用户名: 密码: 验证码:
铁路站房桥建合一式结构体系的桥梁施工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁路的高速发展,到2012年,全国铁路营业里程达到11万千米,其中客运专线及城际铁路1.3万千米。按照点线能力配套的原则,我国将开工建设铁路新客站1000余座,铁路客站的建设任务十分繁重。按照原铁道部提出的站房建设“功能性、系统性、先进性、文化性、经济性”的原则,我国铁路站房建设呈现出许多新趋势:综合立体的交通枢纽、空间简约通透、兼顾先进性与经济性。由此,“桥建合一”式的站房结构体系应运而生,新建的武汉站即采用了桥建合一式的新型站房结构体系。这种新型的结构体系给人耳目一新的感觉的同时,也给结构施工带来了诸多难题。
     本文以武汉站桥建合一式的新型站房结构体系的桥梁施工为研究对象,对桥建合—式的新型站房结构体系中的桥梁施工的关键技术进行了较为深入的研究,主要研究成果如下。
     (1)通过全桥整体施工方案与全桥分段浇筑整体张拉施工方案的技术经济分析和比较,发现全桥分段浇筑整体张拉的施工方案可以确保三跨刚构拱形桥的施工质量和工期,节约模板投入,可为现场提供良好的交通环境,据此确立了武汉站三跨刚构拱形桥全桥分段浇筑整体张拉的施工方案,为武汉站三跨刚构拱形桥的顺利施工和按期建成奠定了坚实基础。
     (2)利用时变力学理论和ANSYS软件,对武汉站三跨刚构拱形桥分段浇筑整体张拉的施工方案进行了施工全过程模拟分析,施工全过程模拟分析的计算结果和分析结论,对施工过程中有针对性地制订安全保障措施、提高施工效率提供了科学依据,为确保武汉站三跨刚构拱形桥的安全施工和按期建成发挥了重要的指导作用。
     (3)针对武汉站三跨刚构拱形桥模板体系的复杂性及其重要性,在进行模板体系设计时,依据中英两国相关规范的对比分析,在模板体系设计中借鉴了英国规范关于临时模板体系水平荷载的取值规定,并利用SAP2000软件和ANSYS11.0软件,对模板体系的设计方案进行复核和优化,确保了复杂模板体系的设计优化和安全使用。
     (4)针对武汉站三跨刚构拱形桥是由空间不可展曲面所组成的特点,为了满足饰面清水混凝土对模板面板的高精度要求,提出了复杂结构下高精度模板体系的设计原则及方法,建立了模板放样、下料、组拼工艺和验收标准,可供今后类似工程的模板体系设计借鉴与参考。
     (5)针对群桥施工时常规桥梁施工用移动模架无法使用,常规模板支撑体系无法满足群桥施工要求的难题,研发了具有整体脱模、整体折叠、整体升降、整体自行走、多方向自调节、免预压等功能的多支点横向移动模架,并总结形成支撑多支点横向移动模架的多支点支承技术、无沉降砂箱技术、移动模板整体脱模技术、整体下降技术、侧模整体折叠技术、移动模架工位调整技术等六大核心技术成果。其中《桥梁施工多支点横向移动模架》、《可调接口模板安装结构》等成果,已分别获得国家发明专利(ZL200910147109.7)及(ZL200910157420.X);《预压砂箱》成果,已获得国家实用新型专利(ZL201020552516.4)。该系列成果已在武汉站三跨刚构拱形桥的施工中得到成功应用,满足了群桥施工时对模板体系的各项要求,同时节约了工期,实现了模板快速周转,获得了明显的技术经济效益和社会效益。
     (6)针对武汉站三跨刚构拱形桥体型复杂、钢筋密集(327kg/ms)、混凝土落差大(高达llm)的难点和表观质量应达到与原饰面清水混凝土融为一体的质量要求,研发了具有自密实功能的饰面清水混凝土配合比和相应配套技术,并已成功应用于武汉站工程,在自密实饰而清水混凝土方量大(6600m3)、施工持续期长(近24个月)的条件下,实现了复杂异形结构同一视觉空间内混凝土表观达到饰面清水标准的要求,完美地表现了清水混凝土的自然质感,由此取消了约145500m2的装饰面层,获得了可观的技术经济效益和社会效益。
     (7)结合武汉站站房楼面填充层混凝土工作性能的要求,通过合理选择原材料、适当调整混凝土搅拌工艺、在混凝土内通过掺加引气剂和自制的增粘剂及适量采用河砂来替代部分轻砂,改善了轻骨料混凝土的工作性能,研发了表观密度较低(1160kg/m3)、且可泵送的LC10轻骨料混凝土配合比和相应配套技术,其中《一种含沸石粉和天然河砂的轻骨料混凝土及其制备方法》已获得国家发明专利(ZL200910177544.4)。该项技术已成功应用于武汉站工程,提高了工作效率,较大地减轻了结构自重,实现了资源综合利用,获得了良好的技术经济效益和社会效益。
With the rapid development of modern railway in our country, national railway mileage reached110000kilometers, of which the passenger railway and intercity railway run13000km long by2012. According to the principle of point-line capacity matching, more than1000new railway stations will start construction in our country, so the tasks of railway stations constructions are very arduous. In accordance with the principle of "functionality, systematicness, advancement, culture, economy" formulated by former ministry of railways, the construction of railway station presents many new trends in our country:comprehensive three-dimensional transportation hub, simple and transparent space, both advanced and economical efficiency. So the " bridge-building integrated structure" arise at the historic moment, which is adopted by the new Wuhan station. This new type of structural system gives people a refreshing sense of shock, though brings a lot of problems to the structural construction.
     The thesis regarded the construction of bridge-building integrated system in Wuhan station as the object of research, and studied the key technology in this new structure. The main research achievement is as follows:
     (1) Through the technical and economic analysis and comparison between the whole bridge construction project and the separate poured integral tensioning construction project, found that the latter project can ensure the construction quality and time limit for the project of three span rigid frame arch bridge, which reduced the input of template, and provided a good traffic environment for the scene. On this basis, the construction project of the three span rigid frame arch bridge in Wuhan station was confirmed, which established the foundation of smoothly construction and completed on schedule for this project.
     (2) Take advantage of the time-varying mechanics theory and ANSYS software, the numerical simulation and analysis of the whole construction process that separate poured integral tensioning of three span rigid frame arch bridge in Wuhan station was carried out.The simulation calculation results and analysis conclusions provided a scientific grounding for formulating safety measures in the construction process targeted and improving the efficiency of construction, played an important role in ensuring the safety of the Wuhan station three span rigid frame arch bridge construction and completion on schedule.
     (3) Contraposing the complexity and importance of the three span rigid frame arch bridge's template system in the Wuhan station, the template system was designed according to the related specification of both Chinese and English contrast analysis, the British standard was used to confirm the rule of horizontal load value in formwork system design,and the SAP2000and ANSYS11.0software was used to review and optimize the template system design scheme, all of these was for the sake to ensure the design optimization and safe use of complex template system.
     (4) Contraposing composition of non-developable surface in the three span rigid frame arch bridge of Wuhan station, in order to meet the stencil palette's high precision requirement of fair-faced concrete, the paper presented the design principle and method of high precision stencil system with complicated structure, and established the template layout, blanking, spellers process and acceptance criteria, which can be a reference of other similar projects system template design.
     (5) Contraposing the problem that the conventional moveable formwork in conventional bridge construction can't be used, the paper invented the multi-fulcrum lateral movement formwork with the function of whole demoulding, overall folding, whole lift, overall direction to walk, self-adjustment, free of preloading, which could form the multi-fulcrum technology, no settlement sand box technology, the whole demoulding technology, the overall folding technology, the overall folding technology, the moveable formwork location adjustment technology of the multi-fulcrum lateral movement formwork."Multi-fulcrum lateral movement formwork in the bridge construction"(ZL200910147109.7) and "Adjustable interface template installation structure"(ZL200910157420.X) were granted the invention patent by the state intellectual property office."Preloading sandbox"(ZL201020552516.4) was granted the patent for utility model by the state intellectual property office, which have been successful applied in the construction of three span rigid frame arch bridge of the Wuhan station. The series of achievements meet the requirements of the template system in the group of bridge construction, save the time limit for a project, implement fast turn around of the template, and achieve good technical and economic benefits and social benefits.
     (6) Because of the complex shape, dense steel bar distribution (327kg/m3), and high concrete gap (up to11m) of three span rigid frame arch bridge of Wuhan station, and the apparent mass should meet with quality requirements of the original veneer of fair-faced concrete, the paper researched the mixing ratio of self-compacting fair-faced concrete and corresponding technology, which has been successfully applied in Wuhan station project. In the case of large earthwork quantity of the self-compacting fair-faced concrete (6600m3), the long construction duration (almost24months), the paper implemented the concrete apparent of complex special-shaped concrete within the same visual space structure to achieve the requirement and standard of the fair-faced concrete veneer. This perfectly showed the natural texture of fair-faced concrete, and reduced the decorative surface of about145500m2, obtained considerable economic benefit and social benefit.
     (7) Combining the requirements of working performance of concrete in the floor filling layer of Wuhan station, the working performance of lightweight aggregate concrete was improved by reasonable selection of raw materials, adjusting the concrete mixing process, adding air-entraining agent and homemade tackifier in concrete,and replacing partly light sand by river sand moderate. At the same time, a new technologyof concret has been developed which has a low apparent density (1160kg/m3) and pumping characteristics."A kind of lightweight aggregate concrete which contains zeolite powder and natural river sand and its preparation method"(ZL200910177544.4) was granted the invention patent by the state intellectual property office. This technique successfully applied in Wuhan station project, improved work efficiency, significantly reduced the weight of the structure, achieved the comprehensive utilization of resources, obtained good technical and economic benefits and social benefits.
引文
[1]史娣.武汉站桥建合建结构桥梁设计的关键技术研究[J].桥梁建设,2008,(06):34-36.
    [2]曹小曙,张凯,马林兵,闫小培.火车站地区建设用地功能组合及空间结构—以广州站和广州东站为例[J].地理研究,2007,(06):1265-1273,1308.
    [3]周铁征.低碳时代大型综合交通枢纽客站设计的创新[J].全国工程设计技术创新大会,2011.
    [4]苏伟.京津城际轨道交通桥梁工程设计[J].铁道标准设计,2007(02):8-11.
    [5]孙树礼.京沪高速铁路桥梁工程[J].铁道标准设计,2008(06):1-4.
    [6]王喜军,申全增.秦沈客运专线桥梁新结构综述[J].铁道标准设计,2002(1):1-8.
    [7]朱炎新.用DF450型架桥机架设单线简支箱梁[J].铁道标准设计.2002(1):28-30.
    [8]肖敏,雷吕龙.MZ32型移动模架造桥机在秦沈客运专线的应用[J].铁道标准设计.2002(1):9-11.
    [9]陶建山.客运专线双线64mPRC简支箱梁预制3200t造桥机整孔架设施工技术[J].铁道工程学报,2007(S):259-263.
    [10]朱雄.SX48m/]500t型移动支架造桥机节段拼装48m简支梁综合施工技术[J].铁道建筑技术.2008(S):214-217.
    [11]刘家锋,叶娟.我国铁路客运专线桥梁移动模架施工方法[J].中国铁道科学,2009,30(01):54-60.
    [12]陈德利,等.DXZ32/900型移动模架在铁路客运专线上的应用[J].铁道标准设计,2008(03):43-48.
    [13]吴红军.桥群、隧道群广泛相间情况下桥梁施工方案研究[J].铁道标准设计,2010,(02):86-90.
    [14]袁立.复杂桥梁群施工测量技术实践[J].工程测量,2012(02):68-72.
    [15]岳新华.MZ1400T双向移动模架主梁的有限元分析及应用[J].山东交通学院学报,2008(04):55-58.
    [16]景强,黄成造,沈强.广州珠江黄埔大桥MSS45m下行式移动模架整体横移关键技术研究[J].桥梁建设,2008(06):57-59,72.
    [17]OKAMURA Hajime, OUCHI Masahiro. Self-compacting concrete:development, present use and future [A]. In:SKARENDAHL A, PETERSSON O eds, Proceedings of 1 st Inter-national RILEM Symposium on Self-Compacting Concrete[C]. Paris:RILEM Publication SARL,1999.3-14.
    [18]OZAWA K, MAEKAWA K, KUNISHIMA M, et al. Development of high performance concrete based on the durability design of concrete structures [A]. The second East-Asia an Pacific Concrete on Structural Engineering and Construction [C], Tokyo. Japan,1989.445-450.
    [19]EDANATSU Yoshinobu, NISHIDA Naoki. A rational mix design method for self compacting concrete considering interaction between coarse aggregate and mortar particles [A]. In:SKARENDAHL A, PETERSSON O eds, Proceedings of 1st international RILEM Symposium on Self-compacting Concrete[C]. Paris:Paris:PILEM Publication SARL,1999.309-320.
    [20]KASEMSAMRAR N, TANGTERMSIRIKUL S.A design approach for self-compacting concrete base-d on deformability. segregation resistance and passing ability models[A]. In:YU Zhiwu, SHI Caijun, KHAYAT KH, et al eds. Proceedings of 1st international Symposium on Design, Performance and Use of self-consolidating concrete[C]. Paris:RILEM Publication SARL,2005.47-54.
    [21]SEDRAN T, de LARRARD F. Optimization of self compacting concrete thanks to packing model[A].In:skarendahl A, Petersson o eds. proceedings of 1st international rilem sympo-sium on self-compacting concrete [C]. Paris:RILEM Publication SARL,1999.321-332.
    [22]OH S G, TOMOSAWA F. Toward mix design for rheology of self-compacting concrete [A]. In: SKARE-NDAHL A, PETERSSON O eds, proceedings of 1st international RILEM Sympsium on self-compacting[C]. Paris:RILEM Publication SARL,1999.361-372.
    [23]BUI V K, MONTGOMERY D. Mixture proportioning method for self-compacting high per-formance concrete with minimum paste volume [A].In:SKARENDAHL A, PETERSSON eds, Proceedings of 1st international rilem symposium on self-compacting concrete[C]. Paris:Rilem Publication SARL, 1999.373-384.
    [24]韩先福,李清和,段雄辉,赵志刚,王安岭,宋明昌.免振捣自密实混凝土的研制与应用[J].混凝土,1996,(06):4-15.
    [25]李清和.高强与免振捣自密实混凝土[J].建筑技术开发,1997,(06):33-37.
    [26]江苏省建筑科学研究院,自密实高性能混凝土的研制与应用鉴定资料[C].1999.
    [27]JGJ12-2006.轻骨料混凝土结构技术规程[S].北京:中国建筑工业出版社,2006.
    [28]吴茂华,刘龙江.轻骨料混凝土的抗震性能[J].砖瓦,2003(11):49-50.
    [29]Christopher J.Waldron, Thomas E Cousins. Adilj Nassar.Demonstration of use of high-performance lightweight concrete in bridge superstructure in Virginia[J]. Journal of Performance Constructed Facilities,2005,19(2):146-154.
    [30]宋绍铭.轻骨料混凝土在高层建筑和大跨桥梁工程上的应用及其发展前景[J].江苏建筑,2003(92):77-84.
    [31]Husain, AI-Khaiat, Naseer Haque. Strength and durability of lightweight and normal weight-concrete [J].Journal of Materials in Civil Engineering,1999,11(3):231-235.
    [32]徐锦平,陈建华,周绍豪.轻骨料混凝土的应用研究及展望[J].国外建材科技,2007,(05):11-13.
    [33]韩亮.大流动性高强轻骨料混凝土性能分析及其构件梁试验研究[D].北京:北京科技大学,2007.
    [34]赵若鹏,李铭臻.陶粒混凝土的强度.轻骨料混凝土的研究和应用文集.北京:中国建筑工业出版社,1981:104-134.
    [35]赵志缙.新型混凝土及其施工工艺[M].北京:中国建筑工业出版社,1996.
    [36]任世漫.预拌混凝土泵送性能研究[J].重庆建筑大学学报,1992,(02):10-14.
    [37]Morley, J.E. Practice Aspects of Pumping Structural Lightweight Concrete. London:Concrete,1990: 27-30
    [38]Cario Videla, Mauricio Lopez. Mixture Proportioning Methodology for Structural Sand-light-weight Concrete.ACI Materials Journal,2000:281-289.
    [39]刘学武,郭彦林.考虑几何非线性钢结构施工力学分析方法[J].西安建筑科技大学学报(自然科学版).2008(02):161-169.
    [40]Hengbin Wu, Yunxiang He, Guoliang Song. Study on Dynamic Construction Mechanics of Small-Distance Tunnel in Soft and Weak Rocks[J]. Modern Applied Science,2010, No.6:117-121.
    [41]曹志远.土木工程分析的施工力学与时变力学基础[J].土木工程学报.2001(03):41-45.
    [42]李瑞礼,曹志远.结构工程施工分析的材料时变效应[J].同济大学学报(自然科学版).2003(08):926-930
    [43]Korobko, AV. Solving the problems on construction mechanics using the method of inter-polation by shape factors[J].1995, No.3:81-84.
    [44]王光远.论时变结构力学[J].土木工程学报.2000(06):105-108.
    [45]刘满怀.球而网壳考虑施工影响的全过程受力分析[D].南京:东南大学,2006.
    [46]L.Wang, Y.Wang, X.G. Sun, J.Q. He, Z.Y. Pan, C.H. Wang. Finite element simulation of residual stress of double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings using birth and death element technique[J]. Computational Materials Science,2012, No.1:117-127.
    [47]郭彦林,刘学武.大型复杂钢结构施工力学问题及分析方法[J].工业建筑.2007(09):1-8.
    [48]Luca Heltai, Francesco Costanzo. Variational implementation of immersed finite element methods[J]. Computer Methods in Applied Mechanics and Engineering,2012,110-127.
    [49]Mayuko Nishio, Juliette Marin, Yozo Fujino. Uncertainty quantification of the finite element model of existing bridges for dynamic analysis[J]. Journal of Civil Structural Health Moni-toring,2012, No.3-4:163-173.
    [50]章惠冬ANSYS单元生死技术软件在结构设计及施工中的应用[J].建筑施工.2008(09):824-825+833.
    [51]方胜利.大型悬挑钢结构施工关键技术研究[D].武汉:武汉理工大学,2011.
    [52]张明咏.基于分步建模法的大跨钢桁梁桥施工模拟分析研究[D].武汉:武汉理工大学,2012.
    [53]张恩辰.连续刚构桥施工有限元计算和稳定性分析[D].合肥:合肥工业大学,2007..
    [54]王战国.大跨度预应力混凝土V型墩连续刚构桥的静力分析与工程控制[D].杭州:浙汀大学,2006.
    [55]刘昀.大跨度斜拉桥施工过程受力特性与稳定性分析[D].长沙:长沙理工大学,2005.
    [56]高纯等.武汉火车站三跨连续刚构拱桥末板体系设计[J].施工技术,2010,03:37-39,125.
    [57]Peter Stenning. Formwork systems, teamwork and design support at RAF Lakenheath. Suffolk [J]. Concrete,2002, No.6:19-21.
    [58]段军朝,王树峰.饰面清水混凝土双曲面桥墩施工技术[J].施工技术.2008(06):60-62.
    [59]ZHOU, Zhixiang, YAO, Guowen, WU, Haijun, XU, Yong. Exploration of a New Rigid-Frame Arch Bridge [J]. IABSE Congress Report,2008,586-587.
    [60]Shidong, Luo, Yanaiguo, Liuzhenbiao. Research on Long-span Bridges with Composite Style of Continuous Rigid Frame and Flexible Arch[J]. IABSE Symposium Report,2004,385-390.
    [61]Ding Wensheng, Lu Zhitao, Liu Zhao. Experimental investigation on seismic performance of rigid frame bridge with split-piers[J]. Journal of Southeast University,2006,534-538.
    [62]陆培印.现浇箱梁模板支架设计及施工实例[J].黑龙江交通科技.2010(01):79-80.
    [63]田红星.跨湖引桥箱梁支架法施工模板支撑体系设计与施工[J].铁道建筑技术.2010(10):33-39.
    [64]Yu, WJ, Gao, Q, Zhang, N, Wang, P. Deformation monitoring and stability analysis for potential slope of high and steep open pit[J]. DISASTER ADVANCES,2012, No.4:1474-1480.
    [65]张国华.石太客运专线全自动液压整体内模移动模架关键技术[J].施工技术.2009(01): 37-39.
    [66]蒋雪峰.浅谈铁路客运专线桥梁移动模架施工技术[J].知识经济.2010(01):123.
    [67]刘新立.MZ32/900型移动模架制梁施工技术[J].山西建筑.2009(01):341-343.
    [68]臧华,胡安祥,刘钊.移动模架施工多跨连续梁桥的梁体线形控制[J].特种结构.2006(01):71-73.
    [69]匡树钧.京津城际客运专线MZ40移动模架施工技术[J].山西建筑.2008(05):187-188.
    [70]谭向军.移动模架施工技术总结[J].山西建筑.2006(03):139-140.
    [71]高纯,吴刚,张和森等.武汉火车站三跨刚构拱桥模板工程关键技术[J].施工技术,2010,39(4):14-17.
    [72]项贻强,张少锦,程晔,汪劲丰,景强,王立超.移动模架施工技术的应用与研究创新[J].中外公路.2008(01):52-56.
    [73]谢发祥,王超,李丹.南京长江第三大桥北引桥移动模架施工[J].世界桥梁.2005(01): 20-22.
    [74]Tien-Li Chang, Jung-Chang Wang, Chun-Chi Chen, Ya-Wei Leed and Ta-Hsin Choua. A non-fluorine mold release agent for Ni stamp in nanoimprint process[J]. Microelectronic Engi-neer ing,2008, No.7:1608-1612.
    [75]Jing-xiang GAO, Chao LIU, Jian WANG, Zeng-ke LI, Xiang-chao MENG. A new method for mining deformation monitoring with GPS-RTK[J]. Transactions of Nonferrous Metals Society of China, 2011, Suppl 3:s659-s664.
    [76]陶石林.武广客运专线上行式移动模架快速制梁施工技术[J].铁道标准设计,2009(04):43-45.
    [77]S Hou, H B Zhang and J P Ou. A PZT-based smart aggregate for compressive seismic stress monitoring[J]. Smart Materials and Structures,2012, No.10:105035.
    [78]赵启林,濮卫,陈一飞,薛宁宏,刘亚文.基于光纤监测系统的桥梁移动模架安全性监测与控制[J].解放军理工大学学报(自然科学版).2005(05):65-69.
    [79]高纯,周华松,张济超等.模板漆在清水混凝土桥墩施工中的应用[J].铁道建筑,2008,(09):34-35.
    [80]赵站杨,谢辉.特大桥移动模架造桥机施工测量方法[J].勘察科学技术.2009(06):46-48,64.
    [81]Ying Wang, Zhaoxia Li, Baijian Wu. Fatigue stress monitoring and analyses for steel box girder of Runyang Suspension Bridge[J]. Frontiers of Structural and Civil Engineering,2008, No.3:197-204.
    [82]冯正,饶广,陈文超.DXZ32m/900t型移动模架上跨公路施工安全措施研究[J].铁道建筑. 2010(09):13-15.
    [83]高纯.桥梁施工多支点横向移动模架[P],中国发明专利:ZL200910147109.7,2010-11-10.
    [84]高纯.可调接口模板安装结构[P].中国发明专利:ZL200910157420.X,2011-10-19.
    [85]高纯.预压砂箱[P].中国实用新型专利:ZL201020552516.4,2011-06-22.
    [86]高纯.武汉火车站自密实饰而清水混凝土的研制与应用[J].施工技术,2011(16):20-22,60.
    [87]Gao Chun. Development and Application of High-performance Self-compacting Fair-faced Finish Concrete under Complex Conditions[J]. Advanced Materials Research.2011, (163):4604-4611.
    [88]Deshun Yin, Wei Zhang, Chen Cheng, Yanqing Li. Fractional time-dependent Bingham model for muddy clay [J]. Journal of Non-Newtonian Fluid Mechanics,2012, (187-188):32-35.
    [89]王玉瑛,杜守明,李海峰.C30大体积、自密实混凝土试验及工程应用[J].建筑技术,2012(01):21-23.
    [90]刘斯凤,徐勇,王培铭.减水剂过掺对C30混凝土性能影响[J].混凝土,2013,(02):72-74,78.
    [91]Knaus S, Bauer-Heim B. Synthesis and properties of anionic cellulose ethers:influence of functional groups and molecular weight on flow ability of concrete[J]. Carbohydrate Polymers,2003, No.4, 383-394.
    [92]张继东.矿物掺合料在高性能混凝土中的作用[J].建材技术与应用,2004,(05):3-5.
    [93]Yao Wu, Wu Keru. Mechanical properties and flow ability of high strength concrete incorporating ground granulated blast-furnace slag[J]. Journal of Wuhan University of Technology,2001, NO.3, 42-45.
    [94]逄峰,李志明,赵中和,刘家昌.免振抓捣高性能混凝土配合比试验研究[J].混凝土,1999(04):14-17.
    [95]Dominikus Noll. A Concrete Duality Approach to Compactness and Strict Singularity of Inclusion Operators[J], Results in Mathematics,1990, No.1-2:133-152.
    [96]文恒武,姚松林.JYC数字温度无线测温仪在郑西客运专线耐久性混凝土预制梁生产中的应用[J].混凝土,2008,(12):125-128.
    [97]Gao Chun. The Development and Application of Super-lightweight aggregate pumping concrete [JJ. Mechanical Engineering and Materials,2012,152(154):24-27.
    [98]H.Z. Cui, Tommy Yiu Lo, Shazim Ali Memon, F.Xing, X. Shi. Analytical model for comprcssive strength, elastic modulus and peak strain of structural lightweight aggregate concrete[J]. Construction and Building Materials,2012,1036-1043.
    [99]Erhan Guneyisi, Mehmet Gesoglu, Emad Booya. Fresh properties of self-compacting cold bonded fly ash lightweight aggregate concrete with different mineral admixtures[J]. Materials and Structures,2012,1849-1859.
    [100]Mahmoud Hassanpour, Payam Shafigh, Hilmi Bin Mahmud. Lightweight aggregate concrete fiber reinforcement-A review[J]. Construction and Building Materials,2012,452-461.
    [101]王龙志,林开成,张海霞,杨勇.轻骨料混凝土泵送技术的研究与应用[J].混凝土与水泥制品,2005(01):16-18,24.
    [102]王振军,张思宇,王笑风.自密实轻骨料混凝土力学性能试验研究[J].南昌大学学报(工科版),2006(01):83-86.
    [103]Cui, H. Z., Tang, W. C., Lo, T. Y. Investigation of Permeability of Structural Lightweight Aggregate Concrete[J]. Advanced Science Letters,2012,176-178.
    [104]李宝城,江守恒,杨书凯,朱卫中.轻骨料混凝土抗渗性能研究[J].低温建筑技术,2011(02):10-11.
    [105]于海建.高性能粉煤灰轻骨料混凝土力学性能研究[J].城市建设,2010(25):16-17
    [106]Gao Chun. Manufacturing and Applying Super-Lightweight Aggregate Pumping Concrete [J]. Journal of Information and Computational Science,2013 Vol.10(1):223-235.
    [107]汪声瑞,楼军.试论我国轻骨料混凝土在应用中需解决的问题[J].山西建筑,2010(16):138-140.
    [108]彭卫.泵送轻骨料混凝土工作性能控制技术探讨[J].浙江建筑,2011(8):64-68.
    [109]王辉,高纯.一种含沸石粉和天然河砂的轻骨料混凝土及其制备方法[P].中国发明专利:ZL200910177544.4,2012-02-08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700