用户名: 密码: 验证码:
纳米高性能混凝土断裂性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米材料研究的深入和纳米材料制造成本的降低,纳米高性能混凝土将是未来结构工程中应用潜力极大的一种新型高性能混凝土。目前,关于纳米高性能混凝土的研究已经越来越广泛,然而,关于纳米高性能混凝土弯曲韧性和断裂性能的研究较少,特别是关于钢纤维增强纳米高性能混凝土的研究更少。本文通过大量试验研究了纳米SiO2和钢纤维的掺量对纳米高性能混凝土基本力学性能、弯曲韧性和断裂性能的影响。主要研究内容包括:
     (1)分析了纳米高性能混凝土的制备原理,并采用全计算法确定了高性能混凝土的基准配合比。通过坍落度和扩展度试验,得出了纳米SiO2和钢纤维对纳米高性能混凝土工作性能影响的规律。
     (2)以混凝土试件3d、7d、28d、60d为龄期,通过立方体抗压强度试验,得出了纳米SiO2和钢纤维掺量对纳米高性能混凝土强度影响的规律。
     (3)以混凝土试件28d为龄期,通过轴心抗压强度试验和抗压弹性模量试验,得出了纳米SiO2和钢纤维掺量对纳米高性能混凝土轴心抗压强度及弹性模量影响的规律。
     (4)以混凝土试件28d为龄期,采用三分点加载试验方法,对纳米高性能混凝土抗弯拉强度及抗弯拉弹性模量进行了试验研究,得出了纳米SiO2和钢纤维掺量对纳米高性能混凝土抗弯拉强度及抗弯拉弹性模量影响的规律。
     (5)以混凝土试件28d为龄期,通过尺寸为100mm×100mm×400mm试件的三分点加载弯曲韧性试验,并分别采用了ASTM-C1018韧度指数法和德国纤维混凝土标准DBV法对试验结果进行了分析,得出了钢纤维掺量对纳米高性能混凝土弯曲韧性影响的规律。
     (6)以混凝土试件28d为龄期,通过尺寸为100mm×100mm×515mm试件的断裂性能试验,研究了纳米高性能混凝土的断裂性能,以有效裂缝长度、起裂断裂韧度、失稳断裂韧度、断裂能、临界裂缝张开位移和极限裂缝张开位移为评价指标,得出了纳米Si02和钢纤维掺量对纳米高性能混凝土断裂性能影响的规律,并对纳米高性能混凝土的缺口敏感性进行了研究。
As one kind of High Performance Concrete (HPC), with the advancement of research and the reduction of manufacturing cost of Nano materials, Nano High Performance Concrete (NHPC) has showed its wide application potential on structural engineering in future. However, the research on bend ductility and fracture performance of NHPC, especially of Steel Fiber Reinforced NHPC (SFRNHPC), is too few to demands of construction. This paper showed the effect of fundamental mechanical performance, bend ductility and fracture performance influenced by the mixing proportion of Nano SiO2and steel fiber based on large amount of tests. The main contents including in this paper are as following:
     (1) The preparation theory of NHPC was analyzed, and the mix proportion of NHPC was determined applying the overall calculation method. The influencing rule of Nano SiO2and steel fiber on the performance of NHPC was obtained through the test of slump and slump spread.
     (2) With3d,7d,28d,60d as the curing period, the rules of the effects of Nano SiO2and steel fiber on the strength of HPC is obtained through the test of cubic compression strength.
     (3) With28d as the curing period of concrete specimens, the rules that Nano SiO2and steel fiber influencing on the axial compressive strength and elastic modulus of HPC were obtained through the axis compressive strength test and compressive elastic modulus test.
     (4) With28d as the curing period of concrete specimens, the flexural strength and flexural modulus are studied, and the rules of effects of the Nano SiO2and steel fiber influencing on flexural strength and flexural modulus of NHRC were obtained by three-point loading experiment.
     (5) Based on experiments of three-point bending beam test, with28d as the curing period of concrete specimens whose size are100mm×100mm×400mm, the rules of the bend ductility influenced by the dosage of steel fiber were analyzed applying the method of ASTM C1018Toughness Index and DBV which is Germany fiber reinforced concrete standard.
     (6) Through the three-point bending beam test, with a set of specimens whose size are100mm×100mm×515mm aged28d, the bend ductility was studied in this paper. Taking the effective crack length, instability fracture toughness, the crack fracture toughness, fracture energy, critical crack opening displacement and limit fracture opening displacement as evaluation indices, the basic influence rules of Nano SiO2and steel fiber on the fracture property of NHPC were obtained, and the notch sensitivity of the fracture specimens of NHPC was also studied.
引文
[1]王景贤,王立久.纳米材料在混凝土中的应用研究进展[J].混凝土,2004(11):18~19
    [2]徐志军,初瑞清著,蒋之峰译.纳米材料与纳米技术[M].北京:化学工业出版社,2010
    [3]Non-destructive energy-dispersive diffraction imaging of the interior of bulk concrete. C Hall, S L Colston, A C Jupe, S D M Jacques, R Livingston, A O A Ramadan, A W Amde and P Barnes. Cement and Concrete Research 2000, v30,491~495.
    [4]Li. Gengying. Properties of high-volume fly ash concrete incorporating nano-SiO2[J]. Cement and Concrete Research,2004,1043~1049
    [5]Middendorf, Bernhard. Makro-Mikro-Nano:Nanotechnologie fur die Bindemittel-und Betonentwicklung=Macro-micro-nano:Nanotechnology for the development of binder and concrete[J]. Betonwerk und Fertigteil-Technik,2005
    [6]Hui Li, Mao-hua Zhang, Jin-ping Ou. Abrasion resistance of concrete containing nano-particles for pavement[J]. Elsevier,2006,1263~1266
    [7]Gunasekaran, Muthian. Lightweight Partially Nano-Particled Polymer Concrete:A New Concept for ElectricalInsulation[J]. Electrical Insulation Conference and Electrical Manufacturing Expo,2007,172~174
    [8]Byung-Wan Jo, Seung-Kook Park, Do-Keun Kim. Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete[J]. Construction and building Materials,2007,1351~1355
    [9]CHEN Meng, GUAN Qiang. Study on Decontamination of Vehicle Emissions by Nano-TiO2 Sprayed on Highway Concrete Pavement [J]. Journal of Highway and Transportation Research and Development,2009
    [10]Kuang Liang Qian,, Tao Meng, Xiao Qian Qian, ect. Research on some properties of fly ash concrete with nano-CaCO3 middle slurry[J]. Key Engineering Materials,2009
    [11]叶青,张泽南,陈荣升,等.纳米SiO2与水泥硬化浆体中Ca(OH)2的反应[J].硅酸盐学报,2003,31(5)518~522
    [12]季韬,黄与舟,郑作樵.纳米混凝土物理力学性能研究初探[J].混凝土,2003
    [13]杜应吉,韩苏建,姚汝方,等.应用纳米微粉提高混凝土抗渗抗冻性能的试验研究[J].西北农林科技大学学报(自然科学版),2004
    [14]仲晓林,李顺凯,孙跃生,等.纳米粘十材料对水泥混凝土性能的影响[J].混凝土2005,62~63
    [15]李固华,高波.纳米微粉SiO2和CaCO3对混凝土性能影响[J].铁道学报,2006,28(1)131~136
    [16]杨瑞海,陆文雄.复合纳米材料和复合掺合料对混凝土性能影响的研究[J].水泥工程2008
    [17]张圣言.掺纳米SiO2钢纤维混凝土力学性能试验研究[D].[硕士学位论文].郑州:郑州大学,2010
    [18]李朋飞.纳米水泥混凝土路用性能研究[D].[硕士学位论文].西安:长安大学,2010
    [19]Harry F. Porter, John Stephen Sewell, Sanford E. Thompson. Discussion of "Some Mooted Questions in Reinforced Concrete Design"[J]. American Society of Civil Engineers,1910
    [20]程庆国.钢纤维混凝土理论及应用[M].北京:中国铁道出版社,1999
    [21]郑建岚.现代混凝土结构技术[M]..北京:人民交通出版社,1999
    [22]小林一辅著,蒋之峰泽.钢纤维混凝土[M].北京:冶金部建筑研究总院情报室,1984
    [23]David R Lankard Preparation, Properties and Applications of Cement-Based Composites Containing 5 to 20 Percent Steel Fiber [J]. Steel Fiber Concrete, US-Sweden joint seminar (NSF-STU) Stockholm,1985,199~217
    [24]覃维讥,曹峰.一种超高性能混凝土—活性粉末混凝土[J].工业建筑,1999
    [25]沈荣熹,王璋水,催玉忠.纤维增强水泥与纤维增强混凝土[M].北京:化学工业出版社,2006
    [26]中华人民共和国国家标准.《硅酸盐、普通硅酸盐水泥》(GB 175—1999)[S].1999
    [27]中华人民共和国国家标准.混凝土外加剂(GB 8076—1997)[S].1997
    [28]中华人民共和国交通部标准.公路工程水质分析操作规程(JTJ 056—84)[S].1984
    [29]陈建奎,王栋民.高性能混凝土配合比设计新法—全计算法[J].硅酸盐学报,2000,28(4):194~198.
    [30]李朋飞.纳米水泥混凝十路用性能研究[D].[硕士学位论文].阳安:长安大学,2007
    [31]姚先学.浅析混凝土的和易性对混凝土表面质量的影响[J].铁道建筑技术,2003(4):54~56
    [32]张海洋.高性能混凝土力学性能及断裂性能试验研究[D].[硕士学位论文].郑州:郑州大学,2011
    [33]谢帮华.纳米混凝土试验与应用模拟分析[D].[硕士学位论文].南昌:南昌大学,2007
    [34]中华人民共和国行业标准.公路工程水泥及水泥混凝土试验规程(JTG E30)[S].北京:人民交通出版社,2005
    [35]季韬,黄与舟,郑作樵.纳米混凝土物理力学性能研究初探[J].混凝土,2003,161(3): 13~14
    [36]郭保林.掺纳米二氧化硅高性能混凝土性能试验研究[D].[硕士学位论文].大连:大连理工大学,2005
    [37]王修春,韩涛,邵红才.钢纤维高强混凝土力学性能试验研究[J].山西建筑,2007,33(8):173~174
    [38]杨兆鹏.活性粉末混凝土的力学性能试验研究[D].[硕十学位论文].大连:大连交通大学,2008
    [39]河海大学,大连理工大学,西安理工大学,清华大学.水工钢筋混凝土结构学[M].北京:中国水利水电出版社;2006
    [40]张伟.聚丙烯纤维高强混凝土的力学性能试验研究[D].[硕士学位论文].太原:太原理工大学,2010
    [41]张鹏.塑性混凝土材料性能试验研究及其应用[D].[硕士学位论文].郑州:郑州大学,2005
    [42]汤寄予.纤维高强混凝土基本力学性能试验的研究[D].[硕士学位论文].郑州:郑州大学,2003
    [43]历汉寿.对配制道面水泥混凝土抗折强度的研究[J].混凝土.1990,(6);41~47.
    [44]吕宏基,杨德福,关英俊,等.大体积混凝土[M].北京:水利电力出版社,1990
    [45]赵国藩,彭少民,黄承透.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999
    [46]韩建国,阎培渝.混凝土弯曲韧性测试和评价方法综述[J].混凝土世界,2010,17(1)
    [47]ASTM C1018-97 Standard test method for flexural toughness and first-crack strength of fiber reinforced concrete (Using beam with third-point loading) [S].
    [48]邓宗才.高性能合成纤维混凝土[M].北京:科学出版社,2003
    [49]中国工程建设标准化协会标准.《钢纤维混凝土试验方法》(CECS13:89)[S].1989
    [50]丁一宁,董香军,王岳华.钢纤维混凝土弯曲韧性测试方法与评价标准[J].建筑材料学报,2005(12):660~664
    [51]肖柏军.低掺量刚-聚丙烯混杂纤维混凝土弯曲韧性及试验方法研究[D].[硕士学位论文].长沙:中南大学,2007
    [52]尹双增.断裂判据与在混凝土中的应用[M].北京:北京科学出版社,1996
    [53]Griffith.A.A.The phenomena of rupture and in solids.Phil.Trans.Roy.Soc.SeriesA221,1921, 163~168
    [54]Kaplan M F Crack propagation and the fracture of concrete. Journal of American concrete Institute,1961,58 (5):591~610
    [55]Bazant Z, Er-Ping Chen. Scaling of structure failure[J]. Applied mechanicalreview,1997, 50(10):593~627.
    [56]Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Conerete Researeh,1976,6:773~782.
    [57]Shilang Xu and Reihnaidt, H, W, Determination of Double-X Criterion for Crack Propagation in Quasi-Brittle Fracture, Part:Analytical Evaluating and Practical Measuring Methods for Three-Point Bending Notched Beams. International Journal of Fracture, VOL98, No.2,1999
    [55]徐世娘.混凝土断裂试验与断裂韧度测定标准方法[M].北京:机械工业出版社,2010.
    [56]宗荣.聚丙烯纤维混凝土抗裂性能研究[J].山西建筑,2006,32(24):158-159
    [57]RILEM, TC50-FMC, Fracture mechanics of concrete, in:Determination of fracture energy of mortar and concrete by means of three point bend test on notched beams [J]. Draft RILEM Recommendation, Materials and Structures,1985 (18):238-296
    [58]张鹏.高等级公路半刚性基层材料的抗裂性能研究[D].[博士学位论文].大连:大连理工大学,2007
    [59]李兰.活性粉末混凝土断裂性能试验研究[D].[硕士学位论文].北京:北京交通大学,2006
    [60]徐世烺,吴智敏,丁生根.砼双K断裂参数的实用解析方法[J]. 工程力学.2003,20(3):54~61.
    [61]吴智敏,王金来,徐世娘,刘毅.基于虚拟裂缝模型的混凝土等效断裂韧度[J].工程力学.2000,17(1);99~104.
    [62]Shilang Xu and Hans W Reinhardt. A simplified method for determining double-K fracture parameters for three-point tests [J]. In ternational Journal of Fracture.2000,104:181~209.
    [63]中华人民共和国电力行业标准.水工混凝土断裂试验规程(DL/T 5332-2005)[S].2005
    [64]Hillerborg A. The theoretical basis of a method to determine the fracture energy Gf of concrete[J]. Material and Structure,1996,18 (6):291~298
    [65]张震.大掺量粉煤灰混凝土断裂研究[D].大连:大连理工大学,2001.
    [66]袁玲,陈贤树,李化建.矿物掺合料对高强混凝土断裂脆性的影响[J].建材技术与应用.2001,(4):3~5
    [67]王古桥.纤维高强混凝土断裂性能的试验研究[D].[硕十学位论文].郑州:郑州大学,2004
    [68]A. Carpinteri, A. R. Ingraffea著,杨煜慧,黄政宇,万良芬等泽.混凝土断裂力学-材料特性与试验[M].长沙:湖南大学出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700