用户名: 密码: 验证码:
砷污染土壤植物修复的强化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是一种在自然界中分布极为广泛、毒性很强的类金属。土壤砷污染不仅影响农作物生长,还对人体健康和生态安全存在着极大威胁。目前,由于人为大量开采、生产和使用含砷化合物,使得砷污染现象越来越严重。因此,砷污染的治理技术已成为环境科学领域关注的焦点之一。然而,由于土壤砷污染存在量大面广的特点,应用传统的污染土壤修复技术存在技术难度较大、成本较高等问题。近年来发展起来的植物修复技术,掀起了砷污染土壤植物修复的研究热潮。本试验研究超富集砷的植物蜈蚣草的栽培技术以及对低砷污染土壤的修复,同时研究强化措施对普通植物玉米修复砷污染土壤的影响。研究的主要结果如下:
     通过温室盆栽试验,研究不同的处理对蜈蚣草孢子繁殖速度的影响。结果表明,化学处理使孢子萌发速度加快,缩短了孢子萌发时间,原叶体阶段喷施改良的Hogland营养液,可以加快蜈蚣草原叶体阶段的生长。
     同时研究施肥和接种AM真菌对蜈蚣草生长和富集砷的影响。结果表明,前期蜈蚣草生长对肥料的需求低,接种AM真菌的处理蜈蚣草生物量显著高于对照,AM真菌对蜈蚣草生长的促进作用在120d时显现出来。180d后,接种AM真菌显著提高蜈蚣草的生物量,并且适当添加N、P、K、Ca肥也促进蜈蚣草幼苗生长。接种AM真菌、添加钙和木质素干粉的处理蜈蚣草砷含量显著高于其它处理,可见,接种AM真菌、添加钙和木质素干粉能促进蜈蚣草对砷的富集。
     单接AM真菌、AM真菌与木质素干粉、AM真菌与钙能显著提高土壤pH值,施加氮、磷、钾肥土壤pH值较对照显著降低。另外,施加NPK肥的处理菌根侵染率显著低于其他处理,施肥对AM真菌侵染植物有很大的影响。单接AM真菌、AM真菌与木质素干粉、AM真菌与钙处理土壤脱氢酶活性显著高于其他处理,这可能与施肥使土壤pH降低有关。
     种植蜈蚣草60d后,单接AM真菌的处理土壤磷酸酶活性显著高于其它处理,接种AM真菌与木质素干粉的处理土壤磷酸酶活性显著高于施用N、P、K与AM真菌的处理,同时施加NPK肥和接种AM真菌在土壤磷酸酶活性中表现出拮抗效应。从总体来看,种植蜈蚣草180d后,土壤磷酸酶活性有所提高。
     春季,蜈蚣草幼苗长到10cm左右时,移栽到大田,结合蜈蚣草的生长特性,在夏秋炎热季节,用遮阳网遮荫。蜈蚣草对土壤和空气湿度要求较高,因此夏季要增加浇水,并结合叶面喷水,提高土壤和空气湿度,使生长茂盛。秋季则应减少浇水,保持土壤湿润为宜。蜈蚣草对低温的敏感性较强,而试验区冬季较冷,因此大田种植应覆盖薄膜保温,使蜈蚣草顺利度过冬天。春季在嫩叶长出前减去枯死衰老的叶片,有利于促进蜈蚣草的发芽。
     按照以上的管理措施,蜈蚣草生长茂盛,地上部干重达到32.33g/株,根系56.79g/株,合计总干重达到89.12g/株,产量达到6t/hm~2。可见,依据蜈蚣草的喜好而选择的管理措施,使蜈蚣草生长茂盛,为试验区内利用蜈蚣草修复As污染土壤提供了技术储备。
     另外,在砷污染农田土壤中,研究丛枝菌根、蚯蚓对玉米生长、土壤As形态变化以及土壤中酶活性变化的影响,尤其是对砷污染土壤修复效率的影响。结果发现,接种AM真菌和蚯蚓均显著提高玉米根系的AM真菌侵染率,且双接种处理显著高于单接种处理;接入蚯蚓或蚯蚓与AM真菌双接种显著提高玉米地上部、地下部生物量,并促进土壤中晶态的水合Fe、Al氧化物态砷含量显著升高;AM真菌与蚯蚓双接种土壤磷酸酶活性显著高于对照。
     接种AM真菌和蚯蚓均显著提高砷修复效率,且蚯蚓与AM真菌双接种显著高于单接种处理。经3年玉米修复后,只种植玉米的对照处理土壤中砷含量下降到19.70mg/kg,显著低于种植前,对砷的修复效率达到36.9%。接入蚯蚓和接种AM真菌的处理土壤中砷含量均显著低于对照,对砷的修复效率分别达到50.0%和55.4%。蚯蚓与AM真菌双接种处理土壤中砷含量显著低于单接AM真菌和蚯蚓的处理,该处理土壤中砷含量最低,比修复前降低了21.10mg/kg,对砷的修复效率达到676%,比对照提高了30.8%。接种AM真菌和蚯蚓可以促进玉米对砷污染土壤的修复。
Arsenic is a kind of metal which is widely distributed in nature and high toxic. Soil arsenic contamination not only affects on crop, but also serious threat human health and ecological safety.At present, the situation of soil arsenic contamination is more and more serious due to the excessive exploiting, producing and use of arsenical compround. As a result, arsenic pollution has become the focus of environmental science. However, traditional remediations of contaminated soil are difficult and costly due to the characters of arsenic contamination of soil was huge in quantity and wide in spread, In recent years, phytoremediation of heavy metal contaminated soil, has become a hot spot of arsenic contaminated soil remediation. An experiment was conducted to investigate the cultivation techniques of Pteris vittata L. and affect to remediation of the low arsenic contaminated soils. Study to strengthen measures on the general plant at the same time, corn is a good candidate for phytoremediation of arsenic-contaminated soils. The main results are as follows:
     Through pot experiment in greenhouse, we have studied the impacts on Pteris vittata L spores reproduction speed by different treatments. The results show that the chemical treatment can accelerated germination speed, reduced germination time. The growth of Pteris vittata L prothallus stage is accelerated after spraying improved Hogland nutrient solution, which speed up the prothallus of Pteris vittata L on the growth.
     The research on the effects of inoculation of arbuscular mycorrhizal fungus (AM) and fertilizztion on the growth and the capability of As enrichment of Pteris vittata L is carried out at the same time. The results showed that the need of fertilizer is low during prophase of Pteris vittata L and Pteris vittata L inoculation with AM has significantly higher biomass than control, and the promoting effect on Pteris vittata L by arbuscular mycorrhizal fungus (AM) could be seen after 120 days.The experiment data showed that inoculation with AM can significantly enhance the biomass of Pteris vittata L and adding proper content of N、P、K、Ca fertilizer can also promote the growth of Pteris vittata L seedling. It was also found that compared with other treatments, inoculation with AM and adding Ca and organic could significantly enhance the content of As in Pteris vittata L. We can conciude that inoculation with AM and adding Ca and organic can promote the enrichment of As in Pteris vittata L.
     The treatments of inoculation of AM, inoculation of AM and adding organic, inoculation of AM and adding Ca can all increase pH of soil significantly while the pH of soil adding NPK fertilizers were lower than the control significantly. In addition, mycorrhizal infection rate of treatments which adding NPK fertilizers also were lower than other treatments significantly,we can conclude that fertilization has strong impact on AM infection rate. The treatments of inoculation of AM, inoculation of AM and adding organic, inoculation of AM and adding Ca have higher soil dehydrogenase activity than other treatments remarkably, which may be related to the decreasing pH by fertilizer.
     After planting Pteris vittata L for 60 days, the treatments of inoculation of AM has higher soil phosphatase activity than other treatments remarkably. The treatments of inoculation of AM and adding organic has obviously higher soil phosphatase activity than inoculation of AM and adding NPK fertilizer which has antagonistic effect in soil phosphatase activity.Overall, soil phosphatase activity has been improved after planting for 180 days.
     In spring, when the seedlings of Pteris vittata L grow about 10 cm, we transplant them in the field. According to the growth characteristics of Pteris vittata L, shading net should be used in hot summer. Pteris vittata L has strict requirement of soil and atmosphere humidity and more watering and spraying is necessary during summer.While in autumn it would be better have less watering to keep soil wetness. Pteris vittata L is sensitive to the low temperature, so it should be coverd with thin film in field for heat preservation take the cold winter of Jiangsu province into consideration. Cutting out withered and aged leaves before tender leaves come out in spring would promote the budding of Pteris vittata L.
     Through above management measures, the Pteris vittata L grow flourish. The per shoot dry weight is 32.33 gram. The per weight of root is 56.79 gram, and total dry weight is 89.12 gram, the yield of a unit area is 6 ton/hm~2. The management measures, according to the preference of Pteris vittata L, made Pteris vittata L grow well, which offer technical reserves for the remediation of As-contaminated soil by Pteris vittata L in Jiangsu Province.
     In addition, a field experiment was conducted to investigate the effects of inoculation of arbuscular mycorrhizal fungus (AM) or/and earthworms on phytoremediation efficiency of the low-arsenic contaminated soil by maize. The results showed that inoculation with AM or earthworms alone could significantly increase mycorrhizal infection of maize roots. And inoculation of AM and earthworms in combination showed the mycorrhizal infection was much higher than inoculation of AM or earthworms alone; While inoculating earthworms alone or combination with AM fungi, they could increase biomass of maize shoot and root,and also could significantly enhance the content of As involved in well-crystallized orhydrous oxides of ferrum and aluminum. It was also found that compared with the control treatment, the phosphatase activity in soils of AM fungi in combination with earthworms were significantly increased.
     Inoculation with AM fungi or earthworms alone could greatly enhance the phytoremediation efficiency of As-contaminated soil, but inoculation of earthworms and AM fungi in combination showed the highest remediation efficiency. After 3 years, the content of soil arsenic decrease to 19.70 mg/kg in the control, which is significantly lower than pre-implantation,the efficiency of arsenic is 36.9%. The content of soil arsenic inoculation with AM or earthworms alone could significantly lower than the control, the efficiency is 50.0% and 55.4% respectively. The content of soil arsenic, which inoculation of earthworms and AM fungi in combination is the lowest, is significantly lower than inoculation with AM or earthworms alone. The efficiency is 67.6%by inoculation of earthworms and AM fungi in combination, increase about 30.8% compared with the control. Inoculation of AM and earthworms could promote the phytoremediation efficiency of As-contaminated soil when maize was planted.
引文
[1]Adriano D C. Trace elements in the terrestrial environment [M]. New York:Springer,2001
    [2]Arriagada C A, Herrera M A et al. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globules co-cultured wih Glycine max in soil contaminated with heavy metals [J]. J Environ Manage,2007,84:93-99
    [3]Auge R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis [J]. Mycorrhiza,2001,11:36-42
    [4]Bai J F, Lin X G, Yin R et al. The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils[J]. Applied Soil Ecology, 2008,38:137-145
    [5]Baker A J M.Aeeumulators and excluders-strategies in the response of plants to heavy metals [J]. Jomal of Plant Physiology,1981,3:643-654
    [6]Bhumbla D K, Keefer R F.Arsenic mobilization and bioavailability in soils. In:Nriagu JO (Ed.), Arsenic in the Environment. Part2:Human Health and Ecosystem Effects [J]. Advances in Environmental Science and Technoogy. John Wiley&Sons. Inc.USA.1994,26: 51-82
    [7]Bisessar S. Effects of heavy metals on microorganisms in soils near a secondary lead smelter[J]. Water Air and Soil Pollution,1982,17:305-308
    [8]Bleeker P M, Schat H, Vooijs R et al. Mechanisms of arsenate tolerance in Cytisus striatus [J]. New Phytologist,2003,157:33-38
    [9]Bolan N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants [J]. Plant and Soil,1991,134:189-207
    [10]Bradley R, Burt A J, Read D J. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris [J]. Nature,1981,292:335-337
    [11]Caille N, Swanwick F J, Zhao F J et al. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilization [J]. Environmental Pollution,2004,132:113-120
    [12]Chen B D, Zhu Y G, Smith F A. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil[J]. Chemosphere,2006,62:1464-1473
    [13]Chen B, Xiao X, Zhu YG et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn [J]. Sci. Total Environ,2007,379:226-234
    [14]Diedhiou P M, Hallmann J et al. Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato[J]. Mycorrhiza,2003,13 (4):199-204
    [15]Dodd J C, Dougall T A, Clapp J P. The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK-the reclamation platform created during the building of the Channel tunnel between France and the UK[J]. Biodiversity and Conservation,2002,11:39-58
    [16]Dong Y, Zhu Y G, Smith F A. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil [J]. Environmental Pollution,2008,155:174-181
    [17]Edwards C A, Bohlen P J. Biology and ecology of earthworms [M]. London:Chapman and Hall,1996
    [18]Feng G et al. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil [J]. Applied Soil Ecology,2003,22: 139-148
    [19]Fitz W J, Wenzel W W. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation [J]. Journal of Biotechnology, 2002,99:259-278
    [20]Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial Diversity and high metal toxicity in soil [J]. Science,2005,309 (26):1387-1390
    [21]Garcia I, Diez M, Martin F et al. Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil [J]. Pedosphere,2009,19 (2):166-175
    [22]Geiszinger A E, Goessler W, Francesconi K A. The marine polychaete Arenicola marina:its unusual arsenic compound pattern and its uptake of arsenate from seawater[J]. Marine Environmental Research,2002,53:37-50
    [23]Gergon E B, Brown M B, de Castro A. In:Proceedings of the Thirtythird Anniversary &Annual Scientific Meeting of the Pest Management Council of the Philippines [J]. Laguna, Philippines:Inc. College,2003,1101-1021
    [24]Ghorbanl I M, Ebrahimzadeh H. Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean [J]. Biologia Plantarum,2004,48 (4):575-581
    [25]Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots [J]. New Phytologist,1980,84,489-500
    [26]Goicoechea N, Antolin M C, Strnad M et al. Root cytokinins, acid phosphatase and nodule activity in drought-stressed mycorrhizal or nitrogen fixing alfalfa plants[J]. Journal of
    Experimental Botany,1996,47:683-686
    [27]Gonzalez-Chavez C, Harris P J, Dodd J et al. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus [J]. New Phytologist,2002,155:163-171
    [28]Johansen A, et al. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III. Hyphal transport of 32~P and 15~N [J]. New Phytol,1993, 124:1-68
    [29]Kaya C, Higgs D, Kirnak H et al. Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrulluslanatus Thunb.) grown under well-watered and water-stressed conditions [J]. Plant Soil,2003,253 (2):287-292
    [30]Langdon C J, Piearce T G, Black S. Resistance to arsenic-toxicity in a population of the earthworm Lumbricus rubellus [J]. Soil Biology and Biochemistry,1999, (31):1963-1967
    [31]Leung H M, Ye Z H, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils [J]. Environmental Pollution,2006,139 (1): 1-8.
    [32]Li X L, Feng G. Arbuscularmycorrhizal ecology and physiology [M]. Beijing:Huawen Press,2001.1-358
    [33]Li X L, George E, Marschner H. Extension of the phosphorus dep letion zinc in VA mycorrhizal white clover in a calcareous soil [J]. Plant and Soil,1991,136:41-57
    [34]Liao X Y, Chen T B, Xie H et al. Soil As contamination and its risk assessment in industrial districts of Chenzhou, Southern China [J]. Environment International,2005,31 (6):791-798
    [35]Liu R J, Shen C Y,Qiu W F. Competition between VAM fungi and V erticillium Dah liae in their infectivities [J]. Acta Ped ologica Sinica,1994,31 (supplement):224-229
    [36]Liu Y, Zhu Y G, Chen B D et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L [J]. Mycorrhiza,2005,15 (3):187-192
    [37]Ma L Q, Komar K M, Tu C et al. A fern that hyperaccumulates arsenic [J]. Nature,2001, 409:579
    [38]Ma Y, Dichinson N M,Wong M H. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings [J]. Soil Biology and Biochemistry,2006,38 (6):1403-1412
    [39]Macur R E, Jackson C R. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil [J]. Environmental Science and Technology,2004,38: 104-111
    [40]Maliszewska W, Dec S, Wierzbicka H, Wozniakowska A. The influence of various heavy metal compounds on the development and activity of soil micro-organisms [J]. Environmental Pollution. Ser. A,1985,37:195-215
    [41]Matschullat J. Arsenic in the geosphere-a review. The Science of the Total Environment, 2000,249:297-312
    [42]Meharg A A, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species [J]. New Phytologist,2002,154:29-43
    [43]Meharg A A, Shore R F, Broadgate K. Edaphic factors affecting the toxicity and accumulation of arsenate in the earthworm Lumbricus terrestris [J]. Environmental Toxicity and Chemistry,1998,7:1124-1131
    [44]Melchor J, Rosa M, Luis R. Evaluation of some nutritional and biochemical indicators in selecting salt resistant tomato cultivars [J]. Environmental and Experimental Botany, 2005,54:193-201
    [45]Mogan J E, Morgan A J. The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site [J]. Environmental Pollution,1998,99 (2):167-175
    [46]Morgan et al.Speed-mapping of arsenic distribution the tissue of earthworms inhibiting arsenious soil [J]. Cell Biology International,1994,18 (9):911-914
    [47]Morgan J E, Morgan A J. Seasonal changes in the tissue metal (Cd, Zn, and Pb) concentrations in two ecophsiologically similar earthworm species:pollution monitoring implications [J]. Environmental Pollution,1992,82:1-7
    [48]Mukhopadhyay R, Rosen B P, Phung L T. Microbial arsenic:from geocycles to genes and enzymes [J]. FEMS Microbiology Review,2002,26:311-325
    [49]Nordstrom D K. Worldwide occurrences of arsenic in ground water [J]. Science,2002,296: 2143-2144
    [50]Nriagu J O. Arsenic historical perspectives [M]. In" Arsenic in the Environment" Part I. Cycling and Characterization" (JO Nriagu,ed.),New York:Wiley & Sons.1994,27:3-15
    [51]P Jankong, P Visoottiviseth. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil [J]. Chemosphere,2008,72:1092-1097
    [52]Quaghebeur M, Rengel Z. The distribution of arsenate and arsenite in shoots and Roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply [J]. Plant Physiology,2003,132:1600-1609
    [53]Rahman M, Tondel M, Ahmad S A et al. Hypertension and arsenic exposure in Bangladesh [J]. Hypertension,1999,33:74-78
    [54]Rillig M C, Wright S F, Eviner V T.The role of Arbuscular mycorrhizal fungi and glomalin in soil aggregation:Comparing effects of five plant species [J]. Plant and soil,2002,238: 325-333
    [55]Rodriguez R R. Bioavailability and biomethylation of arsenic in contaminated soils and solid wastes (thesis for the Doctorate) [J]. USA:Oklahoma State university,1998
    [56]Ruiz-Lozano J M, Collados C, Barea J M et al. Arbuscular mycorrhizal symbiosis can alleviate drought induced nodule senescence in soybean plants [J]. New Phytol,2001,151: 493-502
    [57]Saha J C, Dikshi A K, Bandyopadhyay M, Saha K C.A review of arsenic poisoning and its effect on human health [J]. Critical Reviews in Environxnental Seience and Technology, 1999,29:281-302
    [58]Sami A, Routsalainen A L. The modelled growth of mycorrhizal and nonmycorrhizal plants under constant versus variable soil nutrient concentration [J]. Mycorrhiza,2002,12: 257-261
    [59]Sharples J M, Meharg A A el al. Symbiotic solution to arsenic contamination [J]. Nature, 2000,404:951-952
    [60]Smith E, Naidu R, Alston A M. Arsenic in the soil environment:a review [J]. Advances in Agronomy,1998,64:149-195
    [61]Smith S E, Read D J. Mycorrhizal Symbiosis,2ed [M]. London:Academic Press,1997, 153-154
    [62]Tarafdar J C. Visual Demonstration of in vivo Acid Phospha-tase Activity of VA Mycorrhizal Fungi [J]. Current Science,1995,69 (6):541-543
    [63]Tu S, Ma L Q, Fayiga A O. Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L [J]. International Jounal of Phytoremediatiion,2004,6 (1):35-47
    [64]Tu S, Ma L Q, MacDonald G E. Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L[J]. Environmental and Experimental Botany,2004,51:121-131
    [65]US EPA.Arsenic treatment technologies for soil, waste, and water [J]. EPA-542-R-02-004, 2002
    [66]Vivas A, Voros I, Biro B et al. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacill us sp. isolated from cadmium polluted soil under increasing cadmium levels [J]. Environmental Pollution,2003,126:179-189
    [67]Webb S M, Gaillard J F, Ma L Q et al. XAS speciation of arsenic in a hyper-accumulating
    fern[J]. Environmental Science and Technology,2003,37:754-760
    [68]Wenzel W W, Brandstetter A, Wutte H et al. Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards [J]. Journal of Nutrition Soil Science,2002,165 (2):221-228
    [69]Wenzel W W, Kirchbaumer N, Prohaska T et al. Arsenic fractionation in soils using an improved sequential extraction procedure [J]. Analytica Chimica Acta,2001,436:309-323
    [70]Xia Y S, Chen B D,Christie Peter et al. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus[J]. Journal of Environmental Sciences,2007,19:1245-1251
    [71]Xu P L, Peter Christie, Liu Y et al. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake[J]. Environmental Pollution,2008,156:215-220
    [72]白建峰,林先贵,尹睿等.蚯蚓(Eisennia foetida)对玉米根际As、P形态转化及其吸收的影响[J].环境科学,2007.28(7):1600-1606
    [73]白建峰.As污染农田土壤的微生物-蚯蚓-植物联合修复研究[J].南京:中国科学院南京土壤研究所博士学位论文,2007
    [74]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24(4):711-717
    [75]曹慧娟.植物学[M].北京:中国林业出版社,1989,205-212
    [76]柴世伟,温琰茂,韦献革,等.珠江三角洲主要城市郊区农业土壤的重金属含量特征[J].中山大学学报(自然科学版),2004(4):90-94
    [77]陈怀满.土壤中化学物质的行为与环境质量[M].科学出版社,北京,2002
    [78]陈同斌,黄泽春,黄宇营.砷超富集植物中元素的微区分布及其与砷富集的关系[J].科学通报,2003,6:1163-1168
    [79]陈同斌.土壤中砷的吸附特点及其与水稻生长发育的关系[J].北京:中国农业科学院博士学位论文,1990
    [80]成杰民,俞协治,黄铭洪.蚯蚓-菌根在植物修复镉污染土壤中的作用[J]..生态学报,2005,25(6):1256-1263
    [81]高岩,骆永明.蚯蚓对土壤污染的指示作用及其强化修复的潜力[J].土壤学报,2005,42(1):140-147
    [82]高辉,顾泳洁,蔡培乾等.岛屿生境下苦槠AM(丛枝菌根)与根际土壤磷酸酶活性的相关性研究[J].生态与农村环境学报,2007,23(1):24-27
    [83]顾兴平,顾永作.环境砷污染与健康[J].四川环境,1999,18(3):11-22
    [84]韩建国.实用种子学[M].北京:中国农业大学出版社,1997
    [85]韩照祥,冯贵颖,吕文洲等.环境中As(Ⅲ)对小麦萌发的影响及砷毒害防治初探[J].西北植物学报,2002,22(1):123-128
    [86]胡纯奇.砷致癌研究的新进展[J].环境与健康杂志,1985,2:49-50
    [87]冀永生,高辉,顾泳洁,等.不同生境条件下苦槠丛枝菌根对根际土壤磷酸酶活性的影响[J].生态环境,2008,17(4):1586-1589
    [88]雷梅,陈同斌,范稚连,等.磷对土壤中砷吸附的影响[J].应用生态学报,2003,14(11):1989-1992
    [89]李道林,何方,马成泽,等.砷对土壤生物学活性及蔬菜毒性的影响[J].农业环境保护,2000,19(3):148-151
    [90]李洁明,孙红文,李阳,等.蚯蚓辅助微生物修复芘污染土壤[J].环境科学学报,2008,28(9):1854-1860
    [91]李廷强,杨肖娥.砷从农业土壤向人类食物链的迁移[J].广东微量元素科学,2004(1)
    [92]李玉浸.集约化农业的环境问题与对策[M].中国农业科技出版社,北京,2001
    [93]廖晓勇,陈同斌,阎秀兰等.不同磷肥对砷超富集植物蜈蚣草修复砷污染土壤的影响[J].环境科学,2008,29(10):7091-7097
    [94]廖自基.微量元素的环境化学及生物效应[M].中国环境科学出版社,1992
    [95]林年丰,杨洁,卞建民内蒙古砷中毒病区环境地球化学特征研究[J].世界地质,1999,6(2):83-88
    [96]林先贵,郝文英,施亚琴.VA菌根对植物耐旱涝能力的影响[J].土壤,1992,24(3):]42-145
    [97]刘润进,郝文英.VA菌根真菌对植物水分代谢的影响[J].土壤学报,1994,31(增刊):46-53
    [98]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,175-179
    [99]邵玉芳.砷污染农田土壤的高效生物修复技术研究[J].呼和浩特:内蒙古农业大学硕士论文,2008.6
    [100]沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39-44
    [101]宋淑明,聂朝相,赵欣,等.百脉根种子硬实处理与耐藏性的探讨[J].草业科学,1994,11(5):52-54
    [102]王春旭,李生志,许荣玉.环境中砷的存在形态研究[J].环境科学,1993,14(4):53-57
    [103]王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2002,17(6):504-510
    [104]王克俭,廖新俤.猪场周围环境中砷的分布及迁移规律研究[J].家畜生态学报,2005,25(2)
    [105]王永,徐仁扣.As(Ⅲ)在可变电荷土壤中的吸附与氧化的初步研究[J].土壤学报,2005,42(4):609-613
    [106]王振刚,何海燕,严于伦,等.石门雄黄矿地区居民砷暴露研究[J].卫生研究,1999,28(1):12-14
    [107]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210
    [108]翁焕新,张霄宇,邹乐君,等.中国自然土壤中砷的自然存在状况及其成因分析[J].浙江大学学报(工学版),2000,1:54-58
    [109]吴少清,张书海,李德胜,等.淮安市绿色食品生产基地环境质量分析[J].淮阴工学院学报,2005,(3):83-85
    [110]武术,林先贵,尹睿,等.大气CO_2浓度升高对添加麦秆条件下稻田土壤酶活性的影响[J].农村与生态环境学报,2008,24(4):32-36
    [111]武正华,张宇峰,王晓蓉,等.土壤重金属污染植物修复及基因技术的研究[J].农业环境保护,2002,21(1):84-86
    [112]谢先伟.砷污染饮用水致亚急性砷中毒181例分析[J].实用预防医学,2005,12(4):903-904
    [113]宣之强.中国砷矿资源概述[J].化工矿产地质,1998,20(3):205-210
    [114]袁艺,田胜尼,叶爱华,等.紫萁快速繁殖技术研究[J].园艺学报,2002,29(3):247-250
    [115]张国祥,杨居荣,华璐.土壤环境中的砷及其生态效应[J].土壤,1996,2:64-68
    [116]张金文,牛俊义.培养基、赤霉素和硼对蕨菜孢子萌发成苗影响的研究[J].草业学报,1999,8(1):62-88
    [117]张孝飞,林玉锁,俞飞,等.城市典型工业区土壤重金属污染状况研究[J].长江流域资源与环境,2005(4):512-515
    [118]张旭红,朱永官,王幼珊,等.不同施肥处理对丛枝菌根真菌生态分布的影响[J].生态学报,2006,26(9):3081-3087
    [119]郑洪元,张德生.土壤动态生物化学研究法[M].北京:科学出版社,1982,42-52
    [120]周东美,郝秀珍.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242
    [121]周艺敏,张金盛.天津市园田土壤和几种蔬菜中重金属含量状况的调查研究[J].农业环境科学学报,1990,9(6):30-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700