用户名: 密码: 验证码:
匙吻鲟和鳙的生长、肌肉品质比较及FAS基因克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以营养生态位相似的匙吻鲟(Polyodon spathula)和鳙(Aristichthys nobilis)为研究对象,从稚鱼、幼鱼及亚成鱼三个生长阶段,开展了匙吻鲟和鳙生长、摄食率、消化率及肌肉品质的比较,以及匙吻鲟和鳙脂肪酸合成酶(FAS)基因的克隆和FAS基因mRNA在两种鱼不同组织、三个生长阶段肌肉中的表达等研究工作。结果如下:
     1.匙吻鲟和鳙生长的比较
     在稚鱼、幼鱼及亚成鱼生长阶段,匙吻鲟净增重、日增重、增重率和特定生长率均显著高于鳙(P<0.05)。
     2.匙吻鲟和鳙摄食率和消化率的比较
     鳙稚鱼和幼鱼摄食率、总表观消化率、粗蛋白质表观消化率和粗脂肪表观消化率均分别小于匙吻鲟稚鱼和幼鱼,鳙稚鱼和幼鱼饵料系数和粗灰分表观消化率均分别高于匙吻鲟稚鱼和幼鱼。
     3.匙吻鲟和鳙肌肉常规营养成分的比较
     匙吻鲟稚鱼、幼鱼及亚成鱼肌肉水分、粗蛋白质和粗灰分含量均分别低于鳙稚鱼、幼鱼及亚成鱼,但肌肉粗脂肪含量均分别极显著高于鳙稚鱼、幼鱼及亚成鱼(P<0.01)。
     4.匙吻鲟和鳙肌肉氨基酸组成的比较
     匙吻鲟和鳙稚鱼、幼鱼及亚成鱼肌肉均检测出17种氨基酸(Trp由于酸水解未检出)。其中Glu均为最高,Cys均为最低。
     鳙稚鱼肌肉的各种氨基酸含量均高于匙吻鲟稚鱼,其中His差异极显著(P<0.01), Asp、Glu、Val、Lys和Arg差异显著(P<0.05),其他氨基酸差异均不显著(P>0.05);鳙幼鱼肌肉的各种氨基酸含量,除Phe和His外,其余氨基酸含量均高于匙吻鲟幼鱼,其中Asp、Leu和Lys差异显著(P<0.05),其他氨基酸差异均不显著(P>0.05);鳙亚成鱼肌肉的各种氨基酸含量,除Cys含量显著小于匙吻鲟亚成鱼外(P<0.05),其余氨基酸含量均高于匙吻鲟亚成鱼,其中Asp、Glu和Ala差异极显著(P0.01),Leu和Lys差异显著(P<0.05),其他氨基酸均差异均不显著(P>0.05)。
     鳙稚鱼、幼鱼及亚成鱼肌肉总氨基酸(TAA)、总必需氨基酸(TEAA)、总非必需氨基酸(TNEAA)、总致鲜氨基酸(TDAA)和WDAA/WTAA均分别高于匙吻鲟稚鱼、幼鱼及亚成鱼。
     5.匙吻鲟和鳙肌肉脂肪酸组成的比较
     匙吻鲟和鳙稚鱼、幼鱼肌肉中均发现15种脂肪酸,其中包括5种饱和脂肪酸(SFA),4种单不饱和脂肪酸(MUFA),6种多不饱和脂肪酸(PUFA)。匙吻鲟和鳙亚成鱼肌肉中发现16种脂肪酸,其中包括6种饱和脂肪酸(SFA),4种单不饱和脂肪酸(MUFA),6种多不饱和脂肪酸(PUFA)。
     匙吻鲟和鳙稚鱼、幼鱼及亚成鱼中,主要饱和脂肪酸(SFA)均为C16:0和C18:0,单不饱和脂肪酸(MUFA)均为C16:1和C18:1,多不饱和脂肪酸(PUFA)均为C20:5n-3(EPA)和C22:6n-3(DHA)。
     鳙稚鱼肌肉除C20:1高于匙吻鲟稚鱼(P>0.05)和C22:6n-3(DHA)极显著高于匙吻鲟稚鱼外(P<0.01),其余13种脂肪酸含量均小于匙吻鲟稚鱼,其中C20:0差异不显著(P>0.05),C20:2差异显著(P<0.05),其余11种脂肪酸均差异极显著(P<0.01);鳙幼鱼肌肉除C20:1高于匙吻鲟幼鱼(P>0.05),其余14种脂肪酸含量均小于匙吻鲟幼鱼,其中C20:2差异不显著(P>0.05),其余13种脂肪酸均差异极显著(P<0.01);鳙亚成鱼肌肉脂肪酸含量均小于匙吻鲟亚成鱼,其中C17:1和C20:2差异不显著(P>0.05),C17:0差异显著(P<0.05),其余13种脂肪酸均差异极显著(P<0.01)。
     鳙稚鱼、幼鱼及亚成鱼肌肉脂肪酸中∑SFA、∑MUFA、∑PUFA、∑SFA/∑UFA、∑n-6PUFA、∑n-3PUFA、EPA、EPA+DHA、EFA和HEFA均分别低于匙吻鲟稚鱼、幼鱼及亚成鱼。
     6.匙吻鲟和鳙肌肉矿物元素组成的比较
     匙吻鲟和鳙稚鱼、幼鱼及亚成鱼肌肉中均检出K、Na、Ca、Mg、Fe、Mn、Cu、 Zn、Cr和Co共10种矿物元素。
     鳙稚鱼肌肉中K、Ca、Mg、Cu、Cr和Co的含量高于匙吻鲟稚鱼,其中K、Ca和Mg差异极显著(P<0.01),Cr和Co差异显著(P<0.05),Cu差异不显著(P>0.05);鳙稚鱼肌肉中Na、Fe、Mn和Zn的含量低于匙吻鲟稚鱼,其中Na、Fe和Mn差异极显著(P<0.01),Zn差异不显著(P>0.05);鳙幼鱼肌肉中K、Na、Ca、Mg、Fe、Mn、Zn和Co的含量高于匙吻鲟幼鱼,其中Na、Ca、Mg、Fe、Zn和Co差异极显著(P<0.01),Mn差异显著(P<0.05),K差异不显著(P>0.05);鳙幼鱼肌肉中的Cu和Cr含量低于匙吻鲟幼鱼,其中Cu差异显著(P<0.05),Cr差异不显著(P>0.05);鳙亚成鱼肌肉中Ca、Mg、Mn和Co的含量高于匙吻鲟亚成鱼,其中Ca和Mg差异不显著(P>0.05),Mn和Co差异极显著(P<0.01);鳙亚成鱼肌肉中的K、Na、Fe、Cu、Zn和Cr含量低于匙吻鲟亚成鱼,但差异均不显著(P0.05)。
     7.匙吻鲟和鳙FAS基因的克隆与分析
     采用同源克隆和RACE技术克隆了匙吻鲟和鳙FAS基因cDNA全长序列。XUNFAS cDNA全长为6651bp,5’端非翻译区(URT)270bp,开放阅读框6018bp(271-6288bp),编码一个2005个氨基酸残基组成的蛋白质,3'URT363bp且包含一个聚腺苷酸化信号AATAAA,这一信号位于Poly(A)尾巴上游54bp处;预测XUNFAS蛋白分子量为219.11kDa,理论等电点(PI)为6.19,该蛋白分子式为C9682H15428N2712O2914S83,该蛋白在溶液中性质不稳定,整条肽链没有明显的亲水性,XUNFAS蛋白N端无跨膜结构和信号肽。YONGFAS cDNA全长为8122bp,5’端非翻译区(URT)218bp,开放阅读框7545bp(219-7763bp),编码一个2514个氨基酸残基组成的蛋白质,3'URT359bp且包含一个聚腺苷酸化信号ATTAAA,这一信号位于Poly(A)尾巴上游255bp处,预测YONGFAS蛋白分子量为274.68kDa,理论等电点(PI)为5.97,该蛋白分子式为C12119H19261N339303668S109,该蛋白在溶液中性质不稳定,整条肽链没有明显的亲水性,YONGFAS蛋白N端无跨膜结构和信号肽。
     8.匙吻鲟和鳙FAS基因mRNA组织差异性
     通过荧光定量PCR技术分别检测了FAS基因mRNA在匙吻鲟和鳙各组织的表达。在匙吻鲟肝脏、肌肉、肠道、腹腔脂肪、心脏、鳃、鳍条、眼睛、胃和吻中,肝脏FAS基因mRNA表达量最高,其次是腹腔脂肪(约为肝脏的0.33倍,P<0.05),而胃FAS基因mRNA表达量最低(约为肝脏的0.03倍,P<0.05),肌肉、肠道、心脏、鳃、鳍条、眼睛和吻FAS基因mRNA表达量分别为肝脏的0.21、0.04、0.05、0.08、0.09、0.07和0.04倍(P<0.05)。在鳙肝脏、肌肉、肠道、咽上器官、心脏、鳃、鳍条和眼睛中,咽上器官FAS基因mRNA表达量最高,其次是肠道组织(约为咽上器官的0.84倍,P<0.05),而鳃FAS基因mRNA表达量最低(约为咽上器官的0.06倍,P<0.05),肝脏、肌肉、心脏、鳍条、眼睛FAS基因mRNA表达量分别为咽上器官的0.503、0.50、0.22、0.36和0.13倍(P<0.05)。
     9.匙吻鲟和鳙肌肉FAS基因mRNA在不同生长阶段表达
     通过荧光定量PCR技术分别检测了不同生长阶段匙吻鲟和鳙肌肉组织FAS基因mRNA的表达情况。21g匙吻鲟FAS基因mRNA表达量最高,其次为615g匙吻鲟(约为21g匙吻鲟肌肉组织的0.83倍,P<0.05),163g匙吻鲟FAS基因mRNA表达量最低(约为21g匙吻鲟肌肉组织的0.13倍,P<0.05)。530g鳙FAS基因mRNA表达量最高,其次为18g鳙(约为530g鳙肌肉组织的0.26倍,P<0.05),122g鳙FAS基因mRNA表达量最低(约为530g鳙肌肉组织的0.10倍,P<0.05)。
Based on two nutritional niche similar fishes in fresh water(Polyodon spathula and Aristichthys nobilis), this paper compared their growth, feeding rate, digestibility, and muscle quality in their postlarva, juvenile and subadult growth periods. Furthermore, it studied the clone of FAS gene of Polyodon spathula and Aristichthys nobilis and expression of FAS gene mRNA in different tissue and muscles of three growth periods, drawing the following conclusions:
     1. Growth comparison between Polyodon spathula and Aristichthys nobilis
     In postlarva fish, juvenile fish and subadult fish, Polyodon spathula achieves higher net weight increase, daily weight increase, weight increase rate and specific growth rate than those of Aristichthys nobilis (P<0.05).
     2. Comparison on feeding rate and digestibility between Polyodon spathula and Aristichthys nobilis
     Within the postlarva fish and juvenile fish periods, the feeding rate, overall apparent digestibility, apparent digestibility of crude protein and apparent digestibility of crude fat of Aristichthys nobilis are lower than that of Polyodon spathula respectively, while the feed coefficient and apparent digestibility of crude ash of Aristichthys nobilis are higher than those of Polyodon spathula respectively.
     3. Comparison on proximate compositions in muscles between Polyodon spathula and Aristichthys nobilis
     In postlarva fish, juvenile fish and subadult fish periods, the muscle moisture, crude protein and crude ash content of Polyodon spathula are all lower than those of Aristichthys nobilis respectively, but the crude protein in the muscle of Polyodon spathula is significantly higher than that of Aristichthys nobilis respectively (P<0.01).
     4. Comparison on amino acid composition in muscle between Polyodon spathula and Aristichthys nobilis
     For all three periods of postlarva fish, juvenile fish and subadult fish, there are17kinds of amino acids are detected in the muscle of Polyodon spathula and Aristichthys nobilis (Trp is undetected due to acid hydrolysis), among which Glu has the highest content and Cys reveals the lowest content.
     The content of all amino acids in the muscles of postlarva Aristichthys nobilis are higher than that of postlarva Polyodon spathula with extremely significant difference in His (P<0.01), significant difference in Asp, Glu, Val, Lys and Arg (P<0.05), and indistinctive difference in others (P>0.05). The content of all amino acids (except for Phe and His) in the muscles of juvenile Aristichthys nobilis are higher than those of juvenile Polyodon spathula with obvious difference in Asp, Leu and Lys(P<0.05), and indistinctive difference in others (P>0.05). Except that the content of Cys in subadult Aristichthys nobilis is significantly lower than that of subadult Polyodon spathula, all other amino acids in subadult Aristichthys nobilis are higher than that of subadult Polyodon spathula with extremely significant difference in Asp, Glu and Ala (P<0.01), significant difference in Leu and Lys (P<0.05), and indistinctive difference in others (P>0.05).
     For all three periods of postlarva fish, juvenile fish and subadult fish, Aristichthys nobilis has higher TAA, TEAA, TNEAA, TDAA and WDAA/WTAA in muscles than those of Polyodon spathula respectively.
     5. Comparison on fatty acid composition in muscle between Polyodon spathula and Aristichthys nobilis
     Fifteen kinds of fatty acids are detected in both Aristichthys nobilis and Polyodon spathula in their postlarva and juvenile periods, among which five are SFA, four are MUFA, and six are PUFA. There are totally16fatty acids detected in both Aristichthys nobilis and Polyodon spathula in their subadult period, including six SFA, for MUFA, and six PUFA.
     In the postlarva, juvenile and subadult periods of both Aristichthys nobilis and Polyodon spathula, their main SFA are C16:0and C18:0, MUFA are C16:1and C18:1, and PUFA are C20:5n-3(EPA) and C22:6n-3(DHA).
     Except that C20:1in the muscle of postlarva Aristichthys nobilis is higher than that of postlarva Polyodon spathula (P>0.05) and C22:6n-3(DHA) in the muscle of postlarva Aristichthys nobilis is significantly higher than that of postlarva Polyodon spathula(P<0.01), the rest13fatty acids content are lower than those of postlarva Polyodon spathula with indistinctive difference in C20:0(P>0.05), obvious difference in C20:2(P<0.05) and significant difference in the rest11fatty acids (P<0.01). Based on the comparison between juvenile Aristichthys nobilis and juvenile Polyodon spathula, the former one has smaller content in14fatty acids than the later one except for C20:1which is higher than that in the muscle of juvenile Polyodon spathula. Among them, C20:2 displays indistinctive difference (P>0.05), while the rest13fatty acids display significantly difference (P<0.01). In the subadult period, all fatty acid contents in the muscle of Aristichthys nobilis are lower than that of Polyodon spathula with indistinctive difference in C17:1and C20:2(P>0.05), obvious difference in C17:0(P<0.05), and significant difference in the rest13fatty acids(P<0.01).
     In all postlarva, juvenile and subadult periods,∑SFA、∑MUFA、∑PUFA、∑UFA、∑SFA/∑UFA、∑n-6PUFA、∑n-3PUFA、EPA、EPA+DHA、EFA and HEFA in the muscle fatty acids of Aristichthys nobilis are lower than those of Polyodon spathula respectively.
     6. Comparison on mineral elements in muscle between Polyodon spathula and Aristichthys nobilis
     In all postlarva, juvenile and subadult Polyodon spathula and Aristichthys nobilis, there are totally10mineral elements detected from their muscles which are K, Na, Ca, Mg, Fe, Mn, Cu, Zn, Cr and Co.
     The contents of K, Ca, Mg, Cu, Cr and Co in the muscle of postlarva Aristichthys nobilis are higher than those of postlarva Polyodon spathula with significant difference in K, Ca and Mg (P<0.01), obvious difference in Cr and Co (P<0.05) and indistinctive difference in Cu (P>0.05). The contents of Na, Fe, Mn and Zn in the muscle of postlarva Aristichthys nobilis are lower than those of postlarva Polyodon spathula with significant difference in Na, Fe and Mn (P<0.01), and indistinctive difference in Zn (P>0.05). The contents of K, Na, Ca, Mg, Fe, Mn, Zn and Co in the muscle of juvenile of Aristichthys nobilis are higher than that of juvenile Polyodon spathula with significant difference in Na, Ca, Mg, Fe, Zn and Co (P<0.01), obvious difference in Mn (P<0.05) and indistinctive difference in K (P>0.05). The contents of Cu and Cr in the muscle of juvenile Aristichthys nobilis are lower than those of juvenile Polyodon spathula with significant difference in Cu (P<0.05) and indistinctive difference in Cr (P>0.05). The contents of Ca, Mg, Mn and Co in the muscle of subadult Aristichthys nobilis are higher than those of subadult Polyodon spathula with indistinctive difference in Ca and Mg (P>0.05), significant difference in Mn and Co (P<0.01). The contents of K, Na, Fe, Cu, Zn and Cr in the muscle of subadult Aristichthys nobilis are lower than those of subadult Polyodon spathula with indistinctive differences (P>0.05).
     7. FAS gene clone of Polyodon spathula and Aristichthys nobilis and analysis
     Homologous cloning and RACE technology are applied to clone the cDNA full-length sequence of FAS gene of Polyodon spathula and Aristichthys nobilis. The full length of XunFAS cDNA is6651bp,270bp of5'end URT and6018bp (271-6288bp) of ORF for coding a protein composed by2005amino acid residues, and363bp of3'URT, including a polyadenylation signal AATAAA that locates on the54bp of the upstream of Poly (A) tail. It is predicted that the molecular weight of XUNFAS protein is219.11kDa, and the theoretical isoelectric point (PI) is6.19. The formula of the protein is C9682H15428N2712O2914S83with unsteady nature in solutions. The whole peptide chain shows no obvious hydrophilcity and there's no transmembrane structure and signal peptide on N end of XunFAS protein. The full length of YONGFAS cDNA is8122bp,218bp of5'end URT and7545bp (219-7763bp) of ORF for coding a protein composed by2514amino acid residues, and359bp of3'URT, including a polyadenylation signal AATAAA that locates on the255bp of the upstream of Poly (A) tail. It is predicted that the molecular weight of YONGFAS protein is274.68kDa, and the theoretical isoelectric point (PI) is5.97. The formula of the protein is C12119H19261N3393O3668S109with unsteady nature in solutions. The whole peptide chain shows no obvious hydrophilcity and there's no transmembrane structure and signal peptide on N end of YONGFAS protein.
     8. Difference expressions of FAS gene mRNA in tissues of Polyodon spathula and Aristichthys nobilis
     Real-time PCR (qRT-PCR) technology is applied to detect the expression of FAS gene mRNA in various tissues of Polyodon spathula and Aristichthys nobilis. In Polyodon spathula, it gets the highest expression of liver FAS gene mRNA in liver, muscles, intestinal tract, fat on enterocoelia, heart, branchia, pterygiophore, eyes, stomach and lips, followed by enterocoelia fat FAS gene mRNA (about0.33times that of liver, P<0.05), and then followed by stomach FAS gene mRNA of the least expression (about0.03times that of liver, P<0.05). The expressions of FAS gene mRNA in muscles, intestinal tract, heart, branchia, pterygiophore, eyes and lips are0.21,0.04,0.05,0.08,0.09,0.07and0.04times that of liver respectively (P<0.05). And in Aristichthys nobilis, it gets the highest expression of pharynx organs FAS gene mRNA in liver, muscles, intestinal tract, pharynx organs, heart, branchia, pterygiophore and eyes, followed by intestinal tract tissue (about0.84times that of pharynx organs (P<0.05), and then followed by branchia FAS gene mRNA of the least expression (about0.06times that of pharynx organs, P<0.05). The expressions of FAS gene mRNA in liver, muscles, heart, pterygiophore and eyes are0.503,0.50,0.22,0.36and0.13times that of pharynx organs respectively (P<0.05).
     9. Expressions of FAS gene mRNA in muscles of Polyodon spathula and Aristichthys nobilis in different growth periods
     Real-time PCR (qRT-PCR) technology is applied to detect the expression of FAS gene mRNA in muscle tissues of Polyodon spathula and Aristichthys nobilis in different growth periods. As far as the Polyodon spathula is concerned,21g Polyodon spathula possesses the highest expression of FAS gene mRNA in its muscles, followed by615g Polyodon spathula (about0.83times that of21g Polyodon spathula, P<0.05), and then followed by163g Polyodon spathula of the least expression (about0.13times that of21g Polyodon spathula, P<0.05). And with respect to Aristichthys nobilis,530g Aristichthys nobilis owns the highest expression of FAS gene mRNA in its muscles, followed by18g Aristichthys nobilis (about0.26times that of530g Aristichthys nobilis, P<0.05), and then followed by122g Aristichthys nobilis (about0.10times that of530g Aristichthys nobilis, P<0.05).
引文
1. 艾庆辉,王道尊.镁对异育银鲫生长的影响.上海水产大学学报(增刊),1998,7:148-153
    2. 艾庆辉,谢小军.南方鲇营养学研究:饲料中大豆蛋白水平对生长的影响.水生生物学报,2002,26(1):57-65
    3. 鲍国新.金沙江长鳍吻鮈年龄与生长及其肌肉生化成分分析研究.[硕士学位论文].武汉:华中农业大学图书馆,2009
    4. 邴旭文,蔡宝玉,王利平.中华倒刺肌肉营养成分与品质的评价.中国水产科学,2005,12(2):211-215
    5. 邴旭文.中华倒刺鳃和光倒刺鲤肌肉营养品质的比较.大连水产学院学报,2005,20(3):233-237
    6. 蔡宝玉,王利平,王树英.甘露青鱼肌肉营养分析和评价.水产科学,2004,23(9):34-35
    7. 蔡卫俊,叶元土,邱晓寒,陈佳毅,袁建民.野生翘嘴红鲌各器官、组织中4种微量元素分析.饲料工业,2007,28(12):19-21
    8. 曹俊明,刘永坚,劳彩玲,田丽霞,梁桂英.饲料中不同脂肪酸对草鱼组织脂质含量和脂肪酸构成的影响.动物营养学报,1997,9(3):36-44
    9. 曹颖霞,崔海鹏,刘岩奇,格日勒.池塘和水库养殖鱼类营养成分分析与比较.内蒙古民族大学学报(自然科学版),2007,22(5):555-558
    10.常秀岭,黄道明,胡仕栋.水库不投饵网箱养殖匙吻鲟试验.水利渔业,2001,21(2):1-2
    11.陈昌齐,刘建虎,袁锡立.匙吻鲟早期形态发育与生长阶段划分.西南农业大学学报,1997,19(6):550-553
    12.陈金生,余志堂,唐会元,万成炎,戴泽贵,彭建华,邹红娟,刘家寿.匙吻鲟及其在水库渔业中的养殖前景.水利渔业,1996,1:12-14
    13.陈静,梁银铨,黄道明,胡小建,杨汉运,俞伏虎,方艳红,朱邦科.不同生长阶段匙吻鲟肌肉成分的研究.水生态学杂志,2008,1(1):65-68
    14.陈朋,熊邦喜,吕光俊,王基松,戴泽贵.匙吻鲟的养殖现状及前景分析.江西农业学报,2008,20(4):88-89
    15.陈琴,黄飞鹤.三种野生江河鱼类肌肉中矿物元素的组成分析.水产养殖,2001,1:22-24
    16.陈清华,肖调义,吴松山,章怀云.脆肉鲩肌肉游离氨基酸初步分析.水利渔业,2004,24(6): 8-10
    17.陈秋平,姜天甲,马晓丰,沈建福.油茶蒲水提物的减肥作用.中国粮油学报,2011,26(9):66-69
    18.陈少莲,胡传林,华元渝.鲢、鳙肌肉生化成分的分析.水生生物学集刊.1983,8(1):125-132
    19.陈少莲,刘肖芳,胡传林,田玲.论鲢、鳙对微囊藻的消化利用.水生生物学报,1990,14(1):49-59
    20.陈少莲,刘肖芳,岩田腾哉.鲢和鳙的氮平衡研究Ⅰ.在高温季节(夏季)氮平衡几个参数的测定.水生生物学报,1986,10(4):297-310
    21.陈少莲,刘肖芳.鲢、鳙对鱼粪消化利用的研究.水生生物学报,1989,13(3):250-258
    22.成廷水.日粮PUFA对脂肪合成酶(蛋白)基因表达调控作用研究.中国饲料,2004,7:11-13
    23.程波,陈超,王印庚,李胜忠,于宏,张家松,杨志,于文松,曲江波.七带石斑鱼肌肉营养成分分析与品质评价.渔业科学进展,2009,30(5):51-57
    24.崔奕波.鱼类生物能量学的理论与方法.水生生物学报,1989,13(4):369-383
    25.代应贵,范家佑,王晓辉.瓣结鱼含肉率及肌肉脂肪酸、矿质元素的分析.四川动物,2006,25(1):144-149
    26.单安山,徐奇友.动物脂肪代谢与调控.东北农业大学学报,2004,35(2):151-153
    27.单体中,汪以真,刘建新,许梓荣,冯杰.不同日龄猪腹脂中脂肪酸合成酶(FAS)基因表达规律的研究.畜牧兽医学报,2006a,37(7):662-666
    28.单体中,汪以真.猪不同生长阶段脂肪酸合成酶基因的表达差异.农业生物技术学报,2006b,14(2):293-294
    29.邓利,谢小军.南方鲇的营养学研究:Ⅰ.人工饲料的消化率.水生生物学报,2000,24(4):347-355
    30.荻野珍吉.鱼类的营养与饲料.北京:海洋出版社,1980
    31.董双林,李德尚.鲢、鳙摄食能力的比较研究.海洋与湖沼,1995,26(1):53-57
    32.范润珍,宋文东,彭少伟.长蛇鲻肌肉营养成分的分析.营养学报,2005,27(4):349-350
    33.方富永,徐美奕,蔡琼珍,黄霞云.海水养殖鱼类肌肉中微量元素的测定.广东微量元素科学,2006,13(11):60-63
    34.方富永,徐美奕,蔡琼珍,黄霞云.湛江海域养殖鱼类肌肉中的矿物质元素分析.水利渔业,2007,27(4):104-105
    35.费志良,宋胜磊,唐建清,潘建林,黄成.克氏原螯虾含肉率及蜕皮周期中微量元素分析.水产科学,2005,10:8-10
    36.高贵琴,熊邦喜,赵振山,梁峰,陈杰.不同水平双低菜粕替代蛋白对鱼类生长的影响.水利渔业,2004,24(3):55-57
    37.高丽芳,曹丽歌,田蜜,郜文,陈振良.脂肪酸合成酶抑制剂胖大海提取物对营养性肥胖大鼠的减肥作用.首都医科大学学报,2011,32(4):541-544
    38.高志鹏.鲇鱼山水库翘嘴鲌生长特性与种群管理研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    39.郭郛,李约瑟[英],成庆泰.中国古代动物学史.北京:科学出版社,1999,500-501
    40.郝正里,李绶章,宋金昌,张家怡.用盐酸不溶灰分法与全部收粪法测定猪日粮消化率的比较.畜牧兽医简讯,1980,2:18-22
    41.何志辉,李永函.论白鲢的食物问题.水生生物学集刊,1975,5(4):541-547
    42.何志谦主编.人类营养学.北京:人民卫生出版社,1984
    43.贺锡勤,李钟杰,贾丽珠,雷武,杨云霞.放养密度对东湖网箱异育银鲫生长和饲料转化效率的影响.水生生物学报,1991,15(4):375-377
    44.胡玲玲,李加儿,区又君,蔡文超.条石鲷肌肉营养成分分析及评价.华南农业大学学报,2010,31(3):71-75
    45.黄峰,严安生,牟松,汪小东.鲢、鳙蛋白酶、淀粉酶的研究.中国水产科学,1999,6(2):14-17
    46.黄其春,陈小红,陈彤.吡啶羧酸铬对肥育猪皮下脂肪组织脂肪酸合成酶mRNA表达的影响.龙岩学院学报,2007,25(3):71-73
    47.黄永川,程临英,邹德良,李世平,王曙光,夏清平.匙吻鲟不投饵网箱养殖试验.水利渔业,2000,20(3):14-15
    48.霍启光,李建文,张玉凤,王彩兰,许学敏.酸不溶灰分在奶山羊消化试验中的应用.西北农学院学报,1982,3:57-64
    49.吉红,孙海涛,单世涛.池塘与网箱养殖匙吻鲟肌肉营养成分及品质评价.水产学报,2011,35(2):261-267
    50.冀德伟,李明云,史雨红,周健博,任凭,张玉明.光唇鱼的肌肉营养组成与评价.营养学报,2009,31(3):298-301
    51.蒋蓉.铜、铁、锰、锌对黄颡鱼生长和生理机能的影响.[硕士学位论文].苏州:苏州大学图书馆,2006
    52.邝智祥,何大乾,刘益平,朱庆.朗德鹅FAS基因RFLP与屠宰性状、产肝性状及脂肪沉积性状的相关分析.畜牧兽医学报,2009;40(2):166-172
    53.邝智祥.不同脂肪酸对朗德鹅填饲的效果及脂肪酸合成酶RFLP多态性与生产性能的相关研究.[硕士学位论文].雅安:四川农业大学图书馆,2008
    54.赖利著[英].食品的金属污染.轻工业出版社翻译,1986
    55.雷志洪,徐小清,惠嘉玉,邓冠强.鱼体微量元素的生态化学特征研究.水生生物学报,1994,18(4):309-315
    56.李爱杰.水产动物营养与饲料学.北京:中国农业出版社,2007
    57.李明云,郑岳夫,管丹东,史雨红,陈炯,林恒潺,陈萍.大黄鱼四家系肌肉营养成分差异及品质选育分析.水产学报,2009,33(4):632-638
    58.李思发,蔡正纬,陆伟民,何希,赵品如.长江水系鲢鱼和珠江水系鲢鱼的生长差异.水产学报.1984,8(3):211-218
    59.李思发,李晨虹,李家乐,韩风进,叶卫,陈培贤,周志金.尼罗罗非鱼五品系生长性能评估.水产学报,1998,22(4):314-321
    60.李思发,李晨虹,李家乐,韩风进,叶卫.尼罗罗非鱼五品系生长性能评估.水产学报,1998,22(4):314-321
    61.李思发,杨和荃,陆伟民.鲢、鳙、草鱼摄食节律和日摄食率的初步研究.水产学报,1980,4(3):275-283
    62.李思发,周碧云,聂善明.长江附属水体培育鲢鳙原种亲鱼的生长特性.水产养殖,1991,4:10-13
    63.李思发,周碧云,叶漪龙,赵品如.不同群体鳙的生长性能与遗传分析.水生生物学报,1989,13(4):319-325
    64.李思发,周碧云.不同群体鳙的生长性能与遗传分析.水生生物学报,1989,13(4):319-325
    65.李小勤,李星星,冷向军,刘贤敏,王锡昌,李家乐.盐度对草鱼生长和肌肉品质的影响.水产学报,2007,31(3):343-348
    66.李修峰,张有谦,黄道明,谢文星,杨汉运.水库网箱投饵养殖匙吻鲟试验.淡水渔业,2005,35(1):47-49
    67.李学军,李思发,么宗利,金华,张艳红.不同盐度下尼罗罗非鱼、萨罗罗非鱼和以色列红罗非鱼幼鱼生长、成活率及肥满系数的差异.中国水产科学,2005,12(3):245-251
    68.李玉全,李健,王清印,刘德月.溶解氧含量和养殖密度对中国对虾生长的影响.中国水产科学,2005,12(6):751-756
    69.梁拥军,孙向军,杨广,李文通,乔秀亭,史东杰,魏东,张欣.麦穗鱼营养成分组成测定与评价.安徽农业科学,2010,38(4):1869-1871,1973
    70.梁志强,李传武,欧燎原,余长生,陈湘艺.湘华鲮肌肉营养成分分析与评价.福建水产,2008,120(1):84-88
    71.梁志强,李传武,欧燎原,余长生,陈湘艺.湘华鲮肌肉营养成分分析与评价.营养学报,2009,31(4):411-413
    72.廖朝兴,吴达辉,游文章.草鱼、尼罗罗非鱼对几种饲料消化吸收率的测定.饲料研究,1988,1:17-18
    73.林光华,张丰旺,洪一江,胡成钰.二龄鲢和鳙血液的比较研究.水生生物学报,1998,22(1):9-16
    74.林利民,王秋荣,王志勇,张雅芝,刘家富,谢芳靖.不同家系大黄鱼肌肉营养成分的比较.中国水产科学,2006,13(2):286-291
    75.林添福.水库网箱养殖匙吻鲟试验.淡水渔业,2003,33(3):53-54
    76.林星.条纹锯鮨肌肉营养成分分析与品质评价.养殖与饲料,2009,9:43-46
    77.蔺玉华,富惠光,梁志龙,卢建民.铬盐对鲤生长和饲料转化率的影响.中国水产科学,2000,7(2):73-76
    78.刘家寿,余志堂.美国的匙吻鲟及其渔业.水生生物学报,1990,14(1):75-83
    79.刘俊利,熊邦喜,王基松,程志学,汪大伟.鲢、鳙对养殖水体的生态功能评析.水利渔业,2008,28(4):8-10
    80.刘俊利.不同营养类型水库鲢鳙生长与肌肉品质的比较研究.[硕士学位论文].武汉:华中农业大学图书馆,2009
    81.刘雄,张海霞.炮制牡蛎肉治疗小儿锌缺乏症.内蒙古中医药,2010,3:118-120
    82.刘旭.鱼类肌肉品质综合研究.[硕士学位论文].厦门:厦门大学图书馆,2007
    83.刘玉芳.中国5种淡水鱼脂肪酸组成分析.水产学报,1991,15(2):169-171
    84.刘育梅,黄维南.羊奶果种子脂肪酸组成和矿质元素分析.热带亚热带植物学报,2007,15(3):253-255
    85.柳琪,滕葳,张炳春.中华鳖氨基酸和微量元素的分析研究.氨基酸和生物资源,1995,17(1):18-21
    86.卢业丽,程波,余东良,袁强,汪畅,张翌,蓝泽桥.施氏鲟鱼肉营养成分的分析.食品研究与开发,2006,27(4):167-168,124
    87.陆清儿,冯晓宇,刘新轶,杨仲景,童朝明.丁鱥与鲫鱼肌肉营养成分组成和含量比较分析.饲料研究,2006,3:50-52
    88.吕耀平,杨燕波,姚子亮,苏小平,金篷洁,孙青青.光唇鱼肌肉营养成分与品质的评价.丽水学院学报,2010,32(2):10-15
    89.罗建学,李春风,初晓辉,谷大海,黎小青,徐志强.脂肪酸合成酶基因的研究进展.中国畜牧兽医,2011,38(6):118-123
    90.洛桑,布多,旦增,刘勇.3种淡水鱼肌肉脂质的组成及营养评价.淡水渔业,2009,39(6):74-76
    91.马慧敏,刘昌奇.脂肪酸合成酶(FAS)基因的研究进展以及日粮成分对其表达的调控.饲料工业,2007,28(22):59-64
    92.毛国祥,赵万里.新太湖鹅、太湖鹅和隆昌鹅肌肉品质比较研究.动物科学与动物医学,2000,17(1):16-19
    93.倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、鳙和尼罗非鲫淀粉酶的比较研究.大连水产学院学报,1992,7(1):24-31
    94.农业部渔业局.中国渔业统计年鉴.北京:中国农业出版社,2010
    95.潘雪峰,郑定容,刘志伟.1236例儿童微量元素分析.中国医药导报,2009,6(13):178-179
    96.潘艳云,冯健,杜卫萍,蒋步国,罗波,庞卫.石爬鮡含肉率及肌肉营养成分分析.水生生物学报,2009,33(5):980-985
    97.庞卫,潘艳云,覃志彪,冯健,蒋步国,罗波.野生巴马拟缨鱼肌肉营养成分研究.水生生物学报,2010,34(4):885-889
    98.裴艳丽.4460例学龄前儿童血锌流行病学调查及原因分析.中国妇幼保健,2007,22(18):2480-2481
    99.裴之华,解绶启,雷武,朱晓鸣,杨云霞.长吻熊和异育银鲫对玉米淀粉利用差异的比较研究.水生生物学报,2005,29(3):239-246
    100.彭仁海,刘玉玲.异育淇鲫含肉率及其肌肉营养成分分析.河南师范大学学报(自然科学版),2008,36(5):127-130
    101.彭志兰,陈波,柳敏海,罗海忠,毛志增,夏枫峰,傅荣兵.饥饿和补偿生长对点带石斑鱼幼鱼摄食和生长的影响.海洋渔业,2008,30(3):245-249
    102.钱雪桥.长吻鮠和异育银鲫幼鱼饲料蛋白需求的比较营养能量学研究.[博士学位论文].武汉:中国科学院水生生物研究所图书馆,2001
    103.屈丽.泰安地区儿童微量元素调查分析.检验医学与临床,2010,7(15):1556-1557
    104.塞冬.微量元素与酶.锦州医学院学报,1995,16(1):52-55
    105.山东农学院学报.山东农学院,1980,1:117-130
    106.沈硕,周继成,赵思明,熊善柏.匙吻鲟的营养成分及肌肉营养评价.营养学报,2009,31(3):295-297
    107.师吉华,轩子群,马国红,刘羽青.宝石鲈肌肉营养成分与品质的分析.渤海大学学报(自然科学版),2009,30(3):217-230
    108.石英,冷向军,李小勤,刘满仔,史少奕.饲料蛋白水平对血鹦鹉幼鱼生长、体组成和肠道蛋白消化酶活性的影响.水生生物学报,2009,33(5):874-880
    109.舒琥,周莹,肖丹,廖育艺,张海发.野生三斑石斑鱼肌肉营养成分与品质的评价.安徽农业科学,2011,39(21):12902-12905
    110.舒妙安,徐海圣.黄鳝肌肉矿物元素的分析.上海交通大学学报农业科学版,2001,19(3):195-197
    111.四川畜牧科学研究所.中国畜牧杂志,1979,5:9-10
    112.宋超,庄平,章龙珍,刘健,罗刚.野生及人工养殖中华鲟幼鱼肌肉营养成分的比较.动物学报,2007,53(3):502-510
    113.酸不溶性灰分的测定方法.GB/T23742-2009
    114.孙鹂.炎症反应与白细胞迁移.安徽农业科学,2011,39(21):12863-12865,12905
    115.孙中武,李超,尹洪滨,王炳谦.不同品系虹鳟的肌肉营养成分分析.营养学报,2008,30(3):298-302
    116.孙中武,尹洪滨.六种冷水鱼肌肉营养组成分析与评价.营养学报,2004,26(5):386-389
    117.覃川杰.瓦氏黄颡鱼(Pelteobagrus vachelli)脂肪代谢相关基因cDNA的克隆及表达分析.[博 士学位论文].上海:华东师范大学图书馆,2010
    118.覃亮.徐家河水库翘嘴鲌年龄与生长和繁殖生物学研究.[硕士学位论文].武汉:华中农业大学图书馆,2009
    119.谭德清,王剑伟,但胜国,李文静.厚颌鲂含肉率及生化成分的分析.水生生物学报,2004,28(1):17-22
    120.田维熙,董妍,权晖,陈文峰.不同生长期蛋鸡的体脂水平和肝脏脂肪酸合成酶活性的关系.生物化学杂志,1996,12(2):234-236
    121.田祖安,王正凯.美国匙吻鲟在湖北宜昌繁殖成功.水利渔业,2001,21(3):3
    122.汪之和.水产品加工与利用.化学工业出版社,2003
    123.王爱民,韩光明,韦信键,刘波,吕富,封功能,齐志涛,王恬,徐跑,杨志刚.吉富罗非鱼FAS基因的克隆及再投喂和饲料脂肪水平对其表达的影响.水产学报,2010,34(7):1113-1120
    124.王道尊,刘玉芳.青鱼、草鱼、团头鲂的肌肉以及有关天然饲料的生化组成分析.水产科技情报,1987,6:11-15
    125.王道尊,宋天复,杜汉斌,马建新,戴戈,马建品.饲料中蛋白质和糖的含量对青鱼鱼种生长的影响.水产学报,1984,8(1):9-17
    126.王道尊,汤峥嵘,谭玉钧.中华鳖生化组成的分析:Ⅱ.背甲,肌肉中矿物元素的组成.水生生物学报,1998,22(2):106-111
    127.王芳,董双林,董少帅,黄国强.光照周期对中国对虾稚虾蜕皮和生长的影响.中国水产科学,2004,11(4):354-359
    128.王念民,杨贵强,彭涛,孙大江,王常安.三种鲟鱼及其杂交种肌肉营养成分分析.吉林农业大学学报,2010,32(S):53-56
    129.王岩,崔正贺.鱼类补偿生长研究中应注意的几个问题.上海水产大学学报,2003,12(3):260-264
    130.王英俊.耳石在鱼类年龄生长和群体鉴别中应用的初步研究.[硕士学位论文].青岛:中国海洋大学图书馆,2007
    131.王永生.鱼类补偿性生长研究.海洋水产研究.2002,23(2):57-61
    132.王远红,吕志华,郑桂香,赵建民,战文斌.大菱鲆的营养成分分析.营养学报,2003,25(4):438-440
    133.魏万权,李爱杰,李德尚.饲料中添加Zn对牙鲆生长和生化指标的影响.青岛海洋大学学报,1999,29(1):60-66
    134.闻海波,张呈祥,徐钢春,顾若波,虞锐鹏.长江刀鲚营养成分分析与品质评价.广东海洋大学学报2008,28(6):20-24
    135.邬国民,陈焜慈,李恒颂.匙吻鲜的生物学特性.广东科技,1999,11,18-19
    136.吴宝林,肖调义,葛熹凯,苏建明,赵玉蓉,许宝红.湘华鲮肌肉营养成分分析与品质评价.淡水渔业,2007,37(6):72-75
    137.吴业彪.开发匙吻鲟养殖的实践与探讨.中国渔业经济研究,1999,3:18-19
    138.吴志强,王剑伟,常剑波,曹文宣.稀有鮈觞鲫的脂肪酸组成.水生生物学报,2002,26(4):388-392
    139.向国荣.匙吻鲟、杂交鲟、史氏鲟网箱养殖生长对比试验.[硕士学位论文].长沙:湖南农业大学图书馆,2008
    140.肖调义,刘建波,陈清华,金宏,付万冬,陈开健.脆肉鲩肌肉营养特性分析.淡水渔业,2004,34(3):28-30
    141.谢文星,黄道明,杨汉运,汪应文.水库不投饵网箱养殖匙吻鲟生产性试验.渔业现代化,2004,1:3-5
    142.谢小军,邓利,张波.饥饿对鱼类生理生态学影响的研究进展.水生生物学报,1998,22(2):181-189
    143.谢小军,孙儒泳.南方鲇的最大摄食率及其与体重和温度的关系.生态学报,1992,12(3):225-231
    144.徐冬梅,朱艳,丁文杰.儿童全血锌、铁、钙含量检测结果分析.浙江预防医学,2010,22(1):77-78
    145.徐钢春,顾若波,张呈祥,郑金良,闻海波,徐跑.刀鲚两种生态类群-”江刀”和”海刀”鱼肉营养组成的比较及品质的评价.海洋渔业,2009,31(4):401-409
    146.徐红梅.热加工对鳙鱼汤品质影响的研究.[硕士学位论文].无锡:江南大学图书馆,2008
    147.徐晓伟,王晓奎,李松.脂肪酸合成酶抑制剂的研究进展.国际药学研究杂志,2009,36(2):105-108,120
    148.闫春梅,韩艳宾,王桂青.儿童血锌含量的检测结果分析.包头医学院学报,2006,22(3):261-262
    149.闫茂仓,王雪鹏.影响鱼用颗粒饵料系数因素的分析.河北渔业,2003,6:39-41
    150.严朝晖,史为良.大伙房水库鲢鳙的生长及生长模型.水产学报,1995,19(1):28-34
    151.严美姣,李钟杰,熊邦喜.不同盐度预处理后Ⅰ龄暗纹东方魨的摄食、生长和饲料利用.水生生物学报,2005,29(2):142-145
    152.杨玲,区又君,李加儿.鱼类的矿物质营养.水产科技,2004,6:4-6
    153.杨品红,王志陶,夏德斌,李梦军,谢春华,刘良国,王文彬.黑花鳙(Aristichthys nobilis)和白花鳙肌肉营养成分分析及营养价值评定.海洋与湖沼,2010,41(4):549-554
    154.杨元昊,李维平,龚月生,管薇,王绿洲,杨娟宁.兰州鲇肌肉生化成分分析及营养学评价.水生生物学报.2009,33(1):54-60
    155.杨志强,曹俊明,朱选,胡俊茹,赵红霞,陈水春,蓝汉冰.凡纳滨对虾对7种蛋白原的 蛋白质和氯基酸的消化率.饲料工业,2010,31(2):24-27
    156.姚国佳,单体中,汪以真,王燕.脂肪酸合成酶基因在皮下脂肪中表达及其与血清leptin的关系.农业生物技术学报,2004,14(5):515-819.
    157.叶元土,林仕梅,罗莉.草鱼对27种饲料原料中氨基酸的表观消化率.中国水产科学,2003,10(1):60-64
    158.殷名称.鱼类生态学.北京:中国农业出版社,1995
    159.殷名称.鱼类仔鱼期的摄食和生长.水产学报,1995,19(4):335-342
    160.尹洪滨,马波.黑龙江野鲤肌肉营养成分分析.水产学杂志,1999,12(2):65-68
    161.尹洪滨,孙中武,沈希顺,王昭明.山女鳟肌肉营养组成分析.水生生物学报,2004,28(5):577-580
    162.尹洪滨,孙中武,孙大江,邱岭泉.6种养殖鲟鳇鱼肌肉营养成分的比较分析.大连水产学院学报,2004,19(2):92-96
    163.尹洪滨,姚道霞,孙中武,孙德志,潘伟志,郭树倩.黑龙江鲶形目鱼类的肌肉营养组成分析.营养学报,2006,28(5):438-441
    164.尹洪滨,尹家胜,徐伟,孙中武.兴凯湖翘嘴红鲌肌肉营养成分分析.中国水产科学,2003,10(1):82-84
    165.游进,张艾,闵向松.北方新兴经济鱼类——匙吻鲟.养殖技术顾问,2009,9:124
    166.游修龄.池塘养鱼的最早记载和《范蠡养鱼经》问世时间问题.动物学杂志2004,39(3):115-118
    167.游修龄.关于池塘养鱼的最早记载和范蠡《养鱼经》的问题.浙江大学学报(人文社会科学版),2003,33(3):49-54
    168.于辉,李华,刘为民,蒋岸岸,唐冬生.梁子湖三种舶肉质分析.水生生物学报,2005,29(5):502-506
    169.余丰年,王道尊.植酸酶对异育银鲫生长及饲料中磷利用率的影响.中国水产科学,2000,7(2):106-109
    170.余瑞兰,聂湘平,赖子尼,杨碗玲.郭叶华.西江主要经济鱼类鱼体重金属残留现状调查研究.水产科技,1996,3:4-6
    171.袁国青.关于唐代草、青、鲢、鳙养殖业兴起的原因.大连水产学院学报,1993,8(2):49-53
    172.詹付凤,赵欣平.重金属镉对鲫鱼碱性磷酸酶和酸性磷酸酶活性的影响.四川动物,2007,26(3):641-643
    173.张涛,张英杰,刘月琴,康晓龙,马志华,孙洪新,刘景云.从绵羊脂肪组织提取总RNA方法的改进及应用,甘肃农业大学学报,2008,43(1):53-57
    174.张昌吉,刘哲,王世银.虹鳟含肉率及肌肉营养成分分析.水利渔业,2006,26(4):83-85
    175.张德志,肖慧.水库网箱不同饵料养殖匙吻鲟试验.水利渔业,2006,26(1):24-25
    176.张国祺,许兴隆,苏积武,郑玉德.赛加羚羊对紫花苜蓿消化率的测定.甘肃农业大学学报,1998,2:148-152
    177.张建云,李凤学,张福录,郭金双,张爱启.生长猪对青绿籽粒苋营养成分的消化率.张家口农专学报.1997,13(4):15-17
    178.张凯,郭文场,李训德,杨柏明.日本七鳃鳗肌肉脂肪酸的组成分析.中国水产科学,2000,7(1):116-117
    179.张涛.不同能量水平日粮对绵羊脂肪酸合成酶基因和肥胖基因表达的影响.[硕士学位论文].兰州,甘肃农业大学图书馆,2007
    180.张宪中,戈贤平.泰国笋壳鱼肌肉营养品质的评价.浙江海洋学院学报(自然科学版),2006,25(1):23-27,49
    181.张雅芝,刘冬娥,方琼珊,王涵生,秦志清.温度和盐度对斜带石斑鱼幼鱼生长与存活的影响.集美大学学报(自然科学版),2009,14(1):8-13
    182.张英杰,李宗波,刘月琴,张涛.不同能量水平日粮对绵羊脂肪酸合成酶(FAS)基因表达的影响.全国养羊生产与学术研讨会议论文集,2010,281-283
    183.张征.史氏鲟(Amur sturgeon Acipenser schrenckii)的生长特性及驯养的研究.[硕士学位论文].长沙,湖南大学图书馆,2001
    184.张忠萍,余志坚,肖增雪,秦海明,汪洪,洪一江.黄尾密鲴肌肉营养成分分析.水利渔业,2002,22(6):1-2
    185.张竹青,周路,杨兴,杨凯,胡世然,李道友,张龙涛.长臀鮠肌肉脂肪酸组成分析.贵州农业科学,2009,37(10):149-151
    186.赵峰,宋超,施兆鸿,庄平,章龙珍.野生银鲳幼鱼主要营养成分的测定与评价.营养学报,2008,30(4):425-426
    187.赵振伦,高国富,刘文斌,丁俊龙,朱永新.团头鲂鱼体矿物质成分的初步分析.南京农业大学学报,1994,17(4):71-76
    188.郑君明,张曦,郑斌.鱼饲料消化率测定方法的研究.江西饲料,2002,5:23-27
    189.周光理.微量元素与人类健康认知.微量元素与健康研究,2001,18(1):73-74
    190.周国利,金海国.脂肪酸合成酶基因(FASN)的研究进展.安徽农业科学,2008,36(9):3559-3560
    191.周洁,林峰.鲢、鳙的食性及其对藻类的消化利用.水生生物学报,1990,14(2):170-177
    192.周歧存,郑石轩,郑献昌,齐雪娟.华南沿海重要网箱养殖鱼类营养成分比较研究.热带海洋学报,2004,23(2):88-92
    193.周锡勋.摄食水平及投喂频率对瓦氏黄颡鱼幼鱼生长的影响.[硕士学位论文].上海:上海水产大学图书馆,2007
    194.周兴华,郑曙明,吴青.白甲鱼肌肉营养成分与品质的评价.西南大学学报.2007,29(8): 123-128
    195.朱惠,邓文瑾.鱼类对藻类消化吸收的研究(Ⅱ)鲢、鳙对微囊藻和裸藻的消化吸收.鱼类学论文集,1983,3:77-91
    196.祝培福,郑向旭.人工光照对温室中华鳖幼鳖生长的影响.中国水产科学,1999,6(4):123-125
    197.庄平,宋超,章龙珍,张涛,刘鉴毅,刘健.野生中华鲟成鱼与幼鱼肌肉成分比较.营养学报,2010,32(4):385-389
    198.庄平,宋超,章龙珍,张涛,冯广朋,赵峰,黄晓荣.黄斑篮子鱼肌肉营养成分与品质的评价.水产学报,2008,32(1):77-83
    199.庄平,宋超,章龙珍.舌虾虎鱼肌肉营养成分与品质的评价.水产学报,2010,34(4):559-564
    200.卓立应,马晶晶,邵庆均.俄罗斯鲟肌肉生化组成及分析.水利渔业,2006,26(6):50-51
    201. Ackman R G. Nutritional composition of fats in seafoods. Progress in Food & Nutrition Science. 1989,13:161-241
    202. Alasalvar C, Taylor K D A, Zubcov E, Shahidi F, Alexis M. Differentiation of cultured and wild sea bass (Dicentrarchus labrax):total lipid content, fatty acid and trace mineral composition. Food Chemistry,2002,79(2):145-150
    203. Ana F, Isabel F S, Juan A S, Jose M B. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chemistry,2010,119,1514-1518
    204. B(?)rresen T. Quality aspects of wild and reared fish. In:Huss HH, Jacobsen M, Liston J, editors. Quality assurance in the food industry. Elsevier Limited, Amsterdam,1992, pp 1-17.
    205. Brett J R. Satiation time, appetite, and maximum food intake of sockeye salmon (Oncorhynchus nerka). Journal of the Fisheries Research Board of Canada,1971,28(3):409-415
    206. Clarke S D. Regulation of fatty acid synthase gene expression:An approach for reducing fat accumulation. Journal of Animal Science,1993,71:1957-1965
    207. Carpene E, Serra R, Manera M, Isani G. Seasonal changes of zinc, copper, and iron in gilthead sea bream (Sparus aurata) fed fortified diets. Biological trace element research,1999,69(2):121-139
    208. Cho C Y, Slinger S J, Bayley H S. Bioenergetics of salmonid fishes:energy intake, expenditure and productivity. Comparative Biochemistry and Physiology-Part B:1982,73(1):25-41
    209. Clarke S D, Abraham S. Gene expression:nutrient control of pre and posttranscriptional events. Faseb Journal,1992,6(13):3146-3152
    210. Clarke S D, Armstrong M K, Jump D B. Dietary polyunsaturated fats uniquely suppress rat liver fatty acid synthase and S14 mRNA content. Journal of nutrition,1990,120(2):225-231.
    211. Clarke S D. Regulation of fatty acid synthase gene expression:An approach for reducing fat accumulation. Journal of Animal Science,1993,71:1957-1965
    212. Clay F S. Regulation of fatty acid synthase (FAS). Progress of Lipid Research,1997,36:43-53
    213. Smith S, Witkowski A, Joshi A K. Structural and functional organization of the animal fatty acid synthase. Progress of Lipid Research.2003,42(4):289-317
    214. Codier M, Brichon G, Weber J M, Zwingelstein G Changes in the fatty acid composition of phospholipids in tissues of farmed sea bass (Dicentrarchus labrax) during an annual cycle. Roles of environmental temperature and salinity. Comparative Biochemistry and Physiology, Part B (Biochem MolBiol),2002,133:281-288
    215. Cui Y B, Liu J K. Comparison of energy budget among six teleosts-I. Food consumption, faecal production and nitrogenous excretion. Comparative Biochemistry and Physiology Part A: Physiology,1990,96(1):163-171
    216. Datta S, Janab B. Control of bloom in a tropical lake:grazing efficiency of some herbivorous fishes. Journal of Fish Biology,1998,53:12-24
    217. Duyar H A. PhD Thesis. Department of Fisheries and Processing Technology, Institute of Natural and Applied Science, Ege University, Turkey,2000, pp 118.
    218. Elliott J M. The energetic of feeding, metabolism and growth of brown trout(Salmo trutta L.) in relation to body weight, water temperature and ration size. Journal of Animal Ecology,1976,45: 923-948
    219. Fontainhas F A, Gomes E, Reis H M A, Coimbra J. Replacement of fish meal by plant proteins in the diet of Nile tilapia:digestibility and growth performance. Aquaculture international,1999,7: 57-67
    220. Gomes E F, Rema P, Kaushik S J. Replacement of fish meal by plant proteins in the diets of rainbow trout (Oncorhynchus mykiss):digestibility and growth performance. Aquaculture,1995, 130:177-186
    221. Guo G L, Dong S L, Zhao W, Chen W. Fatty acid composition of plankton and bighead carp (Aristichthys nobilis) in freshwater ponds. Clean-soil air water,2008,36(2):209-215
    222. Gutierrez L E, Silva R C M. Fatty acid composition of commercially important fish from Brazil. Journal of Agricultural Science,1993,50:478-483
    223. Hadjinikolova L. Investigations on the chemical composition of carp (Cyprinus carpiol.), bighead carp (Aristichthys nobilis rich.) and pike (Esox lusius l.) during different stages of individual growth. Journal of Agricultural Science,2008,14(2):121-126
    224. Haliloglu H I, Bayir A, Sirkecioglu A N, Aras N M, Atamanalp M. Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chemistry,2004,86:55-59
    225. Hall G M, Ahmad N H. Surimi and fish-mince products. In:G. M. Hall, Editor, Fish processing technology (2nd ed), Blackie Academic and Professional, London,1997, pp 74-92
    226. Hill C H, Matrone G. Chemical parameters in the study of in vivo and in vitro interactions of transition elements. Federation Proceedings,1970,29(4):1474-1481
    227. Hillgartner F B, Salati L M, Goodridge A G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiological Reviews,1995,75:47-76
    228. Iwasaki M, Harada R. Proximate and amino acid composition of the roe and muscle of selected marine species. Journal of Food Science,1985,50(6):1585-1587
    229. Jose M V, Hipolito F P, Lidia R, Kim J, Manuel D L H, Marisol L. The effects of varying dietary protein level on the growth, feed efficiency, protein utilization and body composition of gilthead sea bream fry. Fisheries Science,1995,61:25-28
    230. Kim J D, Lall S P. Amino acid composition of whole body tissue of Atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferruginea) and Japanese flounder (Paralichthys olivaceus). Aquaculture,2000,187,367-373
    231. Kim M K, Lovell R T. Effect of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds. Aquaculture,1995,135: 285-293
    232. Kim T S, Freake H C. High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue-specific manner. Journal of Nutrition,1996,126(3):611-617
    233. Lees R S, Karel K, Mared D, Simoponlos A. Omega-3 fatty acids in growth and development in health and disease. N K INC,1990, pp 115-116
    234. Li P, Rodina M, Hulak M, Gela D, Psenicka M, Li Z H, Linhart O. Physico-chemical properties and protein profiles of sperm from three freshwater chondrostean species:a comparative study among Siberian sturgeon (Acipenser baerii), starlet (Acipenser ruthenus) and paddlefish (Polyodon spathula). Journal of Applied Ichthyology,2011,27:673-677
    235. Macek K J. Utility of toxicity tests with embryos and fry of fish in evaluating hazards associated with the chronic toxicity of chemical to fishes. In:Aquatic Toxicology and Haxzard Evolution. STP634. Philadephia, Pennsylvania:ASTM,1977,137-146
    236. Lanno R. P, Slinger S J, Hilton J W. Maximum tolerable and toxicity levels of dietary copper in rainbow trout (salmo gairdneri Richardson). Aquaculture,1985,49:257-268
    237. Matthew H H, Chirala S S, Wakil S J. Human fatty acid synthase gene. Journal of Biological Chemistry,1996,271:13584-13589
    238. Clarke S D. Regulation of fatty acid synthase gene expression:An approach for reducing fat accumulation. Journal of Animal Science,1993,71:1957-1965
    239. Mckim J M. Evaluation of tests with early life stages of fish for predicting long-term toxicity. Journal of the Fisheries Research Board of Canada,1977,34(8):1148-1154
    240. Menghe L, Richard T L. Growth, feed efficiency and body composition of second and third year channel catfish fed various concentrations of dietary protein to satiety in production ponds. Aquaculture,1992,103:153-163
    241. Mildner A M, Clarke S D. Porcine fatty acid synthase:Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein. Journal of Nutrition,1991,121:900-907
    242. Mnari A, Bouhlel I, Chraief I, Hammami M, Romdhane MS, El Cafsi M, Chaouch A. Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chemistry,2007,100:1393-1397
    243. Mucha A P, Teresa M, Vasconcelos S D, Bordalo A A. Vertical distribution of the macrobenthic community and its relationships to trace metals and natural sediment characteristics in the lower Douro estuary, Portugal. Estuarine, Coastal and Shelf Science,2004,59(4):663-673
    244. Mufioz G, Ovilo C, Noguera J L, Sanchez A, Rodriguez C, Silio L. Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Animal Genetics, 2003,34(3):234-235
    245. Oliveira E R N, Agostinho A A, Matsushita M. Effect of biological variables and capture period on the proximate composition and fatty acid composition of the dorsal muscle tissue of Hypophthalmus edentatus (Spix,1829). Brazilian Archives of Biology and Technology,2003,46: 105-114
    246. Periago M J, Ayala M D, Lopez A O, Abdel I, Martinez C, Garcia A A, Ros G, Gil F. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture, 2005,249:175-188
    247. Piggot G M, Tucker B W. Effects of technology on nutrition. Marcel Dekker, New York,1990
    248. Refstie S, Helland S J, Storebakken T. Adaptation to soybean meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture,1997,153(3-4):263-272
    249. Refstie S, Storebakken T, Roem A J. Feed consumption and conversion in Altantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture,1998,162(3-4): 301-312
    250. Reigh R C, Ellis S C. Effects of dietary soybean and fish-protein ratios on growth and body composition of red drum (sciaenops ocellatus) fed isonitrogenous diets. Aquaculture,1992,104: 279-292
    251. Richard J O, Steven D M, Carl D W, Ann L G. Apparent digestibility coefficients of protein, lipid and carbohydrate in practical diets fed to paddlefish, Polyodon spathula (Walbaum). Aquaculture Research,2009,40:1785-1788
    252. Robert S H, Douglas B N, Ning W. Use of compensatory growth to double hybrid sunfish growth rates. Transactions of the American Fisheries Society,1997,126(2):316-322
    253. Ruiz C C, Moral A. Free amino acids in muscle of Norway lobster (Nephrops norvegicus (L.)) in controlled and modified atmospheres during chilled storage. Food Chemistry,2004,86(3):85-91
    254. Santiago C B, Ricci M, Reyes-Lampa A. Effect of nematode Panagrellus redivivus density on growth, survival, feed consumption and carcass composition of bighead carp Aristichthys nobilis (Richardson) larvae. Journal of Applied Ichthyology,2004,20:22-27
    255. Santos S J, Bessa R J B, Santos S F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Ⅱ. Fatty acid composition of meat. Livestock Production Science,2002, 77:187-194
    256. Shiau S Y, Huang S L. Optimal dietary protein for hybrid tilapia reared in seawater. Aquaculture, 1989,70:63-73
    257. Shiau S Y, Lan C W. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabarricus). Aquaculture,1996,145:259-266
    258. Siddiqui A Q. Howlader M S, Adam A A. Effects of dietary protein levels on growth, feed conversion and protein utilization in fry and young Nile tilapia, Oreochromis niloticus. Aquaculture,1988,70:63-73
    259. Solomons N W, Jacob R A. Studies on the bioavailability of zinc in humans:effects of heme and nonheme iron on the absorption of zinc. American journal of clinical nutrition,1981,34:475-482 Mills C F, Dalgarno A C. Copper and zinc status of ewes and lambs receiving increased dietary concentrations of cadmium. Nature,1972,239:171-173
    260. Stansby M E. Polyunsaturates and fat in fish flesh. Journal of American Diet Association,1973, 63:625-630
    261. Stickney R R. Principles of Aquaculture. John Wiley and Sons Inc, London,1994,307-317
    262. Wakil S J, Porter J W, Gibson D M. Studies on the mechanism of fatty acid synthesis:Ⅰ. Preparation and purification of an enzymes system for reconstruction of fatty acid synthesis. Biochimica et Biophysica Acta,1957,24:453-461
    263. Wakil S J. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry,1989,28: 4523-4530
    264. Wesselinova D. Amino acid composition of fish meat after different frozen storage periods. Journal of Aquatic Food Product Technology,2000,9(4):41-48
    265. White B D, Bin B, Dean R G, Martin R J. Low protein diets in crease neuopeptide Y gene expression in the basomedial hypothalamus of rats. Journal of nutrition,1994,124(8):1152-1160
    266. Williams C M. Dietary fatty acids and human health. Ann Zootech,2000,49:165-180
    267. Wilson J, Kim S, Allen K G, Baillie R, Clarke S D. Hepatic fatty acid synthase gene transcription is induced by a dietary copper deficiency. American Journal of Physiology,1997,272: E1124-1129
    268. Wilson J, Kim S, Allen K G, Baillie R, Clarke S D. Hepatic fatty acid synthase gene transcription is induced by a dietary copper deficiency. American Journal of Physiology,1997,272:1124-1129
    269. Wilson J, Kim S, Allen K G, Baillie R, Clarke S D. Hepatic fatty acid synthase gene transcription is induced by a dietary copper deficiency. American Journal of Physiology,1997,272: E1124-1129
    270. Xie P, Liu J K. Practical success of biomanipulation using filter feeding fish to control cyanabacteria blooms-a synthesis of decades of research and application in a subtropical hypereutrophic lake. The Scientific World,2001,1:337-356
    271. Xie X J, Sun R Y. The bioenergetics of the southern catfish (Silurus meridionalis Chen):growth rate as a function of ration level, body weight and temperature. Journal of Fish Biology,1992, 40(5):719-730
    272. Yap C K, Ismail A, Tan S G, Rahim I A. Can the shell of the green lipped mussel Perna viridis f rom the west coast of Peninsular Malaysia be a pot ential biomonitoring material for Cd, Pb and Zn. Estuarine, Coastal and Shelf Science,2003,57(4):623-630
    273. Zhao F, Zhuang P, Song C, Shi Z H, Zhang L Z. Amino acid and fatty acid compositions and nutritional quality of muscle in the pomfret, Pampus punctatissimus. Food Chemistry,2010,118, 224-227
    274. Zimmer L, Delpal S, Guiloteau D, Aioun J, Durand G, Chalon S. Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat forntal cortex. Neurosci Letters, 2000,284:25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700