用户名: 密码: 验证码:
三态功率因数校正变换拓扑及其控制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了消除电网谐波污染、提高功率因数,需在电子设备的输入端加有源功率因数校正(Active Power Factor Correction, APFC)变换器。传统恒定开关频率的PFC变换器可工作于不连续导电模式(Discontinuous Conduction Mode, DCM)和连续导电模式(Continuous Conduction Mode, CCM).负载较轻时设计变换器工作于DCM,但此时开关管电流应力较大,仅可适用于功率小于250W的场合;负载较重时设计变换器工作于CCM,但为了减小因输出电压工频纹波而导致的输入电流畸变,需要降低电压反馈控制环的低通滤波器截止频率(一般仅为10-20Hz),严重影响了PFC变换器对负载变化的瞬态响应能力。
     针对DCM和CCM PFC变换器技术存在的问题,本论文提出并研究了一种新颖的、恒定开关频率的、工作于三态伪连续导电模式(Pseudo Continuous Conduction Mode, PCCM)的PFC变换器技术,它或通过增加额外的功率开关管,或通过控制开关管的时序,使PFC变换器的储能电感电流或储能电容电压在一个开关周期内建立三个工作状态,实现输出电压稳定和高功率因数(Power Factor, PF)这两个PFC变换器控制目标的解耦。因此,与CCM PFC变换器的双闭环控制器相比,三态PCCM PFC变换器的控制环路为独立的电压控制环和电流控制环,既降低了控制环路的设计难度,又可提高电压控制环路的带宽,具有较快的负载瞬态响应速度。此外,与DCM PFC变换器相比,三态PCCM PFC变换器的储能电感不受工作模式的限制,可应用于较宽的负载范围。
     本论文提出并系统地研究了三态PCCM Boost PFC变换器,通过在Boost变换器电感两端并联功率开关管和二极管,为电感电流提供续流通路,使电感电流再一个开关周期内存在三个工作状态。论文对三态PCCM Boost PFC变换器进行了详细的分析,对它的稳态特性、控制器设计、网侧输入电流、PF值等进行了深入研究。虽然研究结果表明三态PCCM Boost PFC变换器具有良好的稳态和瞬态性能,但是由于增加了额外的功率开关管,因此降低了变换器效率。为此,本论文进一步提出了工作于三态PCCM的两开关Buck-Boost PFC变换器,基于两开关Buck-Boost PFC变换器本身存在两个功率开关管的特性,通过控制开关组合方式使其工作于三态PCCM,在获得良好稳态和瞬态性能的同时,利用开关管导通损耗低于二极管导通损耗的特性,可提高两开关三态PCCM Buck-Boost PFC变换器效率。
     为了拓展三态PCCM PFC变换器技术的应用范围,本论文提出并研究了三态PCCM Flyback PFC变换器,将其应用于隔离型PFC变换器拓扑。研究结果表明,与传统DCM Flyback PFC变换器相比,三态PCCM Flyback PFC变换器可降低开关管承受的电压应力,具有较宽的负载范围,可应用于需要隔离的且负载功率较大的场合。根据对偶原理,本论文进一步提出并研究将三态PCCM PFC变换器技术应用于非隔离型CUK和隔离型SEPIC PFC变换器。通过在中间储能电容(过渡电容)上串联一个开关管,使得非隔离型CUK和隔离型SEPIC PFC变换器的中间储能电容电压在
     一个开关周期内存在三个工作状态。利用时间平均等效分析法对三态PCCM CUK PFC变换器进行直流稳态特性分析,结果表明,其可等效为Boost变换器与Buck变换器的级联。因此,与传统DCM和CCM CUK PFC变换器相比,三态PCCM CUK PFC变换器具有极低的输出电压二倍工频纹波,且其对负载的瞬态响应性能也有极大的提高。为了验证理论分析的正确性,论文提供了大量的仿真结果,并搭建了相应的实验样机平台,给出了相应的实验结果。仿真及实验结果对本文的理论分析进行了很好的验证。
In order to eliminate harmonic pollution in electric power network and improve power factor (PF), the input terminal of electronic equipments need to add active power factor correction (PFC) converter. The PFC converter with constant switch frequency can operate in discontinuous conduction mode (DCM) or continuous conduction mode (CCM). The PFC converter is designed to operate in DCM when load is light, but high current stress of switch restrict it only to apply in small power system. When the load is heavy, the PFC converter is designed to operate in CCM. However, in order to reduce the input current distortion, which caused by the output voltage ripple related to twice of the power frequency, the low pass filter cut-off frequency of the feedback voltage loop should be decreased and that leads to poor dynamic performance of load variation.
     According to the problems existing in DCM and CCM PFC converter, a novel constant switch frequency PFC technique operating in pseudo continuous conduction mode(PCCM) is proposed in this paper. By utilizing the added power switch to control the power switch time sequence, which makes the inductance current or capacitor voltage of the PFC converter exist three operating modes in each switching cycle. Hence, the proposed PFC converter decouples the control variable of the control loop, which makes the control objective of the output voltage stable can be decoupled with high power factor. Compared with the dual-close-loop control of CCM PFC converter, the voltage control loops of the tri-state PCCM PFC converter is independent of the current control loop, which decreases the difficult of controller design and increase the bandwidth of voltage loop. Dynamic response speed of the tri-state PCCM PFC converter also can be improved. Besides, compared with DCM PFC converter, the tri-state PCCM PFC converter extends the load range and the inductance is not restricted by operating modes.
     In this paper, the tri-state PCCM Boost PFC converter is systematically studied. By connecting a power switch and a diode in parallel with the inductor of boost converter, which provides an additional inductance current route. Hence, the inductance current of the tri-state PCCM Boost PFC converter has three working modes in each switching cycle.The tri-state PCCM Boost PFC converter also is analyzed, such as the stable-state character, the controller design, input current and PF. Although the tri-state PCCM Boost PFC converter has good steady and transient performance, but the efficiency of the converter is low because of the additional power switch. Hence, the paper further presents the two-switch tri-state PCCM Buck-Boost PFC converter which has two power switches itself and the tri-state PCCM can be realized by controlling sequence of the power switch. Favorable steady and transient performance of the two-switch tri-state PCCM Buck-Boost PFC converter can be obtained. Because of the conduction losses of the diode is larger than that of the power switch, so the efficiency of the two-switch tri-state PCCM Buck-Boost PFC converter can be promoted.
     In order to expend the application range of the tri-state PCCM PFC technique, the isolated tri-state PCCM Flyback PFC converter is also proposed and studied. Compared with traditional DCM Flyback PFC converter, the tri-state PCCM Flyback PFC converter can reduce the voltage stress of the power switch and extend the load range. Hence, the proposed converter can be used in the isolated and heavy load situation.
     Based on the duality principle, the non-isolated tri-state PCCM CUK PFC and isolated tri-state PCCM SEPIC PFC converter are proposed and studied. Three operating modes are obtained by connecting a power switch in series with the storage capacitor. By time average equivalent principle, the paper research DC steady state analysis of the tri-state PCCM CUK PFC converter. The results show that the tri-state PCCM CUK PFC converter can be equivalent to cascade Boost converter and Buck converter. So compared with traditional DCM and CCM CUK PFC converter, the output voltage ripple in the twice of the power frequency of the tri-state PCCM CUK PFC converter is very low and gets a fast load dynamic response.
     In order to verify the correctness of the theoretical analysis, a mass of simulation results are provided, and corresponding prototypes in lab is set up to present experimental results. Simulation and experimental results have a good agreement with the theoretical analysis presented in this dissertation.
引文
[1]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2004.
    [2]林渭勋.现代电力电子电路[M].浙江:浙江大学出版社,2002.
    [3]N. Mohan, T. M, Underland, and W. P. Pobbins. Power electronics[M]. John Wiley & Sons,1995.
    [4]Z. N. Reza. AC/DC power factor conversion schemes with unity power factor and minimum harmonic distortion. UMI Dissertation[M],1995.
    [5]B. K. Bose. Modern power electronics and AC drivers. Prentice-Hall, Inc.[M],2002.
    [6]周志敏,周纪海,纪爱华.开关电源功率因数校正电路设计与应用[M].北京:人民邮电出版社,2004.
    [7]李东.基于Boost变换器的宽输入电压范围功率因数校正技术的研究[D].南京航空航天大学博士学位论文,2006.
    [8]张斐.单传感器数字控制功率因数校正技术研究[D].西南交通大学硕士学位论文,2009.
    [9]严百平,刘健,程红丽.不连续导电模式高功率因数开关电源[M].北京:科学出版社,2000.
    [10]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda. Single phase power factor correction:a survey[J]. IEEE Transactions on Power Electronics,2003,18(3): 749-755.
    [11]姚凯.高功率因数DCM Boost PFC变换器的研究[D].南京航空航天大学博士学位论文,2010.
    [12]L. H. Dixon. High power factor pre-regulators for Off-line power supplies[J]. Unitrode Switching Regulator Power Supply Design Seminar Manual,1990,12.
    [13]K. H. Liu, and Y. L. Lin. Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters [C]. Power Electronics Specialists Conference,1989, pp.825-829.
    [14]J. S. Lai, and D. Chen. Design consideration for power factor correction boost cnverter oerating at the boundary of continuous conduction mode and discontinuous conduction mode[C]. Applied Power Electronics Conference and Exposition,1993, pp.267-273.
    [15]J. P. Gegner, and C. Q. Lee. Linear peak current mode control:a simple active power factor correction control technique for continuous conduction mode[C]. Power Electronics Specialists Conference,1996, pp.196-202.
    [16]Y. S. Lee, and K. W. Siu. Single-switch fast-response switching regulators with unity power factor[C]. Applied Power Electronics Conference and Exposition,1996, pp. 791-796.
    [17]M. H. L. Chow, Y. S. Lee, and C. K. Tse. Single-stage single-switch isolated PFC regulator with unity power factor, fast transient response and low-voltage stress [J]. IEEE Transactions on Power Electronics,2000,15(1):156-163.
    [18]L. Rossetto, G. Spiazzi, P. Tenti, B. Fabiano, and C. Licitra. Fast-response high-quality rectifier with sliding mode control[J]. IEEE Transactions on Power Electronics,1994,9(2):146-152.
    [19]K. M. Smedley, and S. Cuk. One-cycle control of switching converters[J]. IEEE Transactions on Power Electronics,1995,10(6):625-633.
    [20]阮新波,严仰光.直流开关电源的软开关技术[M].北京:科学出版社,2000.
    [21]K. I. Dong, and B. K. Bose. A new ZCS turn-on and ZVS turn-off unity power factor PWM rectifier with reduced conduction loss and no auxiliary switches[C]. Power Electronics Specialists Conference,1998, pp.1344-1350.
    [22]J. Yungtaek, and M. M. Jovanovic. A new, soft-switched, high-power-factor boost converter with IGBTs[J]. IEEE Transactions on Power Electronics,2002,17(4): 469-476.
    [23]A. Pietkiewicz, and D. Tollik. Snubber circuit and MOSFET paralleling considerations for high power boost-based power-factor correctors [C]. Telecommunications Energy Conference,1995, pp.41-45.
    [24]W. Sulistyono, and P. Enjeti. A series resonant AC-to-DC rectifier with high-frequency isolation[J]. IEEE Transactions on Power Electronics,1995,10(6): 784-790.
    [25]D. C. Duarte, and C. M. Barbi. A new ZVS-PWM active-clamping high power Factor rectifier:analysis, design, and experimentation[C]. Applied Power Electronics Conference and Exposition,1998, pp.230-236.
    [26]D. Souza, and A. F. Barbi. A new ZVS-PWM unity power factor rectifier with reduced conduction losses[J]. IEEE Transactions on Power Electronics,1995,10(6): 746-752.
    [27]C. M. Wang. A novel zero-voltage-switching PWM boost rectifier with high power factor and low conduction losses [J]. IEEE Transactions on Industrial Electronics, 2005,52(2):427-435.
    [28]H. Endo, T. Yamashita, and T. A. Sugiura. High-power-factor buck converter[C]. Power Electronics Specialists Conference,1992, pp.1071-1076.
    [29]G. Spiazzi. Analysis of buck converters used as power factor pre-regulators[C]. Power Electronics Specialists Conference,1997, pp.564-570.
    [30]K. Hirachi, and M. Nakaoka. Improved control strategy on buck-type PFC converter[J]. Electronics Letters,1998,34(12):1162-1163.
    [31]Ⅰ. Lindroth, P. Melchert, and T. Sahlstrom. Methods of improving efficiency in wide input range boost converters at low input voltages[C]. Telecommunications Energy Conference,2000, pp.424-431.
    [32]W. Wei, and Y. S. Lee. A two-channel interleaved boost converter with reduced core loss and copper loss[C]. Power Electronics Specialists Conference,2004, pp. 1003-1009.
    [33]D. Garinto. Interleaved boost converter system for unity power factor operation[C]. European Conference on Power Electronics and Applications,2007, pp.1-7.
    [34]L. Balogh, and R. Redl. Power-factor correction with interleaved boost converters in continuous-inductor-current mode[C]. Applied Power Electronics Conference and Exposition,1993, pp.168-174.
    [35]J. R. Pinheiro, H. A. Grundling, D. L. R. Vidor, and J. E. Baggio. Control strategy of an interleaved boost power factor correction converter[C]. Power Electronics Specialists Conference,1999, pp.137-142.
    [36]H. Y. Kanaan, A. Marquis, and K. A. Haddad. Small-signal modeling and linear control of a dual boost power factor correction circuit[C]. Power Electronics Specialists Conference,2004, pp.3127-3133.
    [37]K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori, and F. Ueda. A comparision of various buck-boost converters and their application to PFC[C]. Industrial Electronics Society Conference,2002, pp.30-36.
    [38]J. Q. Chen, D. Maksimovic, and R. Erickson. A new low-stress buck-boost converter for universal input PFC applications[C]. Applied Power Electronics Conference and Exposition,2001, pp.343-349.
    [39]R. Morrison, and M. G. Egan. A new modulation strategy for a buck-boost input ac/dc converter [J]. IEEE Transactions on Power Electronics,2001,16(1):34-45.
    [40]Y. Nishida, S. Motegi, and A. Maeda. A single-phase buck-boost ac-to-dc converter with high-quality input and output waveforms [C]. International Symposium on Industrial Electronics,1995, pp.433-438.
    [41]L. Petersen, and R. W. Erickson. Reduction of voltage stress in buck-boost-type power factor correctors operating in boundary conduction mode[C]. Applied Power Electronics Conference and Exposition,2003, pp.664-670.
    [42]何希才.新型开关电源设计与应用[M].北京:科学出版社,2001.
    [43]毛鸿,吴兆麟.有源功率因数校正器的控制策略综述[J].电力电子技术,2000,1:58-61.
    [44]C. Qiao, and K. M. Smedley. A topology survey of singnal-stage power factor correction with a boost type input-current shaper[J]. IEEE Transactions on Power Electronics,2001,16(3):360-368.
    [45]S. L. S. Domingos, J. Sebastian, and J. Uceda. Control conditions to improve conducted EMI by switching frequency modulation of basic discontinuous PWM pre-regulators[C]. Power Electronics Specialists Conference,1994, pp.1180-1187.
    [46]M. S. Dawande, and G. K. Dubey. Programmable input power factor correction method for switch-mode rectifiers [J]. IEEE Transactions on Power Electronics,1996, 11(4):585-591.
    [47]K. Schenk, and S. Cuk. A simple three-phase power factor correction with improved harmonic distortion[C]. Power Electronics Specialists Conference,1997, pp. 399-405.
    [48]J. Lazar, and S. Cuk. Feedback loop analysis for ac/dc rectifiers operating in discontinuous conduction mode[C]. Applied Power Electronics Conference and Exposition,1996, pp.797-806.
    [49]Z. Lai, K. M. Smedley, and Y. Ma. Time quantity one-cycle control for power-factor-correctors[J]. IEEE Transactions on Power Electronics,1997,12(2): 369-375.
    [50]L. Hadley. Power factor correction using a pre-regulating boost converter[C]. IEEE Power Conversion Conference,1989, pp.376-382.
    [51]D. Weng, and S. Yuvarajian. Constant switching frequency ac-dc converter using second harmonic injected PWM[J]. IEEE Transactions on Power Electronics,1996, 11(1):115-121.
    [52]K. Yao, X. B. Ruan, X. J. Mao, and Z. H. Ye. Variable duty cycle control to achieve high input power factor for DCM boost PFC converter[J]. IEEE Transactions on Industrial Electronics,2011,58(5):1856-1865.
    [53]潘飞蹊.有源功率因数校正技术的研究[D].电子科技大学博士学位论文,2004.
    [54]R. Oruganti, K. Nagaswamy, and L. K. Sang. Predicted (On-time) equal-charge criterion scheme for constant-frequency control of single-phase boost-type ac-dc converter[J]. IEEE Transactions on Power Electronics,1998,13(1):47-57.
    [55]J. Sebastian, J. A. Cobos, J. M. Lopera, and U. Uceda. The determination of the boundaries between continuous and discontinuous conduction modes in PWM dc-to-dc converters used as power factor pre-regulators[J]. IEEE Transactions on Power Electronics,1995,10(5):574-582.
    [56]R. K. Tripathi, S. P. Das, and G. K. Dubey. Mixed-mode operation of boost switch mode rectifier for wide range of load variations[J]. IEEE Transactions on Power Electronics,2002,17(6):999-1009.
    [57]G. Rajesh, and G. Narayanan. A single-phase boost rectifier system for wide range of load variations[J]. IEEE Transactions on Power Electronics,2007,22(2):470-479.
    [58]K. D. Gusseme, D. M. Van de Sype, A. P. Van den Bossche, and J. A. Melkebeek. Digitally controlled boost power factor correction converters operating in both continuous and discontinuous conduction mode[J]. IEEE Transactions on Industrial Electronics,2005,52(1):88-97.
    [59]A. Prodic, J. Chen, D. Maksimovic, and R. W. Erickson. Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response [J]. IEEE Transactions on Power Electronics,2003,18(1):420-428.
    [60]R. W. Erickson. Fundamentals of power electronics[M]. New York:Chapman & Hall, 1997.
    [61]H. S. Athab. A duty cycle control technique for elimination of line current harmonics in single-state DCM Boost PFC circuit[C]. IEEE TENCON Conference,2008, pp. 1-6.
    [62]G. Spiazzi, P. Mattavelli, and L. Rossetto. Methods to improve dynamic response of power factor pre-regulators:An overview[C]. IEEE EPE Conference,1995, pp. 754-759.
    [63]J. B. Williams. Design of feedback loop in unity power factor AC to DC converter[C]. Power Electronics Specialists Conference,1989, pp.959-967.
    [64]S. Wall, and R. Jackson. Fast controller design for single-phase powerfactor correction systems[J]. IEEE Transactions on Industrial Electronics,1997,44(5): 654-660.
    [65]刘桂花,王卫,徐殿国.具有快速动态响应的数字功率因数校正算法[J].中国电机工程学报,2009,29:10-15.
    [66]A. Prodic, D. Maksimovic, and R. W. Erickson. Dead-zone digital controllers for improved dynamic response of low harmonic rectifiers [J]. IEEE Transactions on Power Electronics,2006,21(1):173-181.
    [67]R. Ghosh, and G. Narayanan. Generalized feed-forward control of single phase PWM rectifiers using disturbance observers [J]. IEEE Transactions on Industrial Electronics, 2007,54(2):984-993.
    [68]R. Ghosh, and G. Narayanan. A simple method to improve the dynamic response of single-phase PWM rectifiers [J]. IEEE Transactions on Industrial Electronics,2008, 55(10):3627-3634.
    [69]李东.基于Boost变换器的宽输入电压范围功率因数校正技术的研究[D].南京航空航天大学博士学位论文,2006.
    [70]D. M. Sable, B. H. Cho, and R. B. Ridley. Use of leading-edge modulation to transform boost and flyback converters into minimum-phase-zero systems[J]. IEEE Transactions on Power Electronics,1991,6(4):704-711.
    [71]K. Viswanathan, R. Oruganti, and D. Srinivasan. Tri-state boost converter with no right half plane zero[C]. IEEE International Conference on Power Electronics and Drive Systems,2001, pp.687-693.
    [72]K. Viswanathan, R. Oruganti, and D. Srinivasan. A novel tri-state boost converter with fast dynamics[J]. IEEE Transactions on Power Electronics,2002,17(5): 677-683.
    [73]K. Viswanathan, R. Oruganti, and D. Srinivasan. Design and evaluation of tri-state boost converter[C]. Power Electronics Specialists Conference,2004, pp.4662-4668.
    [74]K. Viswanathan, R. Oruganti, and D. Srinivasan. Dual mode control of tri-state boost converter for improved performance [J]. IEEE Transactions on Power Electronics, 2005,20(4):790-797.
    [75]C. Sreekumar, and A Vivek. Comparison of mode switched controllers for a pseudo continuous current mode boost converter[C]. IEEE International Conference on Power Electronics and Drive Systems,2006, pp.1-6.
    [76]C. Sreekumar, and A Vivek. A circuit theoretical approach to hybrid mode switching control of a pseudo CCM boost converter[C]. IEEE International Conference on Industrial Technology,2006, pp.791-795.
    [77]D. S. Ma, W. H. Ki, and C. Y. Tsui. A pseudo-CCM/DCM SIMO switching converter with freewhell s witching [J]. IEEE Journal of Solid-state Circuits,2003,38(6): 1007-1014.
    [78]D. S. Ma, and W. H. Ki. Fast transient PCCM switching converter with freewheel switching control[J]. IEEE Transactions on Circuits and Systems,2007,54(9): 2194-2197.
    [79]A. Consoli, A. Testa, G. Giannrtto, and F. Gennaro. A new VRM topology for next generation microprocessors[C]. IEEE Power Electronics Specialists Conference, 2001, pp.339-344.
    [80]王凤岩.快速瞬态响应电压调节控制器控制方法的研究[D].西南交通大学博士学位论文,2005.
    [81]周国华.基于纹波的开关功率变换器控制技术及其动力学行为研究[D].西南交通大学博士学位论文,2011.
    [82]于海坤.伪连续导电模式Boost功率因数校正器研究[D].西南交通大学硕士学位论文,2011.
    [83]许建平.开关变换器的工作原理、建模、分析和仿真[D].电子科技大学博士学位论文,1988.
    [84]R. D. Middlebrooki, and S. Cuk. A general unified approach to modeling switching converter power satages[C]. IEEE Power Electronics Specialists Conference,1976, pp.18-34.
    [85]K. H. Liu, and Y. L. Lin. Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters [C]. IEEE Power Electronics Specialists Conference,1989, pp.825-829.
    [86]J. P. Xu. Modeling of switching DC-DC converters by time-averaging equivalent circuit approach[J]. International Journal of Electronics,1993,477-488.
    [87]F. A. Huliehel, F. C. Lee, and B. H. Cho. Small signal modeling of the single phase boost high power factor converter with constant frequency control [C]. IEEE Power Electronics Specialists Conference,1989, pp.475-482.
    [88]R. K. Tripathi, S. P. Das, and G. K. Dubey. Mixed-mode operation of boost switch mode rectifier for wide range of load variations [J]. IEEE Transactions on Power Electronics,2002,17(6):999-1009.
    [89]E. Figueres, J. M. Benavent, G. Garcera, and M. Pascual. A control circuit with load-current injection for single-phase power-factor-corrention rectifiers [J]. IEEE Transactions on Industrial Electronics,2007,55(3):1272-1281.
    [90]R. Ghosh, and G. Narayanan. A simple method to improve the dynamic response of single-phase PWM rectifiers [J]. IEEE Transactions on Power Electronics,2008, 55(10):3627-3634.
    [91]G. Spiazzi, P. Mattavelli, and L. Rossetto. Power factor preregulator with improved dynamic response [J]. IEEE Transactions on Power Electronics,1997,12(2): 343-349.
    [92]F. Zhang, J. P. Xu, G. Z. Zhou, and J. Yang. Transient performance improvement for digital control boost power factor correction converters[C]. IEEE International Power Electronics and Motion Control Conference,2009, pp.1693-1696.
    [93]A. Prodic, D. Maksimovic, and R. W. Erickson. Dead-zone digital controllers for improved dynamic response of low harmonic rectifiers [J]. IEEE Transactions on Power Electronics,2006,21(1):173-181.
    [94]A. Prodic, C. J. Quan, D. Maksimovic, and R. W. Erickson. Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response[J]. IEEE Transactions on Power Electronics,2003,18(1):420-428.
    [95]D. M. Van de Sype, K. De Gusseme, A. P. Van Den Bossche, and J. A. Melkebeek. A sampling algorithm for digitally controlled boost PFC converters [J]. IEEE Transactions on Power Electronics,2004,19(3):649-657.
    [96]Z. Y. Zhen, and M. M. Jovanovic. Implementation and performance evaluation of DSP based control for constant frequency discontinuous conduction mode Boost PFC front end[J]. IEEE Transactions on Industrial Electronics,2005,52(1):98-107.
    [97]任小永,唐钊,阮新波,危建,华桂潮.一种新颖的四开关Buck-Boost变换器[J].中国电机工程学报,2008,28:15-19.
    [98]F. Zhang, and J. P. Xu. A Novel PCCM Boost PFC Converter With Fast Dynamic Response[J]. IEEE Transactions on Industrial Electronics,2011,58(9):4207-4216.
    [99]张斐,许建平,王金平,于海坤.具有快速动态响应的三态功率因数校正变换器[J].电机与控制学报,2011,15:13-19.
    [100]F. Zhang, J. P. Xu, J. P. Wang, and H. K. Yu. A Novel Tri-State Boost PFC Converter with Fast Dynamic Performance [C]. IEEE Conference on Industrial Electronics and Applications,2010, pp.2104-2109.
    [101]F. Zhang, J. P. Xu, H. K. Yu, and P. Yang. Dead-Zone Digital Controllers for Improved Dynamic Response over Wide Load Range in Tri-state Boost PFC Converter[C]. IEEE Symposium on Power Electronics for Distributed Generation Systems,2010, pp.444-448.
    [102]F. Zhang, J. P. Xu, H. K. Yu, and G. H. Zhou. Inductive Idling Boost Converter with Low Inductor Current-Ripple and Improved Dynamic Response for Power Factor Correction[C]. IEEE Energy Conversion Congress and Exposition,2010, pp. 3210-3215.
    [103]F. Zhang, J. P. Xu, P. Yang, and T. S. Yan. Tri-state Boost PFC Converter with High Input Power Factor[C]. IEEE International Power Electronics and Motion Control Conference-ECCE Asia,2012, pp.1626-1621.
    [104]于海坤,许建平,张斐,王金平.具有宽负载范围的新型Boost功率因数校正器研究[J].电工技术学报,2011,26:93-98.
    [105]R. Watson, G. C Hua, and F. C. Lee. Characterization of an active clamp flyback topology for power factor correction applications [J]. IEEE Transactions on Power Electronics,1996,11(1):191-198.
    [106]R. Zane, and D. Maksimovic. Nonlinear-carrier control for high-power-factor rectifier based on up-down switching converters [J]. IEEE Transactions on Power Electronics,1998,13(2):213-221.
    [107]Y. Q. Zhang, and P. C. Sen. A new soft-switching technique for buck, boost, and buck-boost converters [J]. IEEE Transactions on Industry Applications,2003,39(6): 1775-1782.
    [108]J. Q. Chen, D. Maksimovic, and R. W. Erickson. Analysis and design of a low-stress buck-boost converter in universal-input PFC applications [J]. IEEE Transactions on Power Electronics,2006,21(2):320-329.
    [109]G. K. Andersen. Average current control of a Buck+Boost PFC rectifier for low cost motor drives[C]. IEEE Nordic Workshop on Power and Industrial Electronics,2000, pp.174-179.
    [110]肖华锋,谢少军.用于光伏并网的交错型双管Buck-Boost变换器[J].中国电机工程学报,2010,30:7-12.
    [111]P. Midya, K. Haddad, and M. Miller. Buck or boost tracking power converter [J]. IEEE Power Electronics Letters,2004,2(4):131-134.
    [112]J. Y. Lee, A. Khaligh, and A. Emadi. A compensation technique for smooth transitions in non-inverting Buck-Boost converter[C]. IEEE Applied Power Electronics Conference and Exposition,2009, pp.608-614.
    [113]张斐,许建平,杨平,陈章勇.两开关伪连续导电模式Buck-Boost功率因数校正变换器[J].中国电机工程学报,2012,32:56-64.
    [114]R. Dowlatabadi, M. Monfared, S. Golestan, and A. Hassanzadeh. Modelling and controller design for a non-inverting buck-boost chopper [C]. IEEE Electrical Engineering and Informatics Conference,2011, pp.1-4.
    [115]A. J. Sabzali, E. H. Ismail, M. A. Al-Saffarand A. A. Fardoun. New bridgeless DCM sepic and cuk PFC rectifiers with low conduction and switching losses [J]. IEEE Transactions on Industry Applications,2011,47(2):873-881.
    [116]刘学超,张波,余健生.带充电泵单级PFC电路的AC/DC变换器[J].电工技术学报,2004,19:46-49.
    [117]文毅,赵清林,邬伟扬.并联型双耦合绕组Flyback式单级PFC变换器[J].电工技术学报,2007,22:116-121.
    [118]R. Redl, L. Balogh, and N. O. Sokal. A new family of single-stage isolated power-factor correctors with fast regulation of the output voltage[C]. IEEE Power Electronics Specialists Conference,1994, pp.1167-1144.
    [119]H. Endo, K. Harada, Y. Ishihara, and T. Todaka. A novel single-stage active clamped PFC converter[C]. IEEE Power Electronics Specialists Conference,2003, pp. 124-131.
    [120]张斐,许建平,杨平,陈章勇.两开关伪连续导电模式Buck-Boost功率因数校正变换器[J].中国电机工程学报,2012,32:56-64.
    [121]邱关源.电路[M].北京:高等教育出版社,1999.
    [122]F. Zhang, J. P. Xu, P. Yang, M. Qin, and H. K. Yu. High-Efficiency Capacitive Idling SEPIC PFC Converter with Varying Reference Voltage for Wide Range of Load Variations[C]. IEEE Conference on Communications, Circuit and Systems,2010, pp. 526-530.
    [123]朱昆林,廖志清,曾旭初.单端正激电源的系统建模和控制设计[J].电力电子技术,2009,3:29-32.
    [124]F. Q. Wang, H. Zhang, and X. K. Ma. Intermediate-scale instability in two-stage power-factor correction converters [J]. IET Power Electronics,2010,3(3):438-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700