用户名: 密码: 验证码:
基于分布式电源的微网控制及运行优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,世界范围内出现了严峻的能源与环境问题,随着用电需求的上升传统集中式大电网也暴露出了一定的弊端,发展基于新能源分布式电源的微网系统是解决上述问题的重要手段。本文对基于分布式电源的微网控制和运行优化进行了研究,首先提出了适用于多种新能源分布式电源的微网结构,建立了系统的仿真模型,并对分布式电源中并网逆变器并网和微网运行基本控制策略进行了探讨。在此基础上,分别对微网系统中直流母线能量的最优利用方法、并网谐波补偿方法和孤岛检测方法进行了优化研究,有效提升了微网系统运行性能。根据微网和智能电网的发展趋势,设计了包含双向潮流分析和能量管理的智能控制平台,提高了微网系统的信息化、智能化水平。最终,搭建了智能微网系统实验平台,取得了良好的实验结果。本论文的主要工作如下:
     1、微网系统的组成结构分析和建模。
     针对中小功率等级的微网系统,提出一种包含了直流母线和交流母线的结构,并根据该微网系统中的各个部分的模型建立了Matlab/simulink平台的仿真模型。
     2、分布式电源在微网中的基本控制策略及改进方法。
     提出了DC/DC变换器、DC/AC变换器及微网运行的控制方法和逆变器并联时环流的抑制方法。特别针对DC/AC变换器的低谐波SVPWM调制死区时间注入方法、抗干扰数字锁相环提出了新的设计思路。
     3、提出了直流母线能量的最优利用方法。
     通过分析直流母线上光伏电池和风力发电机两种微源的输出功率特性,提出了一种具有广泛适用性的最大功率跟踪算法及直流母线整体能量最优利用的协调控制策略。
     4、设计了分布式电源在微网中的谐波补偿方法。
     通过对微网中谐波源的分析,结合有源电力滤波器的谐波补偿原理,设计了一种新型的分布式电源并网运行过程中对微网谐波进行补偿的控制算法。通过将谐波补偿控制器计算的补偿信号注入逆变器调制波,可以在分布式电源并网的同时实现谐波补偿,提高微网系统并网的电能质量。
     5、提出了微网系统中基于三次谐波扰动的孤岛检测方法。
     针对目前孤岛检测方法输出谐波含量大,检测盲区大的不足,在谐波补偿算法的基础上,本文提出了一种响应快,谐波扰动量相对常规方法简单可控,对电网谐波污染小的基于三次谐波扰动的孤岛检测方法。
     6、设计了微网中双向潮流分析及能量管理的智能控制平台。
     为微网系统设计了基于Android系统的智能控制平台,对微网的双向潮流进行分析,实现了实时电能交易和微网系统能量管理,有助于提高用户的舒适度和整体管理效率。重点讨论了智能平台的搭建方法、双向潮流计算方法及能量管理控制策略等。
     7、搭建微网系统实验平台。
     搭建了包含模拟风力发电机、太阳能电池、电子负载、模拟微网和基于DSP+FPGA控制器的分布式电源实验平台,配合光伏示范电站、市电接口等,满足了整个微网控制系统的实验需求。
In recent years, the worldwide energy and environmental problems become more and more serious; as the demand for electricity increases, the traditional centralized power grid has already exposed some disadvantages, and the development of microgrid system based on new energy distributed generation is an important method to solve the above problems. This paper is concerned of the research on microgrid control based on distributed generation and operation optimization. The microgrid structure which suitable for a variety of new energy distributed generation has been proposed, the system simulation model was established and the grid-connected inverter and microgrid operation control strategy were discussed. On this basis, the optimization research on optimal energy utilization method of DC bus in microgrid system, compensation method of the grid harmonic and the island detection method has been done, and the operation effect of microgrid system has been increased effectively. According to the development trend of microgrid and smart grid, the intelligent control system includes bidirectional power flow analysis and energy management has been designed, the informatization and intelligent level of the microgrid has been improved. Finally, a smart microgrid system experimental platform has been built and achieved good results. The main work of this paper is as following:
     1、The microgrid system structure analysis and modeling
     For microgrid systems with small and medium-sized power level, a DC bus and communication bus structure has been put forward. According to the model of each part in microgrid system, the simulation model on Matlab/simulink platform has been built.
     2、The control strategy of distributed power in microgrid
     Put forward the control method of DC/DC converter, DC/AC converter, microgrid operation and the circulation suppression method under the condition of parallel inverter. Especially proposed new design method of low harmonic SVPWM modulation dead zone time injection of DC/AC converter and anti-interference digital phase locked loop.
     3、The optimal energy utilization method of DC bus
     Through the analysis on output characteristics of two kinds of micro source:the photovoltaic battery and wind generator used in DC bus, a maximum power tracking algorithm with widely applicability and the coordinated control strategy to ensure the optimal utilization of the overall energy produced by the DC bus has been proposed.
     4、Harmonic compensation method of distributed generation in microgrid
     By analysing the harmonic source of microgrid, according to the harmonic compensation principle of active power filter, a new type of compensation control algorithm has been designed, which compensate the harmonic during the distributed generation connected to the microgrid. By injecting the compensating signal which calculated by harmonic compensation controller to inverter modulation wave, distributed power grid and harmonic compensation can be realized at the same, the quality of energy produced by the micronet system can be improved.
     5、Islanding detection method based on the third harmonic disturbances
     As the traditional island detection method has the disadvantages of high output harmonic content and large detection blind area, by using the harmonic compensation algorithm, an islanding detection method based on the third harmonic disturbances was proposed. This method has the advantage of shorter response time, easier harmonic disturbance control and less harmonic pollution.
     6、Designed a intelligent control platform of bidirectional power flow analysis and energy management
     For microgrid system, an intelligent control platform based on Android system has been designed, by the result of analisis of the bidirectional power flow in microgrid, the users can decide to buy or sell the electric energy. With this platform, user comfort and the overall efficiency of management can be improved. The intelligent platform structures, bi-directional power flow calculation method and energy management control strategies have been discussed.
     7、Built microgrid system experimental platform
     Distributed generation experimental platform based on DSP+FPGA controller including simulation wind generator, solar array, electronic load, simulation microgrid has been built, together with the photovoltaic demonstration power station and public power grid interface, the whole microgrid system control can be realized.
引文
[1]李俊峰.可再生能源发展状况与立法.中国建设动态(阳光能源),2005(2):38-41
    [2]马亮.大功率光伏并网逆变系统研究:[博士学位论文].北京:北京交通大学,2012
    [3]孔慧,熊胜虎.全球光伏产业发展现状及发展趋势分析.太阳能,2009(6):10-12
    [4]姜克隽.我国低碳发展与碳市场.中国科技投资,2012(8):29-33
    [5]刘世锦,张永生.全球温室气体减排:理论框架和解决方案.经济研究,2009(3):4-12
    [6]郭万达,郑宇劫.低碳经济:未来四十年我国面临的机遇与挑战.开放导报,2009(4):5-9
    [7]朱俊生.国内外新能源和可再生能源发展现状.节能与环保,2001(4):33-35
    [8]迟远英.基于低碳经济视角的中国风电产业发展研究:[博士学位论文].吉林:吉林大学,2008
    [9]李京京,庄辛.我国新能源和可再生能源政策及未来发展趋势分析.中国能源,2001(4):5-9
    [10]许红星.我国能源利用现状与对策.中外能源,2010,Vo1.15(1):3-12
    [11]MARCO L, THILO S, JOHN Y. Future Energy Systems Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Industrial Electronics Magazine,2010,4(1):18-37
    [12]王长贵,王斯成.太阳能光伏发电实用技术(第二版).北京:化学工业出版社,2009.1-12
    [13]崔容强,赵春江,吴达成.并网型太阳能光伏发电系统.北京:化学工业出版社,2008.8-22
    [14]薛桁,朱瑞兆,杨振斌,等.中国风能资源贮量估算.太阳能学报,2001,Vo1.22(2):167-170
    [15]郑崇伟,潘静.全球海域风能资源评估及等级区划.自然资源学报,2012,Vo1.27(3):364-370
    [16]罗承先.世界风力发电现状与前景预测.中外能源,2012,Vo1.17(3):24-31
    [17]PUTTGEN H B, MACGREGOR P R, LAMBERT F C. Distributed Generation:Semantic Hype or the Dawn of a New Era? IEEE Power and Energy Magazine,2003,1(1):22-29
    [18]Driesen J, Katiraei F. Design for distributed energy resources. IEEE Power and Energy Magazine,2008,6(3):30-40
    [19]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述.电网技术,2003,Vo1.27(12):71-75
    [20]陈琳.分布式发电接入电力系统若干问题的研究:[博士学位论文].杭州:浙江大学, 2007
    [21]中华人民共和国国务院新闻办公室.中国的能源政策(2012).人民日报,2012,10(25):14
    [22]Steven E W智能电网:改造电力系统.南方电网技术,2010,Vo1.4(1):1-10
    [23]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战.电力系统自动化,2010,Vo1.34(2):10-23
    [24]徐永禧.美国、加拿大8·14大停电.国际电力,2003,Vo1.7(5):15-19
    [25]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示.中国电机工程学报,2012,Vo1.32(25):167-174
    [26]杨方,张义斌.古巴停电与电网落后密不可分电力发展须适度超前.中国电力报,2012,Vo1.9(13):1
    [27]Anjan B. Smart Transmission Grid Applications and Their Supporting Infrastructure. IEEE Transactions on Smart Grid,2010,1(1):11-19
    [28]Stevens J. Development of sources and a testbed for CERTS microgrid testing. Proceeding of 2004 IEEE Power Engineering Society General Meeting, USA,2004, (2):2032-2033
    [29]Ipakchi A. Grid of the future. IEEE Power and Energy Magazine,2009,7(2):52-62
    [30]Arai J. Power electronics and its applications to renewable energy in Japan. IEEE Circuits and Systems Magazine,2008,8(3):52-66
    [31]陈树勇,宋书芳,李兰欣,等.智能电网技术综述.电网技术,2009,Vo1.33(8):1-7
    [32]肖世杰.构建中国智能电网技术思考.电力系统自动化,2009,Vo1.33(9):1-4
    [33]杨德昌,李勇,C Rehtanz,等.中国式智能电网的构成和发展规划研究.电网技术,2009,Vo1.33(20):13-20
    [34]鲁宗相,王彩霞,闵勇,等.微电网研究综述.电力系统自动化,2007,Vo1.31(19):100-107
    [35]肖朝霞.微网控制及运行特性分析:[博士学位论文].天津:天津大学,2009
    [36]王立乔,孙孝峰.分布式发电系统中的光伏发电技术.北京:机械工业出版社,2010.8-22
    [37]张兴,曹仁贤.太阳能光伏并网发电及其逆变控制.北京:机械工业出版社,2011.61-320
    [38]肖华峰.光伏发电高效利用的关键技术研究:[博士学位论文].南京:南京航天航空大学,2010
    [39]董丹丹,赵黛青,廖翠萍.我国的风电技术和风电发展.可再生能源,2007,Vo1.25(3):72-75
    [40]Kirby N M, Lie Xu, Luckett M, et al. HVDC transmission for large offshore wind farms. Power Engineering Journal,2002,16(3):135-141
    [41]李建林,周谦,刘剑,等.直驱式变速恒频风力发电系统变流器拓扑结构对比分析.电源技术应用,2007,Vo1.10(6):12-1 5
    [42]沙非,马成廉,刘闯,等.变速恒频风力发电系统对其控制技术研究.1电网与清洁 能源,2009,Vo1.25(1):44-47
    [43]张建华,黄伟.微电网运行控制与保护技术.北京:中国电力出版社,2010
    [44]Lasseter R H, Eto J H, Schenkman B, et al. CERTS Microgrid Laboratory Test Bed. IEEE Transactions on Power Delivery,2011.26(1):325-332
    [45]Nikkhajoei H. Distributed Generation Interface to the CERTS Microgrid. IEEE Transactions on Power Delivery,2009.24(3):1598-1608
    [46]Li Fangxing, Qiao Wei, Sun Hongbin, et al. Smart Transmission Grid:Vision and Framework. IEEE Transactions on Smart Grid,2010,1(2):168-177
    [47]Ribeiro P F, Polinder H, Verkerk M J. Planning and Designing Smart Grids:Philosophical Considerations. IEEE Technology and Society Magazine,2012,31(3):34-43
    [48]S MOROZUMI. Micro-grid demonstration projects in Japan. IEEE Power Conversion Conference, April,2007:635-642
    [49]H FUKUDA. Overview of the Micro-Grid related Project in NEDO. International Conference on Renewable Energy in Asia:A Challenge for Micro Grid Concept, Aug, 2008
    [50]苏建徽,余世杰,赵为,等.数字式太阳电池阵列模拟器.太阳能学报,2002,V01.23(1):111-114
    [51]杜柯,段善旭,刘飞.基于Matlab的一种光伏阵列模拟器的研究.通信电源技术,2006,Vo1.23(3):8-10
    [52]苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型.太阳能学报,2001,Vo1.22(4):409-412
    [53]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型.系统仿真学报,2005,Vo1.17(5):1248-1251
    [54]傅望,周林,郭珂,等.光伏电池工程用数学模型研究.电工技术学报,2011,Vol.26(10):211-216
    [55]Anderson P M, Bose A. Stability simulation of wind turbine systems. IEEE Trans on Power Apparatus and Systems,1983,102(12):3791-3795
    [56]Siootweg J G, Polinder H, Kling W L. Dynamic modeling of a wind turbine with doubly fed induction generator. IEEE Power Engineering Society Summer meeting, Vancouver, 2001:644-649
    [57]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略.电网技术,2007,Vo1.31(15):61-65
    [58]张方华,朱成花,严仰光.双向DC-DC变换器的控制模型.中国电机工程学报,2005,Vo1.25(11):46-49
    [59]汪义旺,曹丰文,索迹,等.改进型Sepic变换器在光伏MPPT系统中的应用.可再生能源,2010,Vo1.28(4):102-105
    [60]赵为.太阳能光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2003
    [61]Peng F Z. Z-Source Inverter. IEEE Transactions on Industry Applications,2003,39(2): 504-510
    [62]Shen M, Joseph A, Wang J, et al. Comparsion of traditional inverters and Z-source inverter. IEEE 36th Power Electron Spec Conf, Sep,2005:1692-1698
    [63]Peng F Z, Yuan X M, Fang X P, et al. Z-source inverter for adjustable speed drives. IEEE Power Electron Let,2003,1(2):33-35
    [64]Holland K, Shen M, Peng F Z. Z-source inverter control for traction drive of fuel-battery hybid vehicles.40th Annu Meeting Ind Appl, Oct,2005:1651-1656
    [65]赵耀,赵庚申,程如岐,等.Z源型逆变器母线电压PI控制策略的研究.南开大学学报(自然科学版),2011,Vo1.44(4):20-25
    [66]Cheng Ruqi, Zhao Yao, Zhao Gengshen, et al. Research on main-line voltage fluctuation of Z-source inverter. Advanced Materials Research,2012,430-432:1273-1276
    [67]Cheng Ruqi, Zhao Gengshen, Guo Tianyong, et al. Modeling and state feedback control of Z-source inverter. PEITS 2009,3:125-129
    [68]程如岐,赵庚申,王庆章,等.单相Z源逆变器的输出电压控制策略的研究.南开大学学报(自然科学版),2010,Vo1.43(2):51-55
    [69]程如岐.基于Z拓扑的光伏并网逆变器研究:[博士学位论文].天津:南开大学,2010
    [70]郭天勇,赵庚申,程如岐,等SVPWM在基于DSP+FPGA的Z源逆变器中的应用.南开大学学报(自然科学版),2009,Vo1.42(5):77-81
    [71]郭天勇,赵庚申,程如岐,等.基于Matlab的单相Z源逆变器的SVPWM仿真研究.南开大学学报(自然科学版),2009,Vo1.42(4):34-37
    [72]赵二刚,程如岐,郭天勇,等.SVPWM技术在Z源逆变器中的应用.南开大学学报(自然科学版),2009,Vo1.42(1):76-79
    [73]毛惠丰,陈增禄,任记达,等SPWM数字化自然采样法的理论及脉冲误差分析.中国电机工程学报,2006,Vo1.26(9):131-136
    [74]吴忠,李红,左鹏,等.自然采样SPWM逆变电源的谐波分析及抑制策略.电网技术,2002,Vo1.25(4):17-20
    [75]胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法.中国电机工程学报,2005,Vo1.25(3):13-17
    [76]李巍,冀捐灶,郭庆,等.基于DSP的SVPWM逆变电源研制.继电器,2007,Vol.35(20):60-63
    [77]赵耀,赵庚申,郭天勇,等.基于SVPWM低谐波死区算法的研究及应用.电力系统保护与控制,2012,Vo1.40(8):57-62
    [78]刘家军,姚李孝,吴添森,等PSCAD_EMTDC中SVPWM算法的实现.电力系统保护与控制,2010,Vo1.38(18):120-125
    [79]易龙强,戴瑜兴SVPWM技术在单相逆变电源中的应用.电工技术学报,2007,Vo1.22(9):112-117
    [80]刘婷婷,谭或,吴刚,等.基于SVPWM的高转速永磁同步电机控制系统的研究.电力系统保护与控制,2009,Vol,37(12):11-14
    [81]Kenichi I, Katsuji S, Kichiro Y. Study of dead time of PWM rectifier of voltage-source inverter without DC-link components and its operating characteristics of induction motor. IEEE Transactions on Industry Applications,2006,4(2):518-525
    [82]胡海兵,姚文熙,吕征宇.三电平空间矢量调制的FPGA实现.电工技术学报,2010,Vo1.25(5):116-122
    [83]孙孝峰,顾和荣,王立乔,等.高频开关型逆变器及其并网并网技术.北京:机械工业出版社,2011:183-240
    [84]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究.中国电机工程学报,2006,Vol.26(9):108-112
    [85]张兴.PWM整流器及其控制策略的研究:[博士学位论文].合肥:合肥工业大学,2003
    [86]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究.中国电机工程学报,2007,Vo1.27(16):60-64
    [87]Sato A, Noguchi T. Voltage-Source PWM Rectifier-Inverter Based on Direct Power Control and Its Operation Characteristics. IEEE Transactions on Power Electronics,2011, 26(5):1559-1567
    [88]刘海春,徐立智,谢少军.一种新的过零锁相方法.电力系统保护与控制,2010,Vo1.38(19):147-150
    [89]张晓斌,吴小华,高朝晖.全数字式并联电源相位自动跟踪控制系统研制.电力电子技术,2003,Vo1.37(2):27-28
    [90]Jaime D, Virgilio C, James S, et al. Synchronized Phasor Measurement Applications in Power Systems. IEEE Transactions on Smart Grid,2010,1(1):20-27
    [91]Carugati I, Donato P, Maestri S, et al. Frequency Adaptive PLL for Polluted Single-Phase Grids. IEEE Transactions on Power Electronics,2012,27(5):2396-2404
    [92]Dugan R C. Electrical Power System Quality, Second Edition. McGraw-Hill, New York, 2002
    [93]Lobos T, Leonowicz Z, Rezmer J, et al. High-resolution spectrum-estimation methods for signal analysis in power systems. IEEE Transactions on Instrumentation and Measurement,2006,55(1):219-225
    [94]Lucia O, Burdio J M, Millan I, et al. Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating. IEEE Transactions on Industrial Electronics,2009,56(8):3106-3116
    [95]Holtz J, Juntao Quan, Pontt J, et al. Design of fast and robust current regulators for high-power drives based on complex state variables. IEEE Transactions on Industry Applications,2004,40(5):1388-1397
    [96]崔明勇.微网多目标优化运行及控制策略研究:[博士学位论文].保定:华北电力大学,2011
    [97]De Brabandere K, Bolsens B, Van den Keybus J, et al. A Voltage and Frequency Droop Control Method for Parallel Inverters. IEEE Transactions on Power Electronics,2007, 22(4):1107-1115
    [98]刘小四,熊蕊.逆变器并联运行时环流的产生及抑制研究.电力电子技术,1999, Vo1.33(3):16-17
    [99]陈良亮,肖岚,龚春英,等.逆变器并联系统直流环流产生原因及其检测与抑制方法.中国电机工程学报,2004,Vo1.24(9):56-61
    [100]张宇,陈息坤,康勇,等.逆变器并联系统中死区的环流效应.电力电子技术,2005,Vo1.39(5):99-100
    [101]陈良亮,肖岚,胡文斌,等.一种基于耦合电感的逆变器并联系统环流抑制方法.南京航空航天大学学报,2004,Vo1.36(2):205-209
    [102]Timbus A, Larsson M, Yuen C. Active Management of Distributed Energy Resources Using Standardized Communications and Modern Information Technologies. IEEE Transactions on Industrial Electronics,2009,56(10):4029-4037
    [103]Amir-Hamed M, Alberto L. Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments. IEEE Transactions on Smart Grid,2010, 1(2):120-133
    [104]Michael A, Ted D, Iain F. Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services. IEEE Transactions on Smart Grid, 2010,1(2):134-143
    [105]肖岚,陈良亮,李睿,等.基于有功和无功环流控制的DC-AC逆变器并联系统分析与实现.电工技术学报,2005,Vo1.20(10):7-12
    [106]吴卫民,何远彬,耿攀,等.直流微网研究中的关键技术.电工技术学报,2012,Vo1.27(1):98-105
    [107]郭天勇,赵庚申,赵耀,等.基于风光互补的微网系统建模与仿真.电力系统保护与控制,2010,Vol.38(22):104-108
    [108]王飞,余世杰,苏建徽,等.太阳能光伏并网发电系统的研究.电工技术学报,2005,Vo1.20(5):72-74
    [109]张超,何湘宁.短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用.中国电机工程学报,2006,Vo1.26(20):98-102
    [110]叶满园,官二勇,宋平岗.以电导增量法实现MPPT的单级光伏并网逆变器.电力电子技术,2006,Vo1.40(2):30-32
    [111]乔兴宏,吴必军,邓赞高,等.模糊/PID双模控制在光伏发电MPPT中应用.电力自动化设备,2008,Vo1.28(10):92-95
    [112]杨旭,曾成碧,陈宾.基于广义动态模糊神经网络的光伏电池MPPT控制.电力系统保护与控制,2010,Vo1.38(13):22-25
    [113]周航.基于粒子群算法的局部遮阴光伏发电系统MPPT控制的研究:[硕十学位论文].天津:天津大学,2009
    [114]Ching-Tsai Pan, Yu-Ling Juan. A Novel Sensorless MPPT Controller for a High-Efficiency Microscale Wind Power Generation System. IEEE Transactions on Energy Conversion,2010,25(1):207-216
    [115]Jian-Long Kuo, Kai-Lun Chao, Li-Shiang Lee. Dual Mechatronic MPPT Controllers With PN and OPSO Control Algorithms for the Rotatable Solar Panel in PHEV System. IEEE Transactions on Industrial Electronics,2010,57(2):678-689
    [116]Chini A, Rovati L. Micro-power photovoltaic harvester based on a frequency-to-voltage MPPT tracker. Electronics Letters,2010,46(8):587-589
    [117]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003,Vo1.27(20):62-67
    [118]Guo Tianyong, Zhao Gengshen, Cheng Ruqi, et al. Simulation of wind turbine based on fuzzy-PI control. PEITS 2009,3:130-133
    [119]于文杰.永磁直驱风力发电系统最大风能追踪策略研究:[硕士学位论文].吉林:东北电力大学,2008
    [120]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制.太阳能学报,1998,Vo1.19(1):30-35
    [121]Thiringer T, Linders J. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range. IEEE Transactions on Energy Conversion,1993, Vol.8(3):20-26
    [122]叶杭冶.风力发电机的控制技术.北京:机械工业出版社,2002
    [123]Chian-Song Chiu. T-S Fuzzy Maximum Power Point Tracking Control of Solar Power Generation Systems. IEEE Transactions on Energy Conversion,2010,25(4):1123-1132
    [124]张秀玲,谭光忠,张少宇,等.采用模糊推理最优梯度法的风力发电系统最大功率点跟踪研究.中国电机工程学报,2011,Vo1.31(2):119-123
    [125]Bollen M, Hager M. Power quality:integration between distributed energy resouces, the grid, and other customers. Electrical Power Quality and Utilization Magazine,2005,1(1): 51-61
    [126]赵争鸣,雷一,贺凡波,等.大容量并网光伏电站技术综述.电力系统自动化,2011,Vo1.35(12):101-107
    [127]谢秉鑫,王宗,范士林.采用模糊推理最优梯度法的风力发电系统最大功率点跟踪研究.电力系统保护与控制,2012,Vo1.40(2):116-119
    [128]王继东,张小静,杜旭浩,等.光伏发电与风力发电的并网技术标准.电力自动化设备,2011,Vo1.31(11):1-7
    [129]李红涛,张军军,包斯嘉,等.小型并网光伏电站移动检测平台设计与开发.电力系统自动化,2011,Vo1.35(19):39-42
    [130]黄薇,周荔丹,郑益慧,等.基于神经网络P1重复控制器的三相并联有源电力滤波器.电力系统保护与控制,2012,Vo1.40(3):78-84
    [131]汪海宁,苏建徽,张国荣,等.具有无功功率补偿和谐波抑制的光伏并网功率调节器控制研究.太阳能学报,2006,Vo1.27(6):540-544
    [132]戴训江,晁勤,樊艳芳.基_于阻尼谐振的光伏并网逆变器谐波补偿控制.电力自动化设备,2011,Vo1.31(1):79-83
    [133]Angelo Baggini.电能质量手册(肖湘宁,陶顺,徐永海译).北京:中国电力出版社,2010:125-172
    [134]Mazin H E, Nino E E, Xu W, et al. A Study on the Harmonic Contributions of Residential Loads. IEEE Transactions on Power Delivery,2011,26(3):1592-1599
    [135]王世一.数字信号处理(修订版).北京:北京理工大学出版社,1997:68-162
    [136]王群,姚为正,刘进军,等.谐波源与有源电力滤波器的补偿特.中国电机工程学报,2001,Vo1.21(2):16-20
    [137]刘芙蓉.并网型户用光伏系统的孤岛检测技术研究:[博士学位论文].武汉:华中科技大学,2008
    [138]Massoud A M, Ahmed K H, Finney S J, et al. Harmonic distortion-based island detection technique for inverter-based distributed generation. Renewable Power Generation,2009, 3(4):493-507
    [139]Estebanez E J, Moreno V M, Pigazo A, et al. Performance Evaluation of Active Islanding-Detection Algorithms in Distributed-Generation Photovoltaic Systems:Two Inverters Case. IEEE Transactions on Industrial Electronics,2011,58(4):1185-1193
    [140]Soo Hyoung Lee, Jung Wook Park. New Islanding Detection Method for Inverter-Based Distributed Generation Considering Its Switching Frequency. IEEE Transactions on Industrial Electronics,2010,46(5):2089-2098
    [141]Sung-Il Jang, Kwang ho Kim. An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE Transactions on Power Delivery,2004,19(2):745-752
    [142]Yafaoui A, Bin Wu, Kouro S. Improved Active Frequency Drift Anti-islanding Detection Method for Grid Connected Photovoltaic Systems. IEEE Transactions on Power Electronics,2012,27(5):2367-2375
    [143]郭小强,赵清林,邬伟扬.光伏并网发电系统孤岛检测技术.电工技术学报,2007,Vo1.22(4):157-162
    [144]郭小强,邬伟扬.微电网非破坏性无盲区孤岛检测技术.中国电机工程学报,2009,Vo1.29(25):7-12
    [145]张琦,孙向东,钟彦儒,等.用于分布式发电系统孤岛检测的偶次谐波电流扰动法.电工技术学报,2011,Vol.26(7):112-119
    [146]刘芙蓉,康勇,段善旭,等.主动移频式孤岛检测方法的参数优化.中国电机工程学报,2008,Vo1.28(1):95-99
    [147]Woyte A, Belmans R, Nijs J. Testing the Islanding Protection Function of photovoltaic inverters. IEEE Transactions on Energy Conversion,2003,18(1):157-162
    [148]Albert M, Vincent B, Maurice G. Management and Control of Domestic Smart Grid Technology. IEEE Transactions on Smart Grid,2010,1(2):109-119
    [149]李同智.灵活互动智能用电的技术内涵及发展方向.电力系统自动化,2012,Vo1.36(2):11-17
    [150]夏叶,康重庆,宁波,等.用户侧互动模式下发用电一体化调度计划.电力系统自动化,2012,Vo1.36(1):17-23
    [151]王伟,何光宇,万钧力,等.用户侧能量管理系统初探.电力系统自动化,2012,Vo1.36(3):10-15
    [152]林弘宇,田世明.智能电网条件下的智能小区关键技术.电网技术,2011,Vo1.35(12):1-7
    [153]邵艳洁.Android操作系统移植及应用研究:[硕士学位论文].长沙:湖南大学,2011
    [154]单李旺.Android操作平台的研究与应用:[硕士学位论文].天津:南开大学,2009
    [155]胡思捷.基于Android平台的触摸屏系统设计及实现:[硕士学位论文].天津:南开大学,2011
    [156]牟龙华,朱国锋,朱吉然.基于智能电网的智能用户端设计.电力系统保护与控制,2010,38(21):53-56
    [157]IEC 61000-4-30, Electromagnetic compatibility(EMC)- Part4- 30:Testing and measurement techniques-Power quality measurement methods, 2003
    [158]Bollen M. Ongoing standard work on statistical presentation of voltage dips. Probabilistic Methods Applied to Power System, Naples, Italy, Sep,2002
    [159]王伟,何光宇,万钧力,等.用户侧能量管理系统初探.电力系统自动化,2012,Vo1.36(3):10-15
    [160]杨文轩,何光宇,王伟,等.用户侧能量管理原型系统的设计与实现.电力系统自动化,2012,Vo1.36(20):74-79
    [161]殷树刚,张宇,拜克明.基于实时电价的智能用电系统.电网技术,2009,Vo1.33(19):11-16
    [162]陈德桂.智能电网与低压电器智能化的发展.低压电器,2010(5):1-6
    [163]王建华,宋政湘,耿英三,等.智能电器理论与关键技术研究.电力设备,2008,Vo1.9(3):1-4
    [164]杜成刚,张华,李瑾,等.电动汽车入网技术在智能电网中的应用.华东电力,2010,Vo1.38(4):557-560
    [165]杨占刚.微网实验系统研究:[博士学位论文].天津:天津大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700