用户名: 密码: 验证码:
壳聚糖铈配合物树脂在啤酒澄清中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
啤酒是一种成分复杂、稳定性不强的胶体溶液,在贮存过程中易产生混浊沉淀现象。引发啤酒混浊失光的最常见的原因是蛋白质-多酚的复合。蛋白质-多酚混浊的出现,主要是由于敏感多酚及敏感蛋白的过量或不均衡引起的。在实际生产中,可通过去除敏感蛋白与敏感多酚来提高啤酒非生物稳定性。稀土元素铈在水解肽键方面有很好的活性;壳聚糖是一种天然多糖,其分子链上有大量活性基团,对金属离子有稳定的配位作用,对蛋白质和多酚也有吸附作用。
     本文利用壳聚糖与金属元素铈络合反应,制备出啤酒专用壳聚糖树脂类产品,并将该树脂应用于啤酒澄清。主要研究结果如下:
     1.采用反相悬浮交联法制备了壳聚糖铈配合物树脂。树脂微粒呈金黄色球状,粒径小于100μm。对壳聚糖铈配合物树脂进行紫外、红外光谱、XRD衍射分析确定壳聚糖铈配合物微粒中存在铈离子。壳聚糖铈配合物树脂在pH 1.0-12.0,温度0℃-60℃的溶液中性质稳定,一般的操作处理如有机溶剂处理,离心和超声离心也不会影响壳聚糖-铈配合物的稳定性。
     2.将壳聚糖铈配合物树脂初步应用于啤酒澄清。结果显示,过滤流速(数值的范围)和层析柱径高比(数值的范围)对壳聚糖铈配合物树脂过滤效果无较大影响,壳聚糖铈配合物树脂的饱和处理量为自身体积的80倍,啤酒经澄清后敏感多酚含量下降99.92%,浊度下降97.10%,敏感蛋白下降48.56%,无机离子和风味物质含量没有发生明显变化,糖组分和有机酸也没有明显变化,氨基酸含量增加9.84%。因此,壳聚糖金属配合物树脂可作为一种新型的啤酒澄清剂。
     3.比较了三种不同啤酒澄清工艺,对啤酒澄清后的浊度,多酚和蛋白含量进行了分析,确定壳聚糖铈配合物树脂和硅藻土过滤为一种较好的澄清工艺。应用此工艺进行中试试验,结果显示,啤酒过滤后色度为3.535EBC,属于淡色啤酒范畴,浊度为0.114EBC,泡沫洁白细腻,较持久挂杯,有明显酒花香气,酒体醇厚,总酸含量为1.58ml/100ml,双乙酰含量0.030mg/L,总多酚60.68mg/L,均符合国标对淡色啤酒的感官要求和理化要求。啤酒放置6个月后浊度为0.483 EBC,外观仍清澈透亮。
     4.对壳聚糖铈配合物树脂的安全性的初步研究结果显示,经壳聚糖铈配合物树脂过滤的啤酒中铈含量低于清酒中铈含量,戊二醛未检出,说明壳聚糖铈配合物树脂对啤酒的安全性无影响。
     5.对壳聚糖铈配合物树脂的再生剂研究表明,当再生剂为3%的盐酸和4% NaOH时,再生效果最好;对再生剂用量的研究结果显示,3%的盐酸用量为15倍树脂体积,4%的NaOH用量为20倍树脂体积。
     本文将壳聚糖铈配合物树脂应用于啤酒澄清,效果良好,并优化了啤酒澄清工艺,提高了啤酒的非生物稳定性,保障了啤酒的质量安全以及营养,可提高啤酒在国际市场上科技竞争能力及保障啤酒生产技术的引领优势。本文制备的壳聚糖铈配合物树脂,为啤酒澄清提供了新的过滤介质,也为壳聚糖资源的利用提供新的方向。
The beer with complicated ingredients is not stable, and in storage process the precipitation will be produced easily. The main precipitation is the complex of protein and polyphenol, which is caused by the excessive sensitive-polyphenol and sensitive-protein. The beer stability can be improved by removing sensitive-polyphenol and sensitive-protein in industry. The rare-earth element cerium has a good activity in hydrolyzing protein. Chitosan is a nature polysaccharide, and on its molecular chain there are a number of active groups which can chelate metal ions, protein and polyphenols.
     The objective of this study is application of resin made by the complex of chitosan and cerium to clarify beer. The research results are as follows:
     1. The resins were made from complexes of chitosan and cerium (RCCM) prepared by opposite crosslinking method in this paper. The color of RCCM is golden, and the diameter of RCCM microsphere is less than 100μm. RCCM were analyzed by ultraviolet spectrum, infrared spectrum and XRD. The results prove that cerium was in RCCM. RCCM were stable in solution with pH 1.0 to 12.0, also RCCM were stable in solution of which the temperature is low than 60℃. Besides, RCCM handled by centrifuge or ultrasound were stable.
     2. RCCM were applied in beer clarification. The results showed that filtering velocity and diameter length ratio of chromatographic column have little influence on the effect of beer clarification. RCCM can clarify beer which volume is 80 times of the volume of RCCM. The effects of RCCM on beer quality were determined and compared with the finished product beer. The sensitive polyphenols were nearly all adsorbed, the turbidity decreased 97.1%, and the sensitive proteins decreased 48.6%. Meanwhile, the inorganic ions, the flavor compounds, the saccharides and the organic acids had no obvious changes. The amino acids increased 9.84%. Thus the resins made from complexes of chitosan and metal can be used as a new beer clarifier.
     3. Three process of beer clarification were compared, and the results indict that RCCM and diatomite clarification is better. The beer was clarified by RCCM and diatomite. The results showed that the chroma of beer was 3.535EBC, so the beer belongs to ale. The turbidity of beer was 0.114EBC. RCCM have no effect on the foam and pharmaceutical hops aroma. The contents of total acid, diacetyl and polyphenols reached the national standard on beer physical-chemical requirement. After six months, the turbidity of beer was 0.483EBC, and the beer was still limpid.
     4. The safety of RCCM was studied, and the results showed that the contents of cerium in beer clarified by RCCM were lower than the contents of cerium in beer clarified by diatomite, and the glutaraldehyde was not detected. It proves that RCCM have no effect on beer safety. The regeneration of RCCM was studied and the effect was best when the regeneration reagent was hydrochloric acid with 3% concentration and NaOH with 4% concentration. The dosage of regeneration reagent was studied, and the results showed that the dosage of hydrochloric acid with 3% was 15 times the volume of RCCM, and the dosage of NaOH with 4% concentration was 20 times the volume of RCCM.
     This research optimized the process of beer clarification, improved the beer stability, guaranteed the safety of beer, and enhanced the ability of beer competition in the international market. RCCM prepared in this research provide a new filter medium for beer clarification and also provide a new way for utilization of chitosan resource.
引文
[1]从啤酒大国到啤酒强国.啤酒在线,http://www.beer365.com/kj/kj004.htm
    [2] 2001-2010中国啤酒产量统计.中国产业信息网,http://data.chyxx.com/shpyl/201008/445043LS9X.html
    [3]管敦仪.啤酒工业手册.北京:轻工业出版社,1985:248-251
    [4]吴惠秋,隋启祥.谈啤酒的混浊沉淀.酿酒,2006,(3):68-70
    [5]王成红.国外啤酒混浊及其预测方法.酿酒科技2000,102(6):86-88
    [6]王娟.啤酒多酚-蛋白质沉淀及低温酒精冷浑浊预测啤酒保质期.酿酒2003,30(4):51-52
    [7]梅丛笑.啤酒澄清化技术.食品科技,2000,1:41-43
    [8] Karl J . Siebert, J. Agric. Food Chem. Nature of Polyphenol-protein interactions. 1996,441
    [9] Chapon, L. Nephelometry as a method for studying the relations between polyphenols and proteins. Inst. Brew.1996,99:49-61
    [10]梁奋,李汴生.啤酒非生物浑浊和稳定化处理.广州食品工业科技, 1998,14(5):46-48
    [11]王海明.鱼胶和啤酒澄清.酿酒科技,2003,1:66-67
    [12]仲然.卡拉胶作为啤酒澄清剂的功能特性.中国食品工业, 1999, 7:14-15
    [13]邓红,方唯薇.异Vc、酶清、硅胶和PVPP对提高啤酒保质期的研究.食品工业科技,1999,20(4):6-8
    [14]徐元,何琦.木瓜蛋白酶的固定化及其在啤酒澄清中应用的研究.天然产物分离,2003,1(3):6-12
    [15]王树庆.硅藻土过滤-一个影响啤酒质量不容忽视的工艺死角.酿酒,2000,(6):61~62
    [16]严珊宣.水溶性高分子北京.化学工业出版社.1998
    [17]欧江南,王伟,谢勇刚.使用PVPP提高啤酒稳定性的探讨.酿酒,2006,33(4):61
    [18] D. Oedhsle and B. Fussenger. Brauwelt, 1990,(41):1780~1789
    [19] Jany, A. and Katzke, M.COMBINED STABILISATION SYSTEMS (CSS): A NEW BEER STABILISATION PROCESS. Proc. Conv. Inst. Brew. Distill, Sun City, 2005, (10), 141-144.
    [20] Jany, A. FRESH AND STABLE. COMBINED BEER STABILIZATION DOWN UNDER. Brauindustrie, June 2005, 90(6), 38-39
    [21] Mussche, R.A., De Cooman, L. and Aerts, G. Cerevisia Belg. THE LATEST TRENDS INPHYSICO-CHEMICAL BEER STABILIZATION: FROM BREWING LIQUOR TO BRIGHT BEER TANK. Brew. Biotechnol., Feb/March/April 2003, 28(1), 47-53
    [22]刘大森,单安山.稀土饲料添加剂的代谢安全及安全性.饲料工业. 2001,22(11):17-19
    [23]康玉专,沈鹤柏,周根余,张宗穰.稀土元素对DNA催化水解切断的研究进展.稀土,1998,1998:61-65
    [24] Komiyama M and Sumaoka J. Progress towards synthetic enzymes for phosphoester hydrolysis. Current Opinion in Chemical Biology, 1998, 2:751-757
    [25]郭伯生.稀土在生物领域中应用研究进展.稀土,1999,29(1):64-68
    [26]唐任寰等.稀土元素,王夔等主编.生命科学中微量元素(下).中国计量出版社,1992,242-309
    [27] Komiyama M. , Sumaoka J.. Progress towards synthetic enzymes for phosphoester hydrolysis. Chemical Biology,1998,2:751-757
    [28] Sumaoka J., Kajimura A., Ohno M., Komiyama M.. Homogeneous metal complexes for DNA hydrolysis and their application to artificial restriction enzymes. Journal of Inorganic Biochemistry, 1997, 37:211-212
    [29] Ayako Kajimura, Jun Sumaoka, Makoto Komiyama. DNA hydrolysis by cerium(IV)–saccharide complexes. Carbohydrate Research,1998,309(4) :345-351
    [30]汪东风,于丽娜,苏琳,等.一种多糖稀土微粒制备及其制备工艺.中国发明专利,2005100422288
    [31]蒋挺大.甲壳素.北京:化学工业出版社, 2003
    [32]蒋挺大.壳聚糖.北京:化学工业出版社, 2001
    [33]郭振楚,韩亮,谭凤姣,邓建成,吴同华.壳聚糖及其衍生物与金属配位的研究进展.化学研究与应用.2003,1(12):21-26
    [34]蒋挺大壳聚糖金属配合物的催化作用研究进展化学通报1996,1:22-27
    [35] Shen Z, Jiang D, Zhang Y. Chemmical Research in Chinese Research in Chinese Universities.1995,5(29):607
    [36]祁斌,张一烽,沈之荃等.浙江大学学报.1995,5(29):607
    [37]陈水平,汪玉庭.壳聚糖多孔微球负载PdCl2选择性催化氢化氯代硝基苯.功能高分子学报2003,3(16):6-12
    [38]蔡邦肖.海洋生物高分子壳聚糖微孔树脂的开发.东海海洋,1999(6):39-42
    [39] Yang W.Y., Min D.Y., Wen S.X., et al. Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan. Process Biochemistry, 2006, 41, 1378-1382
    [40] Ganza-Gonza?lez A., Anguiano-Igea S., Otero-Espinar F.J., et al. Chitosan and chondroitin microspheres for oral-administration controlled release of metoclopramide. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48, 149-155
    [41] Mi F.L., Kuan C.Y., Shyu S.S., et al. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydrate Polymers, 2000, 41, 389-396
    [42] Monteiro J.O.A.C., Airoldi C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 1999, 26,119-128
    [43]李湛勇,史林启,王长凤等.戊二醛交联壳聚糖树脂的制备及其血液相容性研究.离子交换与吸附. 1999, 15(5): 425-431
    [44]任广智,李振华,何炳林.磁性壳聚糖微球用于酶的固定化研究.离子交换与层析. 2001, 17(3): 224-229
    [45]余艺华,孙彦,何炳林.交联壳聚糖树脂的制备工艺及性能表征.天津大学学报. 2000, 33(1): 113-117
    [46]袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能.高分子材料科学与工程. 2004, 33(1): 53-57
    [47]曹佐英,张启修,魏琦峰.微波辐射下交联壳聚糖树脂固载化β-环糊精.高分子材料科学与工程. 2003, 19(3): 204-207
    [48] Gupta K.C., Jabrail F.H. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydrate Research, 2006, 341, 744-756
    [49] Webster A., Halling M.D., Grant D.M. Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydrate Research, 2007, 342, 1189-1201
    [50]李鸿玉,厉重先,李祖明.磁性壳聚糖微球固定化果胶酶的研究.食品科学. 2008, 29(9): 399-403
    [51]任慧,丁一刚,吴元欣等.交联球形壳聚糖树脂制备与吸附性能研究.化工新型材料. 2003, 31(4): 33-35
    [52]贺小进,谭伟天,戚以政等.球形壳聚糖树脂制备方法及吸附性能研究.离子交换与吸附. 2000, 16(1): 47-53
    [53]吴兹景.关于修订药典中戊二醛含量测定方法的建议.药品监管.2004,13(2):26
    [54]蔡青.紫外分光光度法测定戊二醛含量.实用预防医学2004,11(2):371
    [55]吴兹景.紫外分光光度法测定戊二醛含量.药品检验,2003,12(6):44
    [56]李瑞明.戊二醛消毒液含量紫外分光光度测定法.中国临床医药研究,2003,(93):9286
    [57]管英.紫外分光光度法测定戊二醛含量.齐齐哈尔医学院学报,2002,23(10):1195
    [58]韩津生,袁爱红,刘香葵,等.气相色谱仪测定消毒液中戊二醛.中国消毒学杂志,2003,20(3):223
    [59] Danielson JW,Thompson RD.Determination of glutaraldehyde products by capillary gas chromatography.Chromatogr A,1996,724:398
    [60] Menet MG.Gueylard D,Fievet MH,et a1.Fast specific separation and sensitive quantification of bactericidal an d sporicidal aldechydes by high—performance liquid chromatography: example of glutaraldehyde determination.Chromatogr B Biomed Appl,1997,692:79
    [61]梁建生,邬文胜,朱越,等.戊二醛检测指示卡效果观察.中华医院感染学杂志,2000,10(6):444-445
    [62]郁宝兴.树脂完全分离再生新工艺.电力建设,1994,15(9):10-12
    [63]郑文章.强弱型树脂联合应用降低酸碱耗.工业水处理.1995,15(3):26-27
    [64]何美东.提高用二氧化碳再生离子交换树脂的再生效率.清华大学.1989,12
    [65]王方,张新泉.CO2再生离子交换法在工业水处理中应用的探讨.工业水处理.1994,14(5):l-5
    [66]马时申等.二氧化碳再生离子交换法的新进展.工业水处理.1989,9(2):13-16
    [67]于淑娟等.超声脱附-离子交换树脂再生新技术的研究.甘蔗糖业.1999,6:25-29
    [68]龙秀,于淑娟,刘培玲.乙醇和碱性树脂再生脱色树脂.中国甜菜糖业,2005,4:16-19
    [69]张清峰,姜子涛,李荣.大孔树脂吸附异硫氰酸酯的动态相平衡研究.中国调味品.2006,7:29-35
    [70]李源君,姜成忠,吴宝财.中药纯化过程中大孔吸附树脂预处理和再生.黑龙江科技信息.20004,11:201
    [1]张卫芳,刘德文.稀土配合物发光研究及其在生物化学中的应用.北京轻工业学院学报,1999,17(2):60-64
    [2] Liu Q., Chen H.M., et. Study on kinetics and mechanism of mononuclear rare earth metal complexes in promoting the hydrolysis of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP). Journal of Molecular Catalysis A: Chemical, 2007, 269:104–109
    [3] Lin H.K, Liu Q., et. Study on kinetics and mechanism of mononuclear rare earth metal complexes in promoting the hydrolysis of p-nitrophenyl phosphate (NPP). Journal of Molecular Catalysis A: Chemical, 2006, 259:11–16
    [4] Wang D.F., Luo Y., et. The use of complexes of algae polysaccharides and Ce4+ to degrade compounds containing peptides or phosphate ester bonds. Carbohydrate Polymers, 2005, 62: 1–5
    [5] Kitamura Y., Sumaoka J., et. Hydrolysis of DNA by cerium(IV)/EDTA complex. Tetrahedron, 2003, 59:10403–10408
    [6]汪东风,于丽娜等.一种多功能稀土多糖微粒及其制备工艺,中国发明专利,2005100422288
    [7]汪东风,赵贵文.茶叶中稀土总量的快速测定法.茶叶科学,1998,18(2):151-154
    [8]郭振楚,刘福清等.壳寡糖与镧、铈配合物的合成、表征及应用.中国稀土学报,2003,21(1):98-101
    [9]关怀民,程贤胜等.壳聚糖镍和壳聚糖镧配位聚合物的配位数研究.功能高分子学报,1999,4:431-436
    [10]于丽娜,汪东风等.琼脂糖铈配合物微粒的制备及对对硝基苯酚的水解作用.稀土,2005,26(2):15-18
    [11] K.L.Shantha,D.R.K.Harding. Synthesis and characterization of chemically modified chitosan microspheres. Carbohydrate Polymers,2002(48):247-253
    [12]张建国,张同来. [Mn(ATO)2(H2O)4](PA)2的制备、结构表征和热分解机理研究.化学学报,2000(58):1563-1566
    [1]梅丛笑啤酒的澄清化技术食品科技2000,1:41-43
    [2]苏琳,汪东风等.壳聚糖/Ce4+复合物微球在苹果汁澄清中的应用.食品发酵工业,2006,32(1):141-143.
    [3]罗志敏,薛丽群等.珠状壳聚糖树脂对绿茶中茶多酚的吸附研究.食品科学,2009,30(1): 86-89
    [4]李志江考马斯亮蓝G250染色法测定啤酒中蛋白质含量酿酒,2008,(1):71-72
    [5]郝俊光,万海涛等.介绍一种快速测定啤酒浑浊敏感蛋白的方法.酿酒,2002,4(29):30-31
    [6]郝俊光,王玉洁等.介绍一种快速测定敏感多酚的新方法.酿酒科技,2002,4:79-80
    [7] POLLOCK J R A. Brewing science: Volume 2. Academic Press, 1981
    [8] COOTE N, KRISOP B H. The content of some organic acids in beer and other fermentation media. J Inst Brew, 1974 (20): 474-483
    [9] BARBER L E. The analysis of organic acids by ion chormatograph in beer and wort. J Am Soc Brew Chem, 1990, 48(1): 44-46
    [10] SONIA C R, ANTINIO S C, MIGUEL H BDC, et al. Determination of low-molecular-mass organic acid in any type of beer samples by coelectroosmoticcapillaryelectrophoresis. JChromatographyA, 2005,1064: 115-119
    [11]向阳,李崎,顾国贤.国内啤酒有机酸组成及其综合评价.食品科学,2007,28(1):266-270
    [12]杨毅,李崎等.反相高效液相色谱法(RP-HPLC)测定啤酒中有机酸.食品与发酵工业,2003,29(8):6-12
    [13]祝忠付.锌离子在啤酒酿造中的作用与控制.酿造科技,2003,6:65-67
    [14]刘海兵.高级醇对啤酒风味的影响及其在啤酒生产中的控制措施.酿酒,2005,1(32):54-55
    [15]王志沛,季晓东等.啤酒中挥发性风味物质的分析及风味评价.酿酒科技,2001,4:59-61
    [1]王彩英,仲白莹.预测啤酒保质期实验及方法.酿酒,1993,4:31-33
    [2]崔英德,黎新明,廖列文,易国斌. PVPP吸附啤酒中多酚类物质的研究.食品与发酵工业, 2000,5(26):90-91
    [3]黎新明,崔英德. PVPP对啤酒中多酚类物质和蛋白质的吸附作用比较.食品科学,2002,8(23):74-76
    [4]林建芳.浅谈膜过滤技术在啤酒澄清中的应用.啤酒科技,2009,6:54-55
    [5]欧江南,王伟,谢勇刚.使用PVPP提高啤酒稳定性的探讨.酿酒,2006,(7):61-62
    [6]林颖枝,朱群秀,曾婷.强化试验预测啤酒保质期浊度的研究.啤酒科技,2005,2:26-29
    [7]张静.三种预测啤酒保质期方法的讨论.酿酒,2010,2:52
    [6]刘长祥.啤酒泡持性及影响因素.山西食品工业,1999,1:11-12
    [9]候典銮.啤酒总酸组成对口味的影响.啤酒科技,2003,6:40
    [10]金娟娟.啤酒总酸及其测定.酿酒科技,2000,3:56-57
    [11]党广利.啤酒中双乙酰的形成和控制.宿州学院学报,2010,8:66-67
    [12]何丽娜.有效检测控制啤酒中的双乙酰.酿酒科技,2003,6:83-84
    [1]李临生,张昌辉,张京东.戊二醛消毒剂的特点与应用.日用化学工业,2004,34(6):385-389
    [2] Vergnes J S,Ballantyne B.Genetic toxicology studies with glutaraldehyde[J].Journal of Applied Toxicology.2002,22:45-60
    [3]李桐芬,赵学勤.紫外光谱在酶联免疫测定中的应用[J].天津医药,1999,27(3):179-180
    [4] James W D, Richard D T. Determination of glutaraldehyde and phenol in germicide products by capillary gas chromatography[J]. Journal of Chromatography A.1996,724:398-402
    [5]邱立勤,米镇涛,张香文.戊二醛合成体系气相色谱分析[J].分析实验室,1996,15(2):80-82
    [6] Tashima T,Kawakami U,Satoh N. Detection of impurities in aqueous solution of glutaraldehyde by high performance liquid chromatography with a multichannel photodiode array UV detector[J].Journal of Electron Microscopy,1987,36(3):136-138
    [7] Menet M C,Gueylard D,Fievet M H. Fast specific separation and sensitive quantification of bactericidal and sporicidal aldehydes by high—performance liquid chromatography:example of glutaraldehyde determination.Journal of Chromatography B,1996,692:79-86
    [8] Stafiej A,Pyrzynska K,Ranz A.Screening and optimization of derivatization in heating block for the determination of liphatic aldehydes by HPLC.Journal of Biochemical and Biophysical Methods, 2006,69:15 -24
    [9]程上穆,邓胜昌,孟庆江.稀土在医学领域中的应用研究现状.稀土,1999,20(5):15
    [10]熊炳昆.稀土生物功能化合物的应用研究.中国稀土学报,1994,4(4):258.
    [11]郑海雷,赵中秋,张春光,等.稀土生物效应机理研究进展.稀土,2000,21(4):55
    [12]宋智娟,赵国先,张晓云等.稀土的作用机理及饲用安全性.中国饲料,2005,10:24-25
    [13]王妙飞,郭新东,杜志峰等.高效液相色谱法快速分析口香糖中戊二醛的残留量.现代食品科技,2007,23:80-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700