用户名: 密码: 验证码:
炼焦中煤选择性絮凝—浮选分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼焦煤是我国的稀缺煤种,近几年我国炼焦煤原煤年产量超过12亿吨,肥焦煤约3.8亿吨,其中超过1亿吨的肥焦煤中煤作为民用和电厂燃料使用,因而中煤的深度脱硫降灰对缓解稀缺煤资源短缺,提高资源利用率意义重大。但由于缺乏对炼焦中煤物料特性的认知,煤泥分选调控方法复杂且适应性差,迫切需要研究炼焦中煤的界面调控方法,通过选择性絮凝-浮选分离的强化实现浮选效率的提高。
     论文从浮选中煤的煤岩学特征入手,探索了颗粒的尺度效应,研究了中煤粒度变细后对浮选过程的影响,研究了通过分散、选择性絮凝提高微细颗粒的表观粒径并实现细粒浮选强化的界面调控方法;通过试验研究与理论计算相结合,探讨了煤泥浮选体系中絮凝剂PAM的选择性吸附行为及矿物颗粒间界面作用的影响,提出了选择性絮凝-浮选分离实现微细煤泥高效分选的方法。
     论文首先研究了浮选中煤的煤岩学特征、表面热力学特性及尺度效应。钱家营矿浮选中煤磨碎后(-45μm占65.80%),与矿物质共生的显微组分由51.99%降低至20.75%,得到了较好的解离。浮选中煤具有较低的表面自由能,而高岭石表面自由能的非极性成分和极性成分中基于氢键作用的碱性分量远大于浮选中煤,使其对极性和非极性液体的润湿速率均高于浮选中煤。中煤粒度变细后的尺度效应体现在颗粒的几何特征、界面化学性质及浮选行为三方面:随着粒度变细,其比表面积和总孔容呈数倍增大,Ⅱ类孔增多,平均孔径增加;基于毛细管作用的非选择性捕收剂吸附作用增强,对去离子水的润湿热值急剧降低;中等紊流强度的浮选环境中,疏水颗粒(θ≥80o)粒径在-200+45μm范围内上浮概率最大。因此,选择性的增大煤的表观粒径,并强化矿物质的分散,可以增加二者的可浮性差异。
     通过纯矿物和人工混合样品的浮选试验及分析,研究了浮选过程中微细粒矿物质的凝聚分散行为及对浮选的影响。高岭石和煤在酸性及Ca2+浓度大于0.1mM的溶液环境中均发生了异相凝聚,使煤的浮选回收率降低,精煤灰分提高,同时烃类油捕收剂加剧了高岭石的夹带;浮选时间随物料粒度变细而延长,水回收率随之增加,矿物质的夹带程度加剧;浮选中加入聚丙烯酰胺(PAM)显著提高了微细粒煤的回收率,同时增大了水回收率。
     研究了PAM在固液界面的吸附行为及对颗粒表面性质的影响。煤与高岭石吸附A401均以物理吸附为主,反应吸热并自发进行,PAM的碳链与煤表面以疏水键合作用为主,与高岭石以静电和氢键作用为主;煤吸附A401的驱动力大于高岭石,煤对分子量为300万的阴离子型聚丙烯酰胺(APAM A401)的吸附量是高岭石的2.15倍,选择性最好;煤吸附PAM A401后,亲水性官能团特征峰(酰胺基、游离的-NH2、仲酰胺N-H、C-N)增强,疏水性官能团甲基(-CH3)及亚甲基(-CH2-)减少,煤样的疏水性略有降低,极性成分增加,非极性成分降低,表面自由能由39.92mN·m1增大为40.43mN·m1;高岭石吸附PAM A401后疏水性略有增高,极性成分由58.27mN·m-2降低为55.05mN·m-2,表面自由能略有降低。
     研究了PAM、分散剂、搅拌强度、搅拌时间对煤和高岭石絮体表观粒径分布的影响。絮体的分形维数与粒径呈正相关性,而六偏磷酸钠可强烈抑制高岭石絮体的形成,提高了PAM吸附的选择性。PAM A401浓度为12mg/L时,煤絮体的d10、d50、d90分别是高岭石絮体的8.42、2.60和2.75倍,所形成絮体的分形维数为1.56,絮体体积较小但密实。量子化学模拟计算表明,PAM分子片段中与氮原子相连的氢原子和煤本体的芳香结构形成大π键作用,协同O—H…O作用极大的提高了PAM与煤的吸附能,使PAM与煤吸附结合的稳定性高于所构建的高岭石的硅氧层和铝氧层。对吸附PAM前后煤和高岭石颗粒间的界面作用进行了扩展的DLVO理论计算,研究表明:相互作用能量参数是影响微细煤泥浮选体系颗粒间相互作用势能的主要因素;煤颗粒之间的疏水吸引势能高于静电及范德华势能2个数量级,吸附A401后煤颗粒之间静电排斥力增强,疏水吸引势能大小及作用范围减小,导致其吸引势能的绝对值减小;吸附PAM的煤和高岭石颗粒之间静电排斥力增大,亲水排斥势能减小,颗粒间总势能仍为排斥势能。
     在以上研究的基础上进行了选择性絮凝-浮选分离试验,与常规浮选试验相比,精煤灰分相当时,选择性絮凝-浮选提高了精煤产率6.38个百分点,捕收剂用量降低了30%,实现了浮选中煤的高效回收。
Re-separation of middlings can achieved deep desulfurization and ash reductionof coal. And it has important strategic significance to ensure sustainable supply ofscarce coal resources. Coal petrology characteristics and surface thermodynamiccharacterization of flotation middlings was researched firstly. Scale effect of particleswith its impact on flotation behavior and process characteristics of the fine coal wasstudied. Apparent size of fine particles was improved by dispersing and selectiveflocculation to enhance the fine coal flotation. In coal flotation system, selectiveadsorption behavior of flocculants PAM onto coal or kaolinite, surface modification ofparticles, the role of mineral particles surface-modified particles, action mechanismbetween PAM and particles and interfacial interaction between particles werediscussed by experimental study and theoretical calculations. Efficient separation offine coal by selective flocculation-flotation separation was achieved.
     Firstly, coal petrology characteristics, surface thermodynamic characterization offlotation middlings and scale effect of particles was studied. Particles will be fine ofthe re-separation which was determined by its petrology characteristics. After grindingof flotation middlings (-45μm about65.80%), macerals associated with mineralsdecreased from51.99%to20.75%. and it was well liberated. The flotation middlingswas strong hydrophobic with low surface free energy. The non-polar component andalkaline part based on hydrogen bonding of polar components of surface free energyof kaolinite is much larger than that of coal. Scale effect is reflected in geometriccharacteristics, interface chemistry and flotation behavior of particles. Therefore,when the surface hydrophobicity of coal was less affected, floatability difference canimprove by increase the apparent particle size of coal selectively, or mineral particleswere dispersed.
     Flotation behavior and process characteristics of fine coal was studied bymirco-flotation tests of pure mineral and artificial mixed samples, flocculation-flotation test, sedimentation test, zeta potential measurement and scanning electronmicroscopy test. It showed that heterogeneous agglomeration between coal andkaolinite was occurred in acidic environment or in Ca2+solution (>0.1mMconcentrations), which lead to reduce of coal recovery and increase of coal ashcontent. Collector aggravated the entrainment of kaolinite. Quartz particles weretransported into foam mainly by water entrainment. The finer the particle sizebecomes, the longer the flotation time. Thus, water recovery and entrainment degree increases. PAM can improve recovery of fine coal significantly, and water recoverywas increased together.It showed that selectivity of anionic polyacrylamide with molecular weight3×106(A401) is the best. The coal adsorbance of this polyacrylamide is2.15times largerthan that of kaolinite. Adsorption of A401onto coal or kaolinite was mainlyendothermic and spontaneous physical adsorption reaction. Hydrophobic bondingdominated the interaction between carbon chain of PAM and coal surface, whileelectrostatic and hydrogen bonding interactions was the main effect between PAM andkaolinite. When different polyacrylamide was absorbed onto different mineralsurfaces, the effect of compression or penetration with different intensity ofpolyacrylamide occurred.After adsorption of PAM A401, the hydrophobicity of coaldecreased. The hydrophobicity of Kaolinite increased slightly, and the polarcomponent was reduced from58.27mN m-2to55.05mN m-2.The laser particle size analyzer was used to measure the flocs size distribution ofcoal or kaolinite with different types of PAM, dispersing agent, stirring intensity andstirring time. Hexametaphosphate can inhibit the formation of flocs kaolinite strongly,which improved the adsorption selectivity of PAM. Quantum chemistry calculationproved that large π bonding effect was formatted between the hydrogen atom attachedto the nitrogen atom of PAM fragment and the phenyl ring of coal. The stability ofadsorption of PAM onto coal is higher than that of the constructed kaolinite siliconoxide layer and the aluminum oxide layer. Before and after PAM adsorption,interfacial interaction between particles of kaolinite was calculated by the extendedDLVO theory. Repulsion potential between coal particles after PAM adsorption and iskaolinite decreased, while the electrostatic repulsion increases, and the hydrophilicrepulsion potential reduced.Efficient separation of fine coal was achieved through the selectiveflocculation-flotation. Compared with the conventional flotation, collector dosage ofthe selective flocculation-flotation reduced, flotation rate of fine coal was improved.Clean coal recovery of selective flocculation-flotation was improved6.38percent,saving30%of collectors.
引文
[1]吴式俞,王美丽.煤炭在中国能源的地位[J].煤炭加工与综合利用,2006,5:2-8.
    [2]方君实.十二五将开发炼焦煤开发布局[J].能源环境,2011,(2):64-65.
    [3]樊永山,石耀祥,潘莹,等.我国炼焦煤资源的合理开发与保护[J].山西焦煤科技,2008,(3):1-3.
    [4]曹代勇.山西炼焦煤资源与开发利用现状分析[J].中国煤炭地质,2008,(11):1-4.
    [5]马庆元.中国炼焦煤资源的分布特征[J].煤炭科学技术,2006,(11):63-33.
    [6]李安,李萍,陈松梅.炼焦煤深度降灰脱硫的研究[J].煤炭学报,2007,32(6):639-642.
    [7]刘莉君.优质稀缺煤种难选煤泥的分选过程强化研究[D].沈阳:东北大学,2011.
    [8]桂夏辉.煤泥分选过程强化及两段式分选研究[D].徐州:中国矿业大学,2012.
    [9]张相国,韩春龙,沈笑君,等.中煤再选的研究与探讨[J].选煤技术,2007,3:45-48.
    [10]张相国,沈笑君,史春华.中煤再选的必要性和可行性[J].中国煤炭,2007,33:53-55.
    [11]吕玉庭,王劲草.中煤破碎再选工艺及技术经济分析[J].洁净煤技术,2007,6:20-21.
    [12]曾德东,张喜红,齐剑秋.增设中煤再洗工艺的实践与效果[J].煤炭技术,2003,8:20-22.
    [13]荆树春,赵昕.城山煤矿选煤厂中煤再选的研究与探讨[J].工业技术,2009,5:115-115.
    [14]张苑.孙庄矿选煤厂中煤重介技术改造实践[J].选煤技术,2004,3:23-24.
    [15]刘军伶,郑长科.车集选煤厂中煤再洗工艺流程探讨[J].煤质技术,2008,11:60-61.
    [16]杨毛生,郭德.中煤破碎再选的研究[J].煤炭工程,2010,12:95-97.
    [17]赵闻达,李延锋,谢彦君,等.中煤破碎再选的应用研究[J].煤炭工程,2012,7:97-99.
    [18]张磊,刘文礼,马克富,等.炼焦中煤再选技术试验研究[J].煤炭科学技术,2011,39:125-128.
    [19]刘永华.优质稀缺煤的中煤再选试验研究[D].徐州:中国矿业大学,2012.
    [20]傅晓恒,朱书全,王祖讷.主焦中煤再分选的必要性与可行性[J].中国煤炭,1996,3:40-41.
    [21]傅晓恒,王祖讷.疏水絮凝-浮选法分选主焦中煤的研究[J].中国矿业大学学报,1996,3:57-61.
    [22]李萍,付晓恒.炼焦中煤深度降灰的研究[J].洁净煤技术,2005,11:18-21.
    [23]傅晓恒,朱书全,杨巧文,等.一种煤炭深度物理脱灰脱硫新工艺[J].煤炭科学技术,1997,25(12):15-16.
    [24]李安,李萍,陈松梅.炼焦煤深度降灰脱硫的研究[J].煤炭学报,2007,32(6):639-642.
    [25] Chary G, Dastidar M G. Optimization of experimental conditions for recovery of coking coal fines by oilagglomeration technique[J]. Fuel,2010,89(9):2317-2322.
    [26] Haque E M. Indian coal: production and ways to increase coal supplies[J]. International Journal of scientificand research publication,2013,3.
    [27] Suarez-Ruiz I., Crelling J.C. Applied coal petrology: the role of petrology in coal utilization[M]. Elsevier Ltd.,2008.
    [28] Sarkar G.G., Ghose S., Chaundhuri S.G., et al., Selectivity of coal macerals during flotation and oilagglomeration: a case study[J]. Coal Preparation,1984,1(1):39-52.
    [29] Wu Chao,Ou Jiacai,Zhou Bo, et al. Investigation on wetting behavior of wetting agents to dust of sulfide oresby upward capillary seepage method[J]. Journal of Safety and Environment,2005,8(4):65-68.
    [30] Arnold B.J., Aplan F.F., The hydrophobicity of coal macerals[J]. Fuel,1989,68:651-658.
    [31]常海洲,王传格,曾凡桂,等.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报,2006,34(4):389-394.
    [32]村田逞诠,朱春生,龚祯祥,译.煤的润湿性研究及其应用[M].北京:煤炭工业出版社,1985.
    [33]段旭琴,杨慧芬,王祖讷.低变质烟煤有机显微煤岩组分的润湿性[J].煤炭学报,2009,32(2):243-246.
    [34] Jorjani E., Esmaeili S., Tayebi Khorami M., The effect of particle size on coal maceral group’s separationusing flotation[J]. Fuel,2013,114:10-15.
    [35] Holysz L., Surface free energy and floatability of low-rank coal[J]. Fuel,1995,75(06):737-742.
    [36] Jańczuk B., Wójcik W., Zdziennicka A., et al., Componets of the surface free energy of low rank coals in thepresence of n-alkanes[J]. Powder Technology,1996,86:229-238.
    [37]王宝俊,李敏,赵清艳,等.煤的表面电位与表面官能团间的关系[J].化工学报,2004,55(08):1329-1334.
    [38]段旭琴,王祖讷孙春宝.神府煤显微组分表面性质研究[J].中国矿业大学学报,2007,36(5):630-635.
    [39] Chibowski E., Perea-Carpio R., Problems of contact angle and solid surface free energy determ ination. Adv.Colloid Interface Sci.,2002,98:245-264.
    [40] Fuerstenau D.W., Rosenbaum J.M., Laskowski J., Effect of surface functional groups on the flotation of coal[J].Colloids and Surfaces,1983,8(2):153-173.
    [41] Honaker R.Q., Mohanty M.K., Crelling J.C., Coal maceral separation using column flotation[J]. MineralEngineering,1996,9(4):449-464.
    [42] Fecko P., Pectova I., Ovcari P., et al. Infuence of petrographical composition on coal fotability[J]. Fuel,2005,84:1901-1904.
    [43] Arnold B.J., Aplan F.F., The effect of clay slimes on coal flotation, part i: the nature of the clay[J].International journal of mineral processing,1986.17:225-242.
    [44] Arnold B.J., Aplan F.F., The effect of clay slimes on coal flotation, part ii: The role of water quality[J].International Journal of Mineral Processing,1986,17:243-260.
    [45] Angle, C.W., Hamza, H.A., An electrokinetic study of a natural coal associated mixture of kaolinite andmontmorillonite in electrolytes[J]. Applied Clay Science,1989,4(3):263-278.
    [46] Williams D.J.A., Williams K.P., Electrophoresis and zeta potential of kaolinite[J]. Journal of Colloid andInterface Science,1978,65(1):79-87.
    [47] Xu Z.H., Liu J.J., Choung J.W., et al., Electrokinetic study of clay interactions with coal in flotation[J].International Journal of Mineral Processing,2003,68:183-196.
    [48] Angle C.W., Hamza H.A., An electrokinetic study of a natural coal associated mixture of kaolinite andmontmorillonite in electrolytes[J]. Applied Clay Science,1989,4:263-278.
    [49] Honaker R..Q., Yoon R.H., Luttrell G.H., Ultrafine coal cleaning using selective hydrophobic coagulation[J].Coal Preparation,2005,25(1):81-97.
    [50] Zheng X., Johnson N.W., Franzidis J.p., Modelling of entrainment in industrial flotation cells: water recoveryand degree of entrainment[J]. Minerals Engineering,2006,19(11):1191-1203.
    [51] Neethling S.J., Cilliers J.J., The entrainment of gangue into a flotation froth[J]. International Journal ofMineral Processing,2002,64:123-134.
    [52] Cilek E.C., The effect of hydrodynamic conditions on true flotation and entrainment in flotation of a complexsulphide ore[J]. International Journal of Mineral Processing,2009,90(1-4):35-44.
    [53] Harvey P.A., Nguyen A.V., Evans G.M., Influence of electrical double-layer interaction on coal flotation[J].Journal of Colloid and Interface Science,2002,250(2):337-343.
    [54] Miettinen T., Ralston J., Fornasiero D., The limits of fine particle flotation[J]. Minerals Engineering,2010,23(5):420-437.
    [55] Craig V.S.J., Ninham B.W., Pashley R.M., Effent of electrolytes on bubble coalescence[J]. Nature,1993,364(6435):317-319.
    [56] Pugh R.J., Weissenborn P., Paulson O., Flotation in inorganic electrolytes: the relationship between recover ofhydrophobic particles, surface tension, bubble coalescence and gas solubility[J]. International Journal ofMineral Processing,1997,51(1-4):125-138.
    [57] Ozdemir O., Taran E., Hampton M.A., et al., Surface chemistry aspects of coal flotation in bore water[J].International Journal of Mineral Processing,2009,92(3-4):177-183.
    [58]张明青,刘炯天,李小兵.煤泥水中黏土颗粒对钙离子的吸附实验研究及机理探讨[J].中国矿业大学学报.2004,33(5):547-551.
    [59]张明青,刘炯天,单爱琴,刘汉湖.煤泥水中Ca2+在黏土矿物表面的作用[J].煤炭学报,2005,30(5):367-372.
    [60]张明青,刘炯天,王永田.水质硬度对煤泥水中煤和高岭石颗粒分散行为的影响[J].煤炭学报,2008,33(9):1058-1064.
    [61]张明青,刘炯天,刘汉湖,等.水质硬度对煤和蒙脱石颗粒分散行为的影响[J].中国矿业大学学报,2009,38(1):114-120.
    [62]刘炯天,张明青,曾艳.不同类型黏土对煤泥水中颗粒分散行为的影响[J].中国矿业大学学报,2010,39(1):59-64.
    [63]张志军,刘炯天,冯莉,等.基于Langmuir理论的平衡吸附量预测模型[J].东北大学学报,2011,32(5):749-756.
    [64]张志军,刘炯天,邹文杰.水质硬度对煤泥浮选的影响[J].中国矿业大学学报,2011,40(4):612-
    [65] Chavez A, Jimenz B, Maya C. Particle size distribution as a useful tool microbial detection[J]. Water Scienceand technology,2004,50(2):179-186.
    [66] Gregory J. Monitoring particle aggregation processes[J]. Advances in Colloid and Interface Science,2009,147:109-123.
    [67]张志军,刘炯天,冯莉,等.一种评价煤泥颗粒凝聚效果的激光粒度分析方法[J].中国矿业大学学报,2012,41(4):624-629.
    [68] Sabah E., Erkan Z. E., Interaction mechanism of flocculants with coal waste slurry[J]. Fuel,2006,85(3):350-359.
    [69]余萍.不同无机电解质对煤浮选的影响及溶液化学研究[D].太原:太原理工大学,2010.
    [70]韩艳娜.无机电解质与表面活性剂共同作用对低阶煤表面性质及可浮性的影响[D].太原:太原理工大学,2011.
    [71] Smith P.G., Warren L.G., Entrainment of particles into fotation froths[J]. Mineral Processing Met. Rev.1989,5:123-145.
    [72] Kirjavainen V.M., Review and analysis of factors controlling the mechanical fotation of gangue minerals[J],International Journal of Mineral Processing,1996,46:21-34.
    [73] Johnson N.W., A review of the entrainment mechanism and its modelling in industrial fotation processes[C],Centenary of Flotation Symposium. Australasian Institute of Mining and Metallurgy (AusIMM),2005:487-496.
    [74] Johnson N.W., McKee D.J., Lynch A.J., Flotation rates of non-sulphide minerals in chalcopyrite flotationprocesses[J]. Trans. Am. Inst. Min. Pet. Eng.,1974,256:204-226.
    [75] Jowett A., Gangue mineral contamination of froth[J]. Brit. Chem. Eng.,1966,2:330-333.
    [76] Subrahmanyam T.V., Forssberg E., Frothstability, particleentrainment and drainage in flotation-A review[J].International Journal of Mineral Processing,1988,23(1-2):33-53.
    [77] Engelbrecht J.A., Woodburn E.T., The effects of froth height, aeration rate an gas precipitation on flotation[J].J. S. Afr. Inst. Min. Metall.,1975,10:125-132.
    [78] Bisshop J.P., White M.E., Study of particle entrainment in flotation froths[J]. Proc. I.M.M.,1976,85:191-194.
    [79] Warren L.J., Determination of the contributions of true flotation and entrainment in batch flotation tests[J].International Journal of Mineral Processing,1985,14:33-44.
    [80] Subrahmanyam T.V., Forssberg E., Froth stability, particle entrainment and drainage in flotation-a review[J].International Journal of Mineral Processing,1988,23:33-53.
    [81] Kirjavainen V.M., Application of a probability model for the entrainment of hydrophilic particles in frothflotation[J]. International Journal of Mineral Processing,1989,27:63-74.
    [82] Kirjavainen V.M., Laapas H.R., A study of entrainment mechanism in flotation[C] XVI International MineralCongress, Elsevier Science Pubshers BV.1988:665-677.
    [83] Vera M.A., Mathe Z.T., Franzidis J.P., et al., The modeling of froth zone recovery in batch and continuouslyoperated laboratory flotation cells[J]. International Journal of Mineral Processing,2002,64:135-151.
    [84] Neethling S.J., Cilliers J.J., Simulation of the effect of froth washing on flotation performance[J]. ChemicalEngineering Science,2001,56:6303-6311.
    [85] Neethling S.J., Cilliers J.J., The entrainment of gangue into a flotation froth[J]. International Journal ofMineral Processing,2002,64:123-134.
    [86] Yianatos J., Contreras F., Díaz F., et al., Direct measurement of entrainment in large fotation cells[J]. PowderTechnology,2009,189:42-47.
    [87] Yianatos J., Contreras F., Particle entrainment model for industrial fotation cells[J]. Powder Technology,2010,197:260-267.
    [88] Zheng X., Franzidis J.P., Johnson N.W., An evaluation of diferent models of water recovery in fotation[J].Minerals Engineering,2006,19:871-882.
    [89] Zheng X., Johnson N.W., Franzidis J.P., Modelling of entrainment in industrial fotation cells: Water recoveryand degree of entrainment[J]. Minerals Engineering,2006,19:1191-1203.
    [90] Ata S., Ahmed N., Jameson G.J., Collection of hydrophobic particles in the froth phase[J]. InternationalJournal of Mineral Processing,2002,64:101-122.
    [91] Schwarz S., Grano S., Effect of particle hydrophobicity on particle and water transport across a fotationfroth[J]. Colloids and Surfaces A: Physicochem. Engineering Aspects,2005,256:157-164.
    [92] Cilek E.C., The effect of hydrodynamic conditions on true fotation and entrainment in fotation of a complexsulphide ore[J]. International Journal of Mineral Processing,2009,90:35-44.
    [93] George P., Nguyen A.V., Jameson G.J., Assessment of true fotation and entrainment in the fotation ofsubmicron particles by fne bubbles[J]. Minerals Engineering,2004,17:847-853.
    [94] Angadi S.I., Jeon H.S., Nikkam S., Experimental analysis of solids and water fow to the coal fotation froths[J].International Journal of Mineral Processing,2012,110-111:62-70.
    [95] Boylu F., Laskowski J.S., Rate of water transfer to flotation froth in the flotation of low-rank coal that alsorequires the use of oily collector[J]. International Journal of Mineral Processing,2007,83:125-131.
    [96] Wang L.G., Drainage and rupture of thin foam flms in the presence of ionic and non-ionic surfactants[J].International Journal of Mineral Processing,2012,102-103:58-68.
    [97] Melo F., Laskowski J.S., Effect of frothers and solid particles on the rate of water transfer to froth[J].International Journal of Mineral Processing,2007,84:33-40.
    [98]桂夏辉,程敢,刘炯天,等.异质细泥在煤泥浮选中的过程特征[J].煤炭学报,2012,37(2):301-309.
    [99]刘莉君,刘炯天,吴爱云.难选煤泥浮选新工艺探讨[J].选煤技术,2010(4):48-51.
    [100]夏灵勇,佟顺增,桂夏辉.高灰细泥对煤泥浮选影响的试验研究[J].选煤技术,2010,5:15-18.
    [101] Trahar W.J., A rational interpretation of the role of particle size in flotation[J]. International Journal ofMineral Processing,1981,8:289-327.
    [102]陶有俊,刘文礼,蔡璋,等.细粒煤浮选动力学特性研究[J].中国矿业大学学报,2003,32(6):694-697.
    [103] Ross, V.E., Van Deventer, J.S.J., Mass transport in flotation column froths[J]. Column Flotation,1988,88:129-139.
    [104] Schulze H.J., Stockelhuber W., Coagulation and flocculation[M]. London: Taylor&Francis Group,2005:456-517.
    [105]康文泽,胡军.物理调节法对矿物浮选的影响[J].洁净煤技术,2004,10(4):21-24.
    [106]荀海鑫.超声强化稀缺难浮煤泥浮选研究[D].哈尔滨:黑龙江科技学院,2009.
    [107]郭德,张秀梅,石常省,等.压强预处理对煤泥浮选效果的影响[J].煤炭学报,2011,36(8):1365-1369.
    [108]韩致洲.煤炭表面改质技术及设备在东曲矿选煤厂的应用研究[J].煤炭加工与综合利用,2006,4:25-28.
    [109]任建国.细粒煤表面改质技术的研究[J].山西焦煤科技,2006,5:32-34.
    [110]田林伶.表面改质机与微泡浮选机在东曲矿选煤厂的应用[J].煤炭加工与综合利用,2006,4:14-16.
    [111]王建军.表面改质机和微泡浮选机在司马矿选煤厂的应用[J].煤炭加工与综合利用,2008,5:6-8.
    [112]朱英.高硫煤电化学调浆浮选脱硫研究[D].北京:北京化工大学,2000.
    [113]董宪姝.煤电化学强化浮选脱硫过程及机理的研究[D].太原:太原理工大学,2002.
    [114]孙东,许占贤.煤油乳化提高浮选性能[J].黑龙江矿业学院学报,1998,9:38-41.
    [115]赵鸣,段旭琴.非离子型煤用乳化捕收剂的应用[J].太原理工大学学报,1999,30(1):19-21.
    [116] N.T.莫克松.利用非离子型表面活性剂乳化捕收剂对粗粒煤浮选的影响[J].国际矿物加工杂志,1986,18:21-23.
    [117]马克玉,樊民强.表面活性剂SPAN80对煤泥浮选促进作用的研究[J].选煤技术,2011,3:8-11.
    [118]阮继政.乳化柴油捕收剂的制备及应用机理研究[D].徐州:中国矿业大学,2011.
    [119]任守政,关家仁.高效烃类油乳化剂的研究[J].选煤技术,1997,3:10-13.
    [120] Abismail B., Canselier J.P., Wilhelm A.M., et al., Emulsification by ultrasonic: drop size distribution andstability[J]. Ultrasonics Sonchemistry,1999,6:75-83.
    [121] Abismail B, Canselier J.P, Wilhelm A.M., et al. Emulsification processes: on-line study by multiple lightscattering measurement[J]. Ultrasonics Sonochemistry,2000,7:187-192.
    [122]张希梅,赵寒雪,康文泽.浮选药剂BET在选煤工业中的应用[J].应用能源技术,2004,4:5-7.
    [123]胡军,王淀佐,胡永平.新型煤炭脱硫降灰浮选药剂BET的试验研究[J].中国矿业大学学报,2001,6:578-581.
    [124]吕玉庭.煤油乳化捕收剂作用机理与应用[J].矿产综合利用,2003,6:33-35.
    [125]胡军,王淀佐,胡永平.药剂与超声波处理的选煤方法研究[J].中国矿业大学学报,2002,2:186-189.
    [126]黄波.新型煤泥浮选促进剂的制备及作用机理[J].洁净煤技术,2004,10(4):3-7.
    [127]康文泽. AO捕收剂浮选稀缺难浮煤实验[J].黑龙江科技学院学报,2011,2:85-88.
    [128]郭德,张秀梅.高效浮选促进剂的研究[J].煤炭科学技术,2002,11:54-56.
    [129]程双武,郭崇涛,郭德,等.煤用高效浮选促进剂的研究[J].选煤技术,2001,5:22-23.
    [130]徐海宏,李满.表面活性剂对煤浮选的促进作用分析[J].煤质技术,2001,1:27-28.
    [131]许玫,张景来.一种新型浮选促进剂的研究[J].黑龙江科技学院学报,2003,1:18-20.
    [132]张晨光,王启宝.表面活性剂在煤浮选中的促进作用及机理[J].煤炭加工与综合利用,1996,2:31-33.
    [133]朱建光.浮选药剂的组合使用[M].北京:冶金工业出版社,1988.
    [134]弗利波夫.非硫化矿物浮选中混合捕收剂的协同作用[J].国外金属矿选矿,2007,10:13-16.
    [135]吴多才.国外混合用药及其协同效应的研究[J].国外金属矿选矿,1983,1:24-26.
    [136]蔡璋,蒋荣立.极细粒煤泥分选新方法:选择性絮凝[J].中国矿业大学学报,1993,22(1):54-61.
    [137] Lemanowicz M, Jach Z, Kilian E, et al. Ultra-fine coal flocculation using dual-polymer systems ofultrasonically conditioned and unmodified flocculant[J]. Chemical Engineering Journal,2011,168(1):159-169.
    [138]田小鹏.几种水溶性高分子化合物对煤泥浮选和过滤的影响规律研究[D].太原:太原理工大学,2006.
    [139]谢登峰.选择性絮凝-浮选法制备超纯煤的试验研究[J].选煤技术,2008(5):25-27.
    [140] Palme s J.R., Effect of the properties of coal surface and flocculant type on the flocculation of fine coal[D].University of British Columbia,1996.
    [141]沙杰,谢广元,李晓英,等.细粒煤选择性絮凝分选试验研究[J].煤炭科学技术,2012,40(3):118-121.
    [142] Warren L.J., Shear-flocculation of ultrafine scheelite in sodium oleate solutions[J]. Journal of Colloid andInterface Science,1975,50(2):307-318.
    [143] Warren L.J., Contamination of sediments by lead, zinc and cadmium: a review[J]. Environmental PollutionSeries B, Chemical and physical,1981,2(6):401-436.
    [144] Warren L.J., Determination of the contributions of true flotation and entrainment in batch flotation tests[J].International Journal of Mineral Processing,1985,14(1):33-44.
    [145] Yoon R.H., Luttrell G.H., Method for separating fine particles by selective hydrophobic coagulation: U.S.Patent5,161,694[P].1992-11-10.
    [146] Yoon R.H., Flinn D.H., Rabinovich Y.I., Hydrophobic interactions between dissimilar surfaces[J]. Journal ofcolloid and interface science,1997,185(2):363-370.
    [147] Xu Z, Yoon R.H. The role of hydrophobia interactions in coagulation[J]. Journal of Colloid and InterfaceScience,1989,132(2):532-541.
    [148] Xu Z., A study of hydrophobic interaction in fine particle coagulation[D]. Virginia Polytechnic Institute andState University,1990.
    [149] Lu S., Song S., Hydrophobic interaction in flocculation and flotation1. Hydrophobic flocculation of finemineral particles in aqueous solution[J]. Colloids and surfaces,1991,57(1):49-60.
    [150] Song S., Lopez-Valdivieso A, Reyes-Bahena J L. Hydrophobic flocculation applied to fine mineral and coalprocessing[C] XXIII Congress AIMMGM.1999:1-20.
    [151] Song S., Lu S., Theory and applications of hydrophobic flocculation technology[J]. Developments in MineralProcessing,2000,13(C5):31-38.
    [152] Song S., Lopez-Valdivieso A, Reyes-Bahena J L, et al. Floc flotation of galena and sphalerite fines[J].Minerals engineering,2001,14(1):87-98.
    [153] Song S., Lu S., Lopez-Valdivieso A. Magnetic separation of hematite and limonite fines as hydrophobic flocsfrom iron ores[J]. Minerals engineering,2002,15(6):415-422.
    [154] Song S., Lopez-Valdivieso A. Parametric aspect of hydrophobic flocculation technology[J]. MineralProcessing and Extractive Metallurgy Review,2002,23(2):101-127.
    [155] Song S, Zhang Y, Wu K, et al. Flotation of coal fines as hydrophobic flocs for ash rejection[J]. Journal ofdispersion science and technology,2004,25(1):75-81.
    [156] Song S., Experimental studies on hydrophobic flocculation of coal fines in aqueous solutions and flotation offlocculated coal[J]. International Journal of Oil, Gas and Coal Technology,2008,1(1):180-193.
    [157]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].中南工业大学出版社,1993.
    [158] Honaker R.Q, Yoon R.H., Luttrell G.H., Ultrafine coal cleaning using selective hydrophobic coagulation[J].Coal Preparation,2005,25(1):81-97.
    [159] Attia Y, Yu S., Adsorption thermodynamics of a hydrophobic polymeric flocculant on hydrophobic colloidalcoal particles[J]. Langmuir,1991,7(10):2203-2207.
    [160] Fan M., Tao D., Honaker R., et al. Nanobubble generation and its applications in froth flotation (part II):fundamental study and theoretical analysis[J]. Mining Science and Technology (China),2010,20(2):159-177.
    [161] Smith K.E., Cleaning and Dewatering Fine Coal using Hydrophobic Displacement[D]. Virginia PolytechnicInstitute and State University,2008.
    [162] Alagha L., Wang S., Yan L., et al. Probing Adsorption of Polyacrylamide-based Polymers on AnisotropicBasal Planes of Kaolinite using Quartz Crystal Microbalance[J]. Langmuir,2013,29(12), pp3989–3998.
    [163] Dai C., Zhao G., You Q., et al., The investigation of a new moderate water shutoff agent: Cationic polymerand anionic polymer[J]. Journal of Applied Polymer Science,2014,131(3).
    [164] Zhang S, Li X, Chen J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-dopedactivated carbon fiber[J]. Journal of colloid and interface science,2010,343(1):232-238.
    [165] Chandra A.P., Puskar L., Simpson D.J., et al. Copper and xanthate adsorption onto pyrite surfaces:Implications for mineral separation through flotation[J]. International Journal of Mineral Processing,2012,114:16-26.
    [166] Liu J., Xu Z., Masliyah J., Colloidal forces between bitumen surfaces in aqueous solutions measured withatomic force microscope[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,260(1):217-228.
    [167]石田尚之.在表面活性剂水溶液中细颗粒与气泡间相互作用力的直接测定[J].国外金属矿选矿,2005,7:38-44.
    [168] Beaussart A., Mierczynska-Vasilev A., Beattie D.A., Evolution of carboxymethyl cellulose layer morphologyon hydrophobic mineral surfaces: Variation of polymer concentration and ionic strength[J]. Journal of colloidand interface science,2010,346(2):303-310.
    [169] Fa K., Nguyen A.V., Miller J.D., Interaction of calcium dioleate collector colloids with calcite and fluoritesurfaces as revealed by AFM force measurements and molecular dynamics simulation[J]. International Journalof Mineral Processing,2006,81(3):166-177.
    [170] CSN ISO7404-3. Methods for the petrographic analysis of fat coal and anthracite. Part3: method ofdetermining group composition[S]. Praha: Cesky Normalization Institut,1997,12.
    [171] Hower J.C., Maceral/microlithotype partitioning with particle size of pulverized coal: examples from powerplants burning central appalachian and illinois basin coals[J]. International Journal of Coal Geology,2008,73(3):213-218.
    [172]田利,邹明珠,许宏鼎,等.采油污水中部分水解聚丙烯酰胺浓度的测定[J].吉林大学学报:理学版,2003,41(2):224-227.
    [173]马庆霞,张忠智,苗建生,等.淀粉-碘化镉法测定部分水解聚丙烯酰胺浓度的影响因素分析[J].化学与生物工程,2010,27(006):80-82.
    [174]舒炼,柳建新,吕鑫,等.淀粉-碘化镉法检测聚丙烯酰胺类聚合物浓度测量条件的优化[J].应用化工,2010,39(011):1766-1769.
    [175] Kutchko B.G., Kim A.G., Fly ash characterization by SEM-EDS[J], Fuel,85(17-18):2537-2544.
    [176] Lee J., Drzal L.T., Surface characterization and adhesion of carbon fibers to epoxy and polycarbonate[J].International journal of adhesion and adhesives,2005,25(5):389-394.
    [177] Sokolovic J.M., Stanojlovic R.D., Markovic Z.S., Activation of oxidized surface of anthracite waste coal byattrition[J]. Physicochemical Problems of Mineral Processing,2012,48:5-18.
    [178] Orrego-Ruiz J.A., Cabanzo R., Mejía-Ospino E., Study of Colombian coals using photoacoustic Fouriertransform infrared spectroscopy[J]. International Journal of Coal Geology,2011,85(3):307-310.
    [179] Verble J.L., Wallis R.F., Infrared studies of lattice vibrations in iron pyrite[J]. Physical Review,1969,182(3):783.
    [180] Sourisseau C., Cavagnat R., Fouassier M., The vibrational properties and valence force fields of FeS2, RuS2pyrites and FeS2marcasite[J]. Journal of Physics and Chemistry of Solids,1991,52(3):537-544.
    [181]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,2002:358-366.
    [182] Chau T.T., A review of techniques for measurement of contact angles and their applicability on mineralsurfaces[J]. Minerals Engineering,2009,22:213-219.
    [183] Chwastiak S., Calculation of contact angles from surfactant adsorption isotherms[J], Journal of Colloid andInterface Science,2009,339:196-201.
    [184] Simon M.I., Susan H., Simon B., Contact angle measurements of iron ore powders [J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects,2000166:203-214.
    [185] Van Oss C.J., Interfacial Forces in Aqueous Media[M]. New York: Marcel Dekker,2006:161-184.
    [186] Li Z., Giese R.F., van Oss C.J., et al., The surface thermodynamic properties of talc treated withoctadecylamine[J]. Colloid and Interface Sci.,1993,156:279-284.
    [187]王永田,张明青,刘炯天.分形理论在难沉降煤泥水澄清药剂选择中的应用[J].煤炭学报,2010,35(12):2116-2120.
    [188] Siebold A., Walliser A., Nardin M., et al., Capillary rise for thermodynamic characterization of solid particlesurface[J]. Journal of Colloid and Interface Science,1997,186:60-70.
    [189] Washburn E.W., The dynamics of capillary flow [J]. Physical Review,1921,17:273-283.
    [190] Martic G., De Coninck J., Blake T.D., Influence of the dynamic contact angle on the characterization ofporous Media[J]. J. Colloid Interface Sci.,2003,263:213-2l6.
    [191]杨斌武,常青,何超.毛细上升法研究水处理滤料的表面热力学特性[J].化工学报,2007,58(2):269-275.
    [192]周国莉,武建军,李国宁,等.不同干燥方式对褐煤孔结构及复吸特性的影响[J].煤炭科学技术,2012,40(10):100-103.
    [193]宋玲玲,冯莉,刘炯天,等.碱液处理对褐煤孔隙结构的影响[J].中国矿业大学学报,2012,41(004):629-634.
    [194]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [195]张松航,汤达祯,唐书恒,等.鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素[J].地质学报,2008,82(10):1341-1348.
    [196] Kano F., Abe I., Kamaya H., et al. Fractal model for adsorption on activated carbon surfaces: Langmuir andFreundlich adsorption[J]. Surface Science,2000,467(1):131-138.
    [197]谢克昌.煤的结构与反应性[M].科学出版社,2002.
    [198]徐满才,史作清,何炳林.分形表面及其性能[J].化学通报,1994,3(10):10-14.
    [199] Wenzel, Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial&Engineering Chemistry28.8(1936):988-994.
    [200] Yoon R.H.,矿粒-气泡作用中的流体动力及表面力[J].国外金属矿选矿,1993(6):5-12.
    [201] Yoon R.H.,细粒浮选的进展-微泡浮选[J].国外金属矿选矿,1994(8):31-39.
    [202]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究[D].长沙:中南大学,2001.
    [203] Jowett A.,浮选中矿粒-气泡集合体的形成与破裂闭[J].国外金属矿选矿,1982(5):20-34.
    [204] Dai Z., Fornasiero D., Ralston J., Particle–bubble attachment in mineral flotation[J]. Journal of colloid andinterface science,1999,217(1):70-76.
    [205] Koh P.T.L., Schwarz M.P., CFD modelling of bubble–particle attachments in flotation cells[J]. Mineralsengineering,2006,19(6):619-626.
    [206]闫小康.柱式分选的多流态过程模拟及其流体动力学研究[D],徐州:中国矿业大学,2013.
    [207] Yoon R.H., Luttrell G.H., The effect of bubble size on fine particle flotation[J]. Mineral Procesing andExtractive Metallurgy Review,1989,5(1-4):101-122.
    [208] Joachim H., Flotation as a heterocoagulation process: possibilities of calculating the probability offotation[M]. Dobias, B.(Ed.), Coagulation and Flocculation. Marcel Dekker, NewYork.
    [209] Healy T.W., Principles of adsorption of organics at solid-solution interfaces[J]. Journal of MacromolecularScience-Chemistry,1974,8(3):603-619.
    [210] Pugh R.J., Macromolecular organic depressants in sulphide flotation-a review,1. Principles, types andapplications[J]. International Journal of Mineral Processing,1989,25(1):101-130.
    [211] Pearse M.J., An overview of the use of chemical reagents in mineral processing[J]. Minerals Engineering,2005,18(2):139-149.
    [212] Miller, J.D., Laskowski J.S., and Chang S.S., Dextrin adsorption by oxidized coal[J]. Colloids and surfaces,1983,8(2):137-151.
    [213] Sedeva I.G., Fornasiero D., Ralston J., et al. Reduction of surface hydrophobicity using a stimulus-responsivepolysaccharide[J]. Langmuir,2010,26(20):15865-15874.
    [214] Haung H.H., Calara J.V., Bauer D.L., et al. Adsorption reactions in the depression of coal by organiccolloids[J]. Recent Developments in Separation Science,1978,4:115-133.
    [215] Parolis L.A.S., Groenmeyer G.V., Harris P.J., Equilibrium adsorption studies of polysaccharides on talc: Theeffects of molecular weight and charge and the influence of metal cations[J]. Minerals and MetallurgicalProcessing,2005,22(1):12-16.
    [216] Jenkins P., Ralston J., The adsorption of a polysaccharide at the talc–aqueous solution interface[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,1998,139(1):27-40.
    [217] Van Olphen H., Hsu P.H., An introduction to clay colloid chemistry[J]. Soil Science,1978,126(1):59.
    [218] Michaels A.S., Bolger J.C., Settling rates and sediment volumes of flocculated kaolin suspensions[J].Industrial&Engineering Chemistry Fundamentals,1962,1(1):24-33.
    [219] Nasser M.S., James A.E., The effect of polyacrylamide charge density and molecular weight on theflocculation and sedimentation behaviour of kaolinite suspensions[J]. Separation and purification technology,2006,52(2):241-252.
    [220] Mao J.D., Schimmelmann A., Mastalerz M., et al. Structural features of a bituminous coal and their changesduring low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMRspectroscopy[J]. Energy&Fuels,2010,24(4):2536-2544.
    [221] Taylor M.L., Morris G.E., Self P.G., et al., Kinetics of adsorption of high molecular weight anionicpolyacrylamide onto kaolinite: The flocculation process[J]. Journal of colloid and interface science,2002,250(1):28-36.
    [222]文涵睿,王永田,邹文杰,等.调整剂对高灰难选煤浮选效果的影响研究[J].煤炭工程,2011,7:037.
    [223] Besra L., Sengupta D.K., Roy S.K., et al., Influence of polymer adsorption and conformation on flocculationand dewatering of kaolin suspension[J]. Separation and purification technology,2004,37(3):231-246.
    [224] Paria S., Khilar K.C., A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface[J]. Advances in Colloid and Interface Science,2004,110(3):75-95.
    [225]刘令云,闵凡飞,张明旭,等.不同密度级原煤的泥化特性[J].煤炭学报,2012,37(A01):182-186.
    [226] Khan A.A., Singh R.P., Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+andCa2+forms[J]. Colloids and Surfaces,1987,24(1):33-42.
    [227] Zhu H.Y., Jiang R., Xiao L., et al. Preparation, characterization, adsorption kinetics and thermodynamics ofnovel magnetic chitosan enwrapping nanosized γ-Fe2O3and multi-walled carbon nanotubes with enhancedadsorption properties for methyl orange[J]. Bioresource technology,2010,101(14):5063-5069.
    [228] Horsfall Jnr M., Spiff A.I., Effects of temperature on the sorption of Pb2+and Cd2+from aqueous solution byCaladium bicolor (Wild Cocoyam) biomass[J]. Electronic Journal of Biotechnology,2005,8(2):43-50.
    [229] Morris G.E., Fornasiero D., Ralston J., Polymer depressants at the talc–water interface: adsorption isotherm,microflotation and electrokinetic studies[J]. International journal of mineral processing,2002,67(1):211-227.
    [230] Mackenzie M., Organic Polymers as Depressants[J]. Chemical reagents in the mineral processing industry,1986,139:133-137.
    [231] Wi niewska M., The temperature effect on the adsorption mechanism of polyacrylamide on the silica surfaceand its stability[J]. Applied Surface Science,2012,258(7):3094–3101.
    [232] Peng P., Garnier G., Effect of cationic polyacrylamide adsorption kinetics and ionic strength on precipitatedcalcium carbonate flocculation[J]. Langmuir,2010,26(22):16949-16957.
    [233]杨继萍,黄鹏程. XPS分析部分水解聚丙烯酰胺在石英砂上的静态吸附行为[J].高等学校化学学报,1997,18(004):647-651.
    [234]杨玉良,胡汉杰,高分子.高分子物理[M].化学工业出版社材料科学与工程出版中心,2001.
    [235]胡敏.新型阳离子疏水改性聚丙烯酰胺的合成及应用[D].长春:哈尔滨工程大学,2011.
    [236]陈和生,邵景昌.聚丙烯酰胺的红外光谱分析[J].分析仪器,2011,3:37-40.
    [237]马正飞,金叶玲,刘艳梅,等.分形BET吸附模型[J].高校化学工程学报,1994,8(3):188-191.
    [238] Huang S.J., Lee T.Y., Correlations and Characterization of Porous Solids by Fractal Dimension andPorosity[J]. Physica A: Statistical Mechanics and Its Application,2006,274(3-4):419-432.
    [239] Tripol’skii A. I., Strizhak P. E., The Effect of Fractal Dimension of Porous Catalysts on the Activation Energyof CO Oxidation[J]. Theoretical and Experimental Chemistry,2007,43(1):43-46.
    [240]王毅力,杨君,于福玲等.不同染料化合物在颗粒活性炭上的分形吸附规律[J].环境化学,2005,24(3):334-337.
    [241] Maggi F., Mietta F., Winterwerp J.C., Effect of Variable Fractal Dimension on the Floc Size Distribution ofSuspended Cohesive Sediment[J]. Journal of Hydrology,2007,343(1-2):43-55.
    [242] Chakraborti R.K., Atkinson J.F., Van Benschoten J.E., Characterization of alum floc by image analysis[J].Environmental science&technology,2000,34(18):3969-3976.
    [243]牟伯中,罗平亚,姚恒申.粘土颗粒的分形特征及分维数的测定方法[J].钻井液与完井液,1998,15(4):3-6.
    [244] Castro E A S, Gargano R, Martins J B L. Benzene–kaolinite interaction properties[J]. International Journal ofQuantum Chemistry,2012,112(16):2828-2831.
    [245] Sainz-Díaz C I, Francisco-Márquez M, Vivier-Bunge A. Adsorption of polyaromatic heterocycles onpyrophyllite surface by means of different theoretical approaches[J]. Environmental Chemistry,2011,8(4):429-440.
    [246] Lopes P E M, Roux B, MacKerell Jr A D. Molecular modeling and dynamics studies with explicit inclusionof electronic polarizability: theory and applications[J]. Theoretical chemistry accounts,2009,124(1-2):11-28.
    [247]王幸,钱萍.1,3,5-三硝基苯在高岭石表面吸附的理论研究[J].高等学校化学学报,2013,34(11):2601-2608.
    [248]张志军,刘炯天,冯莉,等.基于DLVO理论的煤泥水体系的临界硬度计算[J].中国矿业大学学报,2014,43(1):120-125.
    [249] Van Oss C.J., Omenyi S.N., Neumann A.W., Negative Hamaker coefficients[J]. Colloid and Polymer Science,1979,257(7):737-744.
    [250] Van Oss C.J., Absolom D.R., Neumann A.W., The “hydrophobic effect”: essentially a van der Waalsinteraction[J]. Colloid and Polymer Science,1980,258(4):424-427.
    [251] Somasundaran P., Runkana V., Investigation of the flocculation of colloidal suspensions by controllingadsorbed layer microstructure and population balance modelling[J]. Chemical Engineering Research andDesign,2005,83(7):905-914.
    [252]胡岳华,邱冠周,王淀佐.细粒浮选体系中界面极性相互作用理论及应用[J].中南矿冶学院学报,1993,6:749-754.
    [253]张志军.水质调控的煤泥水澄清和浮选优研究[D].沈阳:东北大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700