凝胶旋涂法制备的Mg_xZn_(1-x)O薄膜的发射光谱由峰值分别位于384nm、443nm和536nm附近的三个发射峰组成。石英玻璃衬底有利于紫外光发射,Si衬底有利于蓝光发射,薄膜的发光由缺陷能级引起。提高灼烧温度有利于提高薄膜样品的蓝光发射,退火使薄膜的紫外发光峰发生蓝移,蓝光发光峰发生红移。不同组分和不同衬底Mg_xZn_(1-x)O薄膜都具有紫外激发特性,Si衬底上激发光谱较宽。灼烧温度和退火对薄膜的激发光谱基本没有影响。Mg含量增加,薄膜的吸收边蓝移,带隙增大。退火也可以增大薄膜禁带宽度。
     4.射频磁控溅射法制备薄膜研究表明,当溅射功率为300W,气体流量为20sccm,靶与挡板间距为10mm,靶与衬底间距为80mm,衬底温度为室温,溅射时间为50min时获得高质量的薄膜样品。薄膜粒径分布均匀,随着溅射时间的增加,颗粒长大。蓝宝石衬底上薄膜的平均粒径最小约为10nm,Si衬底上薄膜的平均粒径最大约为40nm,薄膜为纳米膜。
     5.射频磁控溅射法制备的薄膜组分与靶材组分不一致,薄膜中Mg含量大于靶材中Mg含量。Si衬底上薄膜的组分为Mg_(0.59)Zn_(0.41)O,蓝宝石衬底上薄膜的组分为Mg_(0.47)Zn_(0.53)O,石英玻璃衬底上薄膜的组分为Mg_(0.44)Zn_(0.56)O,载玻片衬底上薄膜的组分为Mg_(0.52)Zn_(0.48)O。不同衬底上Mg_xZn_(1-x)O薄膜的结构均为ZnO的六方纤锌矿结构,薄膜具有c轴取向性。
     6.射频磁控溅射法制备的Mg_xZn_(1-x)O薄膜具有明显的吸收边,蓝宝石衬底上薄膜的吸收边位于292nm,石英玻璃和Si衬底上薄膜的吸收边位于298nm,载玻片衬底上薄膜的吸收边位于312nm,蓝宝石衬底和石英玻璃衬底Mg_xZn_(1-x)O薄膜的平均透过率达80%。薄膜的吸收边和发光峰随着溅射时间的增加发生蓝移。
     7.紫外探测器的响应截止边位于295nm,对应的光谱响应度R_λ为5.85A/W,外量子效率为2460.6%,NEP为1.681×10~(12)W,D为5.95×10~(11)W~(-1),D~*为1.78×10~(11) cm·Hz·W~(-1)。日盲区响应峰值位于260nm,对应的光谱响应度R_λ为7.17A/W,外量子效率可达3421.8%,NEP为1.365×10~(12)W,D为7.33×10~(11) W~(-1),D~*为2.2×10~(11) cm·Hz·W~(-1)。
     8. Mg_xZn_(1-x)O粉体存在ZnO的六方纤锌矿和MgO的面心立方岩盐两种结构,当x小于0.20时,粉体为ZnO六方结构;当x大于0.80时,粉体为MgO立方面心结构,粉体随着灼烧温度的升高晶粒逐渐完善。采用粉体制备的Mg_xZn_(1-x)O陶瓷的透过率随x的变化而改变。
Mg_xZn_(1-x)O Ternary compounds are a type ofⅡ-ⅥZnO based semiconductor material. The band gap of ZnO is about 3.3 and that of MgO is 7.8eV at room temperature. The band gap of Mg_xZn_(1-x)O film theoretically can be continuously adjustable from 3.3eV to 7.8eV, so that Mg_xZn_(1-x)O Ternary compounds have a wide application prospect in the UV, Visible emitting devices and solar blind region UV detectors. Mg_xZn_(1-x)O Ternary compounds become the hot spots of current research.
     In this thesis, Mg_xZn_(1-x)O thin film samples with various components were prepared on sapphire, quartz glass, Si and ceramic etc substrates by Sol-Gel spin-coating method and radio frequency magnetron sputtering (RFMS) method respectively. Components, structure and surface morphology were characterized with photoelectron energy dispersive spectroscope(EDS), X-ray diffraction(XRD) and scanning electron microscope(SEM). The properties of absorption, transmission and luminescence were studied by UV-visible spectrometer and UV-visible fluorescence spectrometer. The effects of fabrication conditions on the structure and optical properties of the film were discussed. A UV detector with MSM structure on Si (111) /Mg_xZn_(1-x)O was also prepared by lithography and wet chemical etching method and its properties ofⅠ-Ⅴand spectral responsivity were measured by hall test meter and spectral response measurement system. Mg_xZn_(1-x)O nanopowders were prepared by Sol-Gel method and Mg_xZn_(1-x)O ceramics were also prepared with the produced nanopowders. The properties of structure, luminescence, absorption and transmission of nanopowders and ceramics were characterized by XRD, UV-visible spectrometer and UV-visible fluorescence spectrometer. Main research results obtained are as follows:
     1. Results of film prepared by Sol-Gel spin-coating method indicate that high quality Mg_xZn_(1-x)O sol could be obtained under the conditions of acidic condition (pH value between 6.5-7.0), temperature of the solution at 80℃, heating rate at 2-4℃/min, stabilizer at 0.3ml/g. Better samples of film were obtained by drying the sol at 120℃, then heating it at 300℃for 30min and calcined at 600℃for lh.
     2. The components of the film prepared by Sol-Gel spin-coating method and the components of design should be consistent. The structure of film changes with the x value. Mg_xZn_(1-x)O thin film is hexagonal ZnO structure with x≤0.33 while Mg_xZn_(1-x)O thin film is cubic MgO structure when x≥0.5. The crystal structure of the Mg_xZn_(1-x)O thin film is hybrid structure of ZnO and MgO when 0.33      3. The emission spectra of Mg_xZn_(1-x)O thin film prepared by Sol-Gel spin-coating method was mainly composite of three emission peaks near at 384nm, 443nm and 536nm respectively. Quartz glass substrate is conducive to UV light emission, Si substrate is conducive to blue light emitting and the luminescence of thin film caused by the defect levels. Improving sintering temperature is conducive to the blue emission. Annealing makes UV emission peak of the film happen blue-shift and blue-ray emission peak happen red-shift. Mg_xZn_(1-x)O thin films with various components and on different substrates all have characteristics of UV excitation, while excitation spectrum on Si substrate is wider. Sintering temperature and annealing have no impact on excitation spectrum of thin film. With the content of Mg increased, absorption edge of the film blue shift and band gap increased. Annealing can also increases the band gap of film.
     4. Results of film prepared by RFMS method indicate that high quality film samples could be obtained under the conditions of sputtering power at 300W, gas flow at 20sccm, distance of target and baffle at 10mm, distance between target and substrate at 80mm, substrate temperature at room temperature, sputtering time at 50min. Particle size of film is homogeneous and particles grow up with the sputtering time increases. The smallest average particle size of film on sapphire substrates is about 10nm and the biggest average particle size of film on Si substrate is about 40nm. So the film is nanofilm.
     5. Components of film prepared by RFMS method are inconsistent with the target components and the content of Mg in film should be larger than the content of Mg in the target. The component of Mg_xZn_(1-x)O film on Si substrate is Mg_(0.59)Zn_(0.41)O. The component of Mg_xZn_(1-x)O film on sapphire substrate is Mg_(0.47)Zn_(0.53)O. The component of Mg_xZn_(1-x)O film on quartz glass substrate is Mg_(0.44)Zn_(0.56)O. The component of Mg_xZn_(1-x)O film on chip-carrier substrate is Mg_(0.52)Zn_(0.48)O. The structures of Mg_xZn_(1-x)O film on different substrates all were the hexagonal wurtzite structure of ZnO with c-axis oriention.
     6. Mg_xZn_(1-x)O film prepared by RFMS method has a clear absorption edge. The absorption edge of thin film on sapphire substrate is located at 292nm, absorption edges of thin films on quartz glass and Si substrate are located at 298nm and absorption edge of thin film on chip-carrier substrate locates at 312nm. The average transmittance of films on sapphire and quartz glass substrate is 80%. The absorption edge and luminescence peak of films blue shift with the sputtering time increases.
     7. The response cut-off edge of UV detector locates at 295nm corresponded to the spectral responsivity R_λis 5.85A/W. External quantum efficiency is 2460.6%, NEP is 1.681×10~(12)W, D is 5.95×10~(11)W~(-1), D~* is 1.78×10~(11) cm·Hz·W~(-1). The maximum response in the solar blind region locates at 260nm and corresponding spectral responsivity R_λis 7.17A/W. External quantum efficiency can be 3421.8%, NEP is 1.365×10~(12)W, D is 7.33×10~(11) W~(-1), D~* is 2.2×10~(11) cm·Hz·W~(-1).
     8. Powder of Mg_xZn_(1-x)O exist two structures as the hexagonal wurtzite of ZnO and face-centered cubic rock salt structure of MgO. Mg_xZn_(1-x)O powder is the hexagonal structure of ZnO when x is less than 0.20,Mg_xZn_(1-x)O powder is face-centered cubic structure of MgO when x is greater than 0.80. The grain of powder has gradual improvement with the growing of sintering temperature. Transmittance of Mg_xZn_(1-x)O ceramic prepared by produced nanopowders change with the x value.
引文
[1] Heo Y. W., Abernathy C., Pruessner K. et al. Structure and optical properties of cored wurtzite (Zn, Mg)O heteroepitaxial nanowires[J]. J. Appl. Phys., 2004, 96(6): 3224-3228.
    [2] Vashaei Z., Minegishi T., Suzuki H. et al. Sturctural variation of cubic and hexagonal Mg_xZn_(1-x)O layers grown on MgO (111)/c-sapphire[J]. J. Appl. Phys., 2005, 98(5): 054911-054913.
    [3] Kunisu M., Tanaka I., Yamamoto T. et al. The formation of a rock-salt type ZnO thin film by low-level alloying with MgO [J]. J. Phys. Condens. Matter, 2004 (16): 3801-3806.
    [4] Takeuchi I., Yang W., Chang K. S. et al. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in Mg_xZn_(1-x)O composition spreads[J]. Appl. Phys. Lett., 2003, 94(11):7336-7340.
    [5] Bhupendra, Kumar, Hao G. et al. Photoluminescence and multiphonon resonant Raman scatteringin low-temperature grown ZnO nanostructures [J]. Appl. Phys. Lett., 2006, 89(7): 19221-19223.
    [6] Thareja R. K., Saxena H., Narayanan V. el al. Laser-ablated ZnO for thin films of ZnO and Mg_xZn_(1-x)O [J]. J. Appl. Phys., 2005, 98(3): 349081-349083.
    [7] Chen Y. F., Ko H. J., Hong S. K. el al. Layer-by-layer growth of ZnO epilayer on Al_2O_3(0001) by using a MgO buffer layer[J]. Appl. Phys. Lett, 2000.76(5):599-603.
    [8] Yuriy V., Kai W., Arokia N.. Low leakage p-NiO/ i-ZnO/n-ITO heterostructure ultraviolet sensor [J]. Appl. Phys. Lett., 2006, 89(17): 1721051-1721054.
    [9] Clement Y., Yu S. F., Eunice S. P. el al. Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer[J]. Appl. Phys. Lett., 2005, 86(3): 0311121-0311124.
    [10] Bundesmann C., Rahm A., Loren M. el al. Infrared optical properties of Mg_xZn_(1-x)O thin films (0≤x≤1) Long-wavelength optical phonons and dielectric constants[J]. J. Appl. Phys., 2006, 99(11):1135041-11350412.
    [11] Ying M. J., Du X. L, Liu Y. Z. el al.Interface engineering for lattice-matched epitaxy of ZnO on (La,SrXAl,Ta)O_3(111) substrate[J]. Appl. Phys. Lett., 2005, 87(20):2021071-2021074.
    [12] Ohtomo A, Kawasaki M., Koida T. et al. Mg_xZn_(1-x)O as a Ⅱ-Ⅵ wide gap semiconductor alloy [J]. Appl. Phys. Lett., 1998. 72(19): 2466-2468.
    [13] Sharma A. K., Narayan J, Muth J. F. et al. Optical and structural properties of epitaxial Mg_xZn_(1-x)O alloys [J]. Appl. Phys. Lett., 1999, 75(21): 3327- 3329.
    [14] Teng C. W., Muth J. R, Ozgur U. et.al. Refractive indices and adsorption coefficients of Mg_xZn_(1-x)O alloys [J]. Appl. Phys. Lett., 2000, 76(8): 979-981.
    [15] Park W. I.. Metalorganic vapor-phase epitaxial growth and Photoluminescent properties of Zn_(1-x)Mg_xO (0≤x≤0.49) thin films[J]. Appl. Phys. Lett., 2001, 79(8): 2022-2025.
    [16] Yang W, Vispute R. D., Choopun S. et al. Ultraviolet Photoconductive detector based on epitaxial Mg_(0.34)Zn_(0.66)O thin films[J]. Appl. Phys. Lett., 2001, 78(18):2787-2789.
    [17] Choopun S., Vispute R.D., Yang W. et.al. Realization of band gap above 5.0 eV in metastable cubic-phase Mg_xZn_(1-x)O alloy films[J]. Appl. Phys. Lett., 2002, 80(9): 1529-1531.
    [18] Tomoaki T., Sho S., Tetsuya K.. Photoluminescence from highly oriented Mg_xZn_(1-x)O films grown by chemical spray pyrolysis[J]. J. Crystal Growth, 2002: 237-239.
    [19] Yang W., Hullavarad S. S., Nagaraj B. et.al. Compositionally-tuned epitaxial cubic Mg_xZn_(1-x)O on Si(100) for deep ultraviolet Photodetectors[J]. Appl. Phys. Lett., 2003, 82(20): 3424-3426.
    [20] 连洁,王青圃,赵懿昆等.Si衬底上Mg_xZn_(1-x)O薄膜发光特性的研究[J].光电子·激光,2006,17(5):554-557.
    [21] 余萍,吴惠桢,陈奶波等.立方Mg_xZn_(1-x)O晶体薄膜的制备和性能[J].材料研究学报,2005,19(3):278-280.
    [22] 吴春霞,吕有明,李炳辉等.Mg_xZn_(1-x)O单晶薄膜的结构和光学性质[J].发光学报.2004,25(3):277-282.
    [23] 郭书霞,张兴堂,赵慧玲等.纳米氧化锌的制备与发光性能的研究[J].无机化学学报,2006,(4):724-728.
    [24] 魏强,李梦轲,杨志等.取向Zn_(1-x)Mg_xO纳米线阵列的制备及光学特性[J].物理化学学报.2008,24(5):793-798.
    [25] 王丹,张喜田,刘益春等.热氧化法制备纳米ZnO薄膜及其发光特性的研究[J].功能材料,2003,34(5):570-572.
    [26] 张喜田,刘益春,支壮志等. 热氧化制备纳米氧化锌薄膜的光致发光和室温紫外激光发射[J].半导体学报,2003,24(1):44-48.
    [27] 汪壮兵,许小亮,陈莹莹.电泳法制备Zn_(1-x)Mg_xO薄膜及其特性研究[J].物理学报,2004,53(11):3924-3928.
    [28] 王坤,姚淑德,侯利娜等.用卢瑟福背散射/沟道技术研究ZnO/Zn_(0.9)Mg_(0.1)O/ZnO异质结的弹性 应变[J].物理学报,2006,55(6):2892-2896.
    [29] 魏志鹏,吴春霞,吕有明等.Mg_x Zn_(1-x)O化合物制备及MgZnO/ZnO异质结构的光学性质[J].发光学报,2006,37(5):831-833.
    [30] 金艳波,章蓓,杨述明等.紫外发光的半导体Mg_xZn_(1-x)O薄膜制备与性质[J].红外与毫米波学报,2002,21(suppl):45-48.
    [31] 赵东旭,刘益春,申德振等.Mg_(0.15)Zn_(0.85)O:Tb化合物薄膜的阴极射线发光性质研究[J].固体电子学研究与进展,2002,22(4):433-435.
    [32] 吴春霞,吕有明,申德振等.Mg_xZn_(1-x)O单晶薄膜和MgZnO/ZnO异质结构的光学性质[J].半导体学报,2004,25(10):1258-1263.
    [33] Look D.C.. Recent advances in ZnO materials and devices [J]. Mater. Sci. Eng, 2001(B80): 383 -387.
    [34] Shan W., Walukiewicz W., Ager J. W. el al. Nature of room-temperature Photoluminescence in ZnO[J]. Appl. Phys. Lett., 2005, 86 (19): 19111-19113.
    [35] Alivov Y. I., Liu C., Teke A. el al.A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98(4): 0413011-0413013.
    [36] 陈汉宏,叶志镇.ZnO薄膜的掺杂和转型的研究进展[J].半导体情报,2001,18(2):37-39.
    [37] Park W. I., Yi G.. Schottky nanocontacts on ZnO nanorod arrays [J]. Appl. Phys. Lett., 2003, 82 (24): 4358-4360.
    [38] Heo Y. W., Norton D. P., Tien L. C. et al. ZnOnanowire growth and devices[ J ]. Mater. Sci. Eng., 2004, R47: 1-47.
    [39] Makoto K., Ashrafi M., Ebihara M. et al. Formation of ohmic contacts to p-type ZnO [J]. Phys. Stat. Sol (b), 2004, 241 (3) :635-639.
    [40] Klingshirn C. and Haug H..Optical properties of highly excited direct gap semiconductors [J]. Phys. Rep. 1981, 70(5): 315-398.
    [41] Powell R. A., Spicer W. E. and McMenamin J. C. Photoemission Studies of Wurtzite Zinc Oxide [J].Phys. Rev. B6,1972, 6(8): 3056-3065.
    [42] 缭世群.ZnO薄膜的光谱及能级[J].南通工学院学报(自然科学版),2003,2(4):25-28.
    [43] JIN C.. Growth and Characterization of ZnO and ZnO-Based Alloys Mg_xZn_(1-x)O and Mg_xZn_(1-x)O [D]. Thesis of doctor degree. Faculty of North Carolina State Univeristy. 2003.
    [44] Hofmeister A. M., Keppel E. and Speck A. K.. Absorption and reflection infrared spectra of MgO and other diatomic compounds [J]. Mon. Not. R. Astron. Soc., 2003, 345:16-38.
    [45] Kunisu M., Tanaka I., Yamamoto T. el al. The formation of a rock-salt type ZnO thin film by low-level alloying with MgO[J]. J. Phys.: Condens. Matter, 2004,16: 3801-3806.
    [46] Sawai J., Yoshikawa T.. Quantitative evaluation of antifungal activity of metallic oxide powdes (MgO, CaO and ZnO) by an indirect conductimetric Assay [J]. J. Appl. Micr. 2004, 96: 803-809.
    [47] Daniel F., Heidemarie S., Marius G. Pseudopotential band structures of rocksalt MgO, ZnO, and Mg_xZn_(1-x)O[J]. Appl. Phys. Lett., 2006, 88(13): 41041-41044.
    [48] 陈军,林理彬,何捷等.MgO晶体中F型色心的电子结构和光学吸收谱研究[J].核技术,2001,24(2):89-93.
    [49] Schmidt R., Dielectric functions (1 to 5 eV) of wurtzite Mg_xZn_(1-x (x≤0.29) thin films[J]. Appl.Phys. Lett., 2003, 82(14): 2260-2262.
    [50] 邹璐,汪雷,黄靖云等.硅衬底上ZnMgO薄膜的结构和光学性质[J].物理学报,2003,52(4):935-938.
    [51] 李春,方国家,赵兴中.带隙可调的宽带半导体Mg_xZn_(1-x)O薄膜研究进展[J].功能材料,2005,36(2):177-180.
    [52] Teng C. W., Muth J. F. et al. Refractive Indices and Absorption Coefficients of Mg_xZn_(1-x)O Alloys[J ]. Appl. Phys. Lett., 2000, 76: 979-981.
    [53] Yang W., Hllavarad S. S., Nagaraj B. et al. Compositionally-tuned epitaxial cubic Mg_xZn_(1-x)O on Si(100) for deep ultraviolet Photodeterctors[J]. Appl. Phys. Lett., 2003, 20 (2): 3424-3426.
    [54] 吴春霞,吕有明,李炳辉等.Mg_xZn_(1-x)O单晶薄膜的分子束外延生长及结构表征[J].功能材料及器件学报,2003,9(4):477-480.
    [55] Mridha S., Ghosh R. and Basak D.. Ultraviolet Photodetection Properties of a Pt Contact on a Mg_(0.1)Zn_(0.9)O/ZnO Composite Film [J]. J. Elec. Mater., 2007,36( 12): 1643-1647.
    [56] Liu K.W., Zhang J. Y., Ma J. G et al. Zn_(0.8)Mg_(0.2)O-based metal-semiconductor-metal Photodiodes on quartz for visible-blind ultraviolet detection[J]. J. Phys. D. Appl. Phys., 2007, 40: 2765-2768.
    [57] Hullavarad S.S., Hullavarad N.V., Pugel D.E. el al. Structural and chemical analysis of pulsed laser deposited Mg_xZn_(1-x)O hexagonal (x=0.15, 0.28) and cubic (x=0.85) thin films[J]. Optical Materials,2008, 30: 993-1000.
    [58] Xiaoqing Q., Yanfeng X., Guangshe L el al. Zn_(1-x)Mg_xO Nanoparticles: Solvothermal Synthesis and Solid Solubility [J]. Chemistry Letters, 2007, 36(3): 384-385.
    [59] Lu C., Chang S., Chang S. el al. Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates[J]. Appl. Phys. Lett., 2006, 89 (15): 31011-31014.
    [60] Jeong I. S., Jae H. K., Seongil I.. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure [J]. Appl. Phys. Lett., 2003, 83(14):2946-2948.
    [61] Xue X. Y., Chen Y. J., Wang Y. G. el al. Synthesis and ethanol sensing properties of ZnSnO_3 nanowires[J]. Appl. Phys. Lett., 2005, 86(23): 31011-31014.
    [62] Lai C. W., An J., Ong H. C. Surface-plasmon-mediated emission from metal-capped ZnO thin films[J]. Appl. Phys. Lett., 2005,86(25):2511051-2511054.
    [63] Emanetoglu N. W., Zhu J., Chen Y. el al. Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire[J]. Appl. Phys. Lett., 2004, 85(17):257-262.
    [64] Ning G., Zhao X., Li J.. Structure and optical properties of Mg_xZn_(1-x)O nanoparticles prepared by sol-gel method[J]. Optical Materials, 2004, 27: 1-5.
    [65] Kunisu M., Tanaka I., Yamamoto T el al. The formation of a rock-salt type ZnO thin film by low-level alloying with MgO [J]. J. Phys.: Condens. Matter, 2004, 16: 3801-3806.
    [66] 吴春霞,卢友明,李炳辉等.Mg_xZn_(1-x)O单晶薄膜的分子束外延生长及结构表征[J].功能材料与器件学报,2003,9(4):477-480.
    [67] 刘伟,顾书林,叶建东等.Zn_(1-x)Mg_xO薄膜的低压MOCV生长与性质[J].半导体学报,2004,25(7):809-813.
    [68] Heitsch S., Benndor G., Zimmermann G. et al. Optical and structural properties of MgZnO/ZnO hetero- and double heterostructures grown by pulsed laser deposition[J]. Appl. Phys. A: Mater. Sci.Proc., 2007, 88(1): 99-104.
    [69] 吴春霞,吕有明,申德振.Mg_xZn_(1-x)O单晶薄膜和Mg_xZn_(1-x)O异质结构的光学性质[J].半导体学报,2004,25(10):1258-1263.
    [70] 陈奶波,邱东江,吴惠桢.MgZnO和ZnO晶体薄膜紫外发光特性比较[J].红外与毫米波学报,2003,22(5):349-352.
    [71] 连洁,王青圃,赵懿琨等.Si衬底上Mg_xZn_(1-x)O薄膜发光特性研究[J].光电子·激光,2006,17(25):554-558.
    [72] 李金华,张昕彤,刘益春等.溶胶-凝胶法制备的Mg_xZn_(1-x)O纳米薄膜结构和光学性质[J].高等学校化学学报,2003,24(10):1830-1833.
    [73] 连洁,王青圃,赵懿琨等.Si衬底上Mg_xZn_(1-x)O薄膜发光特性研究[J].光电子·激光,2006, 17(25): 554-558.
    [74] Narayan J., Sharma A. K. et al. Novel cubic Zn_(1-x)Mg_xO epitaxial heterostructures on Si (100) substrates[J]. Solid State Commun, 2001,121: 9-13.
    [75] Soumya K., Agis A. I., Aravind I. et al. Observation of resonant tunneling action in ZnO/Zn_(0.8)Mg_(0.2)O devices[J]. Solid-State Electronics, 2002, 46 (10): 1633-1637.
    [76] Bhattacharya P., Rasmi R. D. and Ram S. Katiyar. Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films[J]. Appl. Phys. Lett. 2003,83 (10): 2010-2012.
    [77] Ohtomo A.. Lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn [J]. Appl. Phys. Lett., 1999, 75(18): 2761-2763.
    [78] Yang W., Vispute R. D. et al. Choopun S.Ultraviolet Photoconductive detector based on epitaxial Mg_(0.34)Zn_(0.66)O thin films[J]. Appl. Phys. Lett., 2001, 78(18): 2787-2789.
    [79] 张福学,王丽坤,水永安等.现代压电学[M].北京:科学出版社,2001,143-183.
    [80] Shengyuan C., Teyi C., Water W. et al. The investigation of preferred orientation growth of ZnO films on the PbTiO_3-based ceramics and its application for SAW devices[J]. J. Crys. Grow., 2003, 257:280-285.
    [1] Ebelmen J.. Prepn from abs alcohol and silicon tetrachloride [J]. 1846, 57: 319-331.
    [2] Disitich H.. New Routes to Multicomponent Oxide Glasses [J]. Angewandte Chemie International Edition in English, 1971,10(6): 363-370.
    [3] Yoldas B. E.. Yamane M.. Alumina sol preparation form aikoxides[J]. Crem. Bull, 1975, 54:289-290.
    [4] 刘伟,顾书林,叶建东等.Zn_(1-x)Mg_xO薄膜的低压MOCV生长与性质[J].半导体学报,2004,25(7):809-813.
    [5] Heitsch S., Benndor G., Zimmermann G. et al. Optical and structural properties of MgZnO/ZnO hetero and double heterostructures grown by pulsed laser deposition[J]. Appl. Phys. A: Mater. Sci.Proc., 2007, 88(1): 99-104.
    [6] 吴春霞,吕有明,申德振.Mg_xZn_(1-x)O单晶薄膜和Mg_xZn_(1-x)O异质结构的光学性质[J].半导体学报,2004,25(10):1258-1263.
    [7] 陈奶波,邱东江,吴惠桢.MgZnO和ZnO晶体薄膜紫外发光特性比较[J].红外与毫米波学报,2003,22(5):349-352.
    [8] 连洁,王青圃,赵懿琨等.Si衬底上Mg_xZn_(1-x)O薄膜发光特性研究[J].光电子·激光,2006,17(25):554-558.
    [9] 李金华,张昕彤,刘益春等.溶胶-凝胶法制备的Mg_xZn_(1-x)O纳米薄膜结构和光学性质[J].高等学校化学学报,2003,24(10):1830-1833.
    [10] 邱东江,刘谱成,冯春木等.低温生长Zn_(1-x)Co_xO(x=0.33)薄膜的微结构和磁性[J].材料研究学报,2007,21(2):171-176.
    [11] Liang J., Wu H. Z., Lao Y. F. el al. Characterization of cubic phase MgZnO/Si(1 0 0) interfaces[J]. Appl. Surf. Sci., 2005, 252: 1147-1152.
    [12] Makino T., Tamura K., Chia C. H. el al. Effect of MgZnO-layer capping on optical properties of ZnO epitaxial layers[J]. Appl. Phys. Lett., 2002, 81(12): 2172-2174.
    [13] Dong X., Du G., Zhang Y.. Effects of ZnO Buffer Layer Thickness on properties of Mg_xZn_(1-x)O thin films deposited by MOCVD[J]. Chem. Res. Chinese U. 2005, 21(5): 583-586.
    [14] Atsushi N., Junji I., Satoshi S. el al. Growth of Mg_xZn_(1-x)O films using remote plasma MOCVD[J]. Appl. Surf. Sci., 2005, 244: 385-388.
    [15] Shizuo F., Hiroshi T., Shigeo F. el al. Fabrication of wide-band-gap Mg_xZn_(1-x)O quasi-ternary alloys by molecular-beam epitaxy[J]. Appl. Phys. Lett., 2005, 86(19): 29111-29113.
    [16] Fan W. J., Abiyasa A. P., Tan S. T.. Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well[J]. J. Crys. Growth, 2006, 287: 28-33.
    [17] Park S. H., Ann D.. Erratum. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers[J]. Appl. Phys. Lett., 2006, 88(15): 99011-99012.
    [18] Wei Z. P., Tang Z. K., Lu Y. M. el al. Formation of p-type MgZnO by nitrogen doping[J]. Appl. Phys. Lett., 2006, 89(10): 21041-21044.
    [19] Ji Z., Song Y., Xiang Y. el al. Characterization of Mg_xZn_(1-x)O thin films prepared by sol-gel dip coating[J]. J. Crys. Growth , 2004, 265 : 537-540.
    [20] Yu P., Wu H., Chen N. el al. Cubic Mg_xZn_(1-x)O films grown on SiO_2 substrates[J]. Optical Materials, 2006,28: 271-275.
    [21] Ghosh R. and Basak.D. Composition dependence of electrical and optical properties in sol-gel Mg_xZn_(1-x)O thin films[J]. J. Appl. Phys., 2007, 101(2): 35071-35075.
    [22] Liu Y. C., Chen Y. W., Shao C. L. el al. Structural, optical and photoelectric properties of ZnO:In and Mg_xZn_(1-x)O nanofilms prepared by sol-gel method[J]. J Sol-Gel Sci. Tech., 2006, 39:57-62.
    [23] 赵东旭,刘益春,申德振等.Mg_(0.15)Zn_(0.85)O:Tb化合物薄膜的阴极射线发光性质研究[J].固体电子学研究与进展,2002,22(4):433-435.
    [24] 徐远东.Mg_xZn_(1-x)O薄膜的光致发光性能研究[J].光谱实验室,2007,24(5):762-767.
    [25] 邱东江,吴惠桢,陈奶波等.硅(111)衬底上生长的Mg_xZn_(1-x)O立方晶体薄膜[J].无机材料学报,2003,18(6):1385-1388.
    [1] Don E. Harrison. Theory of the Sputtering Process[J]. Phys. Rev. .1956,102(6):1473- 1480.
    [2] 郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,第二版,2007.2
    [3] 吴自勤,王兵.薄膜生长[M].北京:科学出版社,第三版,2005.3
    [4] Wehner G. K., Anderson G. S. and Maisse L.. Handbook of Thin Film Technology[M]. New York :McGraw-Hill, 1970.
    [5] Park S. H. and Ann D.. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers[J]. Appl. Phys. Lett., 2005, 87(25): 35091-35094.
    [6] Ohshima T., Thareja R. Yamagata K.Y. el al. Laser-ablated plasma for deposition of ZnO thin films on various substrates [J]. Science and Technology of Advanced Materials, 2001, 2: 517-523.
    [7] Sumiya M., Fuke S., Tsukazaki A. el al. Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition[J]. J. Appl. Phys., 2003, 93(5):2562-2569.
    [8] 陈志强,方国家,李春等.Zno.9Mgo.TO:Ga宽带隙导电膜的PLD制备及性能研究[J].无机材料学报,2006,21(3):707-711.
    [9] 宁光辉,赵晓鹏.Zn_(1-x)Mg_xO的溶胶凝胶法合成及其特性研究[J].功能材料,2004,35(3):328-332.
    [10] Atsushi N., Junji I., Satoshi S. el al. Growth of Zn_(1-x)Mg_xO films using remote plasma MOCVD[J].Appl. Surf. Sci., 2005, 244: 385-388.
    [11] Zhang B. P., Binh N. T., Wakatsuki K. el al. Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect[J]. Appl. Phys. Lett., 2005,86(3): 21051-21054.
    [12] Makino T., Chia C. H., Segawa Y. el al. High-throughput optical characterization for the development of a ZnO-based ultraviolet semiconductor-laster[J]. Appl. Surf. Sci., 2002, 189: 277-283
    [13] Shizuo F., Hiroshi T., Shigeo F. el al. Fabrication of wide-band-gap Mg_xZn_(1-x)O quasi-ternary alloys by molecular-beam epitaxy[J]. Appl. Phys. Lett., 2005, 86(19): 29111-29113.
    [14] Minemoto T., Negami T. et al. Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering[J]. Thin Solid Films, 2000, 372(1): 173-176.
    [15] Liu K. W., Zhang J. Y., Ma J. G. el al. Zn_(0.8)Mg_(0.2)O-based metal-semiconductor-metal Photodiodes on quartz for visible-blind ultraviolet detection[J]. J. Appl. Phys., 2007, 40: 2765-2768.
    [16] Jung E. Y., Lee S. G. and Sohna S. H. et al. Electrical properties of plasma display panel with Mg_xZn_(1-x)O protecting thin films deposited by a radio frequency magnetron sputtering method[J].Appl. Phys. Lett., 2005, 86(15): 35031-35033.
    [17] 连洁,王青圃,赵懿昆等.Si衬底上Mg_xZn_(1-x)O薄膜发光特性的研究[J].光电子·激光,2006,17(5):554-557.
    [18] 朋兴平,王志光,宋银等.射频反应溅射制备的ZnO薄膜的结构和发光特性[J].中国科学G辑,2007,37(2):218-222.
    [19] Jiang D. Y., Zhang J. Y., Liu K. W. et al. A high-speed Photoconductive UVdetector based on an Mg_(0.4)Zn_(0.6)O thin film[J]. Semicond. Sci. Technol. 2007, 22 (7): 687-690.
    [20] Chen J., Shen W. Z., Chen N. B. el al. The study of composition non-uniformity in ternary Mg_xZn_(1-x)O thin films[J]. J. Appl. Phys., 2003,15: L475-L482.
    [21] Choopun S., Vispute R.D., Yang W. et.al. Realization of band gap above 5.0 eV in metastable cubic-phase Mg_xZn_(1-x)O alloy films [J]. Appl. Phys. Lett., 2002, 80(9): 1529-1531.
    [1] Yu S. F., Yuen C., Lau S. P. el al. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers[J]. Appl. Phys. Lett., 2004, 84(17): 3241-3243.
    [2] Ruan Y. F., Jing H. Q., Huang B. X. el al. Frequency Shifts of Luminescence for ZnO Nanparticles in Porous Alumina Template[J]. J. Rare Earths, 2006, 24(z1): 257-260.
    [3] Luoa L., Zhang Y., Lin L. el al. Fabrication and characterization of ZnO nanowires based UV photodiodes[J]. Sensors and Actuators A, 2006,127: 201-206.
    [4] Wan Q., Li Q. H., Chen Y. J. el al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appl. Phys. Lett., 2004, 84(18): 3654-3656
    [5] Claudio M., Zicovich W., Alberto B. el al.Characterization of the electronic structure of crystalline compounds through their localized Wannier functions[J]. J. Chem. Phys., 2002, 116(3): 1120-1127.
    [6] Manoranjan G., Raychaudhuri A. K.. Structural and optical properties of Zn_(1-x)Mg_xO nanocrystals obtained by low temperature method[J]. J. Appl. Phys., 2006, 100(3):43151-43157.
    [7] Vladimir L. Solozhenko A. N. Baranov V. Z. Turkevich. High-pressure formation of Mg_xZn_(1-x)O solid solutions with rock salt structure[J]. Solid State Communications, 2006, 138: 534-537.
    [8] Dragana M., Vladan K. Vojislav S. el al. Magnetic properties of polycrystalline Co_xZn_(1-x)O (0.75≤x≤1) solid solutions[J]. J. Magn. Magn. Mater., 2004, 272-276: 1390-1392.
    [9] Yuriy V., Kai W., Arokia N.. Low leakage p-NiO/i-ZnO/n-ITO heterostructure ultraviolet sensor[J]. Appl. Phys. Lett., 2006, 89(17): 21051-21054.
    [10] Heo Y. W., Kaufman M., Pruessner K. el al. Optical properties of Zn_(1-x)Mg_xO nanorods using catalysis-driven molecular beam epitaxy[J]. Solid-State Electronics, 2003, 47: 2269-2273.
    [11] Chongmu L., Yeonkyu P., Anna P. el al. Effects of Annealing Atmosphere on the Optoelectrical Properties of ZnO Thin Films Grown by Atomic Layer Depsition[J]. Materials Science Forum. 2006, (7): 670-673
    [12] Lu C., Chang S., Chang S. el al. Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates[J]. Appl. Phys. Lett., 2006, 89 (15): 31011-31014.
    [13] 胡文远,杨定明,刘勋.氧化锌基纳米发光材料的研究进展[J].材料导报,2007,21(Ⅷ):108-112.
    [14] Heo Y. W., Kaufman M., Pruessner K. et al. Optical properties of Zn_(1-x)Mg_xO nanorods using catalysis-driven molecular beam epitaxy [J]. Solid-State Electronics, 2003,47: 2269-2273.
    [15] Ma J. G., Liu Y. C., Shao C. L. et al. Formation and luminescence of ZnO nanoparticles embedded in MgO films[J]. Phys. Rev. B, 2005, 71(12): 54301-54306.
    [16] Leah B., John L. M., Xiangbai C. et al. Ultraviolet Photoluminescence and Raman properties of MgZnO nanopowders[J]. Appl. Phys. Lett., 2006, 88(2): 31031-31033.
    [17] Inoue K., Shoyama M., Murayama M. et al. Chemical preparation and photoluminescence of partially MgO-substituted ZnO powders [J]. J. Mater. Sci., 2006, 41:1269-1271.
    [18] Xiaoqing Q., Yanfeng X., Guangshe L. et al. Zn_(1-x)Mg_xO Nanoparticles: Solvothermal Synthesis and Solid Solubility [J]. Chemistry Letters, 2007, 36(3): 384-385.
    [19] 魏强,李梦轲,杨志等.取向Zn_(1-x)Mg_xO纳米线阵列的制备及光学特性[J].物理化学学报,2008,24(5):793-798.
    [20] 秦秀娟,邵光杰,刘日平等.高性能ZnO纳米块体材料的制备及其拉曼光谱学特征[J].物理学报,2006,55(7):3760-3765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700