用户名: 密码: 验证码:
Mg-Al-Nd压铸镁合金的组织性能及压铸成形过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是目前实际应用中最轻的金属结构材料,它具有密度小、高比强度、高比刚度、优良的导热性和导电性、良好的尺寸稳定性和易于回收等特性。但是,性能较差是阻碍镁合金广泛应用的主要原因之一,所以提高镁合金的力学性能是镁合金研究中要解决的首要问题。本文主要针对铸态和压铸态Mg-Al-Nd镁合金的显微组织、拉伸性能以及低周疲劳性能进行研究,以期为压铸镁合金的进一步开发和应用奠定必要的理论基础和提供可靠的理论依据;同时,对镁合金压铸件的压铸充型过程进行数值模拟,优化压铸工艺参数。
     实验结果表明:稀土元素Nd的添加可以有效地细化铸态和压铸态Mg-Al-Nd合金的显微组织,铸态含Nd量为1%时细化效果明显,而压铸态含Nd量为0.5%细化效果明显;稀土元素Nd的量为1%时铸态Mg-Al-Nd镁合金室温下的综合力学性能最高,而稀土元素Nd的量为0.5%时压铸态Mg-Al-Nd合金的力学性能最高;在本实验所采用的不同外加总应变幅下,压铸态Mg-Al-Nd合金在疲劳变形时均呈现明显的循环应变硬化;当外加总应变幅为0.3%,0.45%和1.2%时,Mg-8%A1-0.5%Nd镁合金呈现最长的疲劳寿命,当外加总应变幅为0.6%,0.8%和1.0%时,Mg-8%Al-1.0%Nd镁合金表现出最长的疲劳寿命;低周疲劳加载条件下,疲劳裂纹以穿晶方式萌生于疲劳试样表面的铸造缺陷处,并以穿晶方式扩展;计算机模拟仿真技术能够准确地再现镁合金发动机罩盖的充型凝固过程,根据正交实验得出优化的工艺参数为:压射速度6m/s、压铸型温度220℃和浇注温度700℃;压铸件发动机罩盖组织致密、晶粒细小,室温拉伸断口具有韧性断裂和解理断裂的混合断口特征,力学性能可以达到σb=241-244 MPa,σs=179-185 MPa,δ=5.5-6.7%。
Magnesium alloys are the lightest structure materials for various application alloys, due to their low density, high specific strength, high specific stiffness, excellent heat conduction and electric conduction, good dimension stability and easy recovery. However, The use of magnesium alloys has been limited due to poor mechanical properties. So increasing mechanical properties of magnesium alloys is a key problem. Microstructure, tensile properties and low-cycle fatigue properties of as-cast and die-cast Mg-Al-Nd magnesium alloys were studied, in order to establish necessary theory foundation and provide reliable theory evidence for developing and applying magnesium alloys. Meantime, numerical simulation of die casting mold filling process for magnesium alloy die castings were studied, optimizing technological parameters of die-casting.
     Results show that the microstructure of as-cast and die-cast Mg-Al-Nd magnesium alloys can be refined for the addition of rare earth element Nd, the as-cast alloy with addition of 1% Nd was refined obviously, while the die-cast alloy with the addition of 0.5% Nd is refined obviously. The mechanical properties at room temperature of as-cast Mg-Al-Nd magnesium alloy is the highest with 1% rare earth element Nd, while with the addition of 0.5% Nd, the mechanical properties at room temperature of die-cast Mg-Al-Nd magnesium alloy is the highest. Under different imposed total strain amplitude, die-cast Mg-Al-Nd magnesium alloys exhibite obviously cyclic strain hardening during fatigue deformation, when the imposed total strain amplitudes are 0.3%,0.45% and 1.2%, Mg-8%Al-0.5%Nd magnesium alloys exhibite the longest fatigue life, when the imposed total strain amplitudes are 0.6%,0.8% and 1.0%, Mg-8%Al-1.0%Nd magnesium alloys exhibite the longest fatigue life. On the condition of low-cycle fatigue loading, fatigue cracks initiate transgranularly at casting defect which at the surface of fatigue samples, and propagate in a transgranular mode. Mold filling and solidification processes of magnesium alloy engine hood can be reproduced accurately by computer simulation technology, the optimal parameters are gained according to orthogonal test:injection velocity with 6m/s, die-cast mould temperature with 220℃and pouring temperature with 700℃. Structure of engine hood produced by die-cast is dense, fine grain size. Fractograph is mixture of ductile rupture and cleavage fracture. Mechanical property is that ab=241-244 MPa,σs=179~185 MPa,δ=5.5-6.7%.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [2]Kojima Y. Platform science and technology for advanced magnesium alloy. Materials Science Forum,2000,350-351:3-18.
    [3]曾小勤,王渠东,吕宜振等.镁合金应用新进展.铸造,1998(11):39-43.
    [4]卫爱丽,付珍,赵浩峰.镁合金的生产及应用.铸造设备研究,2003(1):34-37.
    [5]訾炳涛,王辉.镁合金及其在工业中的应用.稀有金属2004,28(1):229-232.
    [6]张鹏,曾大本.异军突起的镁合金压铸.特种铸造及有色合金,2007,(特刊):307-309.
    [7]Gutman E M, Unigovski Y, Eliezer A, et al. Effect of proceeding and environment on mechanical properties of die cast magnesium alloys [J]. Light Metal Age,2000, (11):14-20.
    [8]袁晓光.实用压铸技术.辽宁:辽宁科学技术出版社,2009.
    [9]曾正南,彭小仙,刘楚明.压铸镁合金及其应用[J].金属材料与冶金工程,2007,35(2):3-7.
    [10]Dwain M. Developments in the globe Mg market. Journal of Material,1995,47(7):26-27.
    [11]吴云书.现代工程合金.北京:国防工业出版社,1983.
    [12]王先文,张金山,许并社.镁合金材料的应用及其加工成型技术.太原理工大学学报,2001,(6):599-603.
    [13]刘正,王中光,王越等.压铸镁合金在汽车工业中的应用和发展趋势.特种铸造及有色合金,2002,(压铸专刊):300-302.
    [14]申泽骥,李宝东.镁合金铸造技术进展.铸造,2001,(9):522-526.
    [15]张津,张宗和.镁合金及应用.北京:化学工业出版社,2004.
    [16]陈振华.镁合金.北京:化学工业出版社,2004.
    [17]张永忠,张奎,樊建中等.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金,2002,(S1):296-299.
    [18]曾荣昌,柯伟,徐永波.镁合金的最新发展及应用前景.金属学报,2001,37(7):673-685.
    [19]陆文华,李隆盛,黄良余.铸造合金及其熔炼.北京:机械工业出版社,1996.
    [20]罗小萍,夏兰廷,臧东勉.合金元素对镁及镁合金腐蚀性能影响.铸造设备研究,2007,(3):24-27.
    [21]杨明波,潘复生,李忠盛等.Mg-Al系耐热镁合金中的合金元素及其作用.材料导报,2005,19(4):46-49.
    [22]Albright D L, Ruden T, Davis J. High ductility magnesium alloys in automotive applications. Light Metal Age,1992,50(2):2-32.
    [23]郭会廷,夏兰廷.合金元素对镁及镁合金力学性能强化的研究.铸造设备研究,2007,(2):40-41.
    [24]邹宏辉,曾小勤,翟春泉等.镁合金的强韧化进展.机械工程材料,2004,28(5):1-3.
    [25]彭立明,曾小勤,朱燕萍等.固溶处理对AM60B+xRE及AZ91D+xRE镁合金性能的影响.材料研究学报,2003,17(1):97-106.
    [26]Spigarelli S, Regev M, Evangelista E, et al. Review of creep behavior of AZ91magnesium alloy produced by different technologies. Materials Science and Technology,2001,17(6):627-636.
    [27]Xue F, Min X G, Sun Y S. Microstructures and mechanical properties of AZ91 alloy with combined additions of Ca and Si. Journal of Materials Science,2006,41(15):4725-4731.
    [28]Ninomiya R, Ojtro T, Kubpta K. Improved heat resistance of Mg-Al alloys by the Ca Addition. Acta Metallurgica et Materialia,1995,43(2):669-674.
    [29]Zhang S C, Wei B K, Cai Q Z, et al. Effect of mischmetal and yttrium on microstructures and mechanical properties of Mg-Al alloy. Transaction of Nonferrous Metals Society of China.,2003, 13(1):83-87.
    [30]Khomamizadeh F, Namib B, Khoshkhooei S. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions A,2005,36A:3489-3494.
    [31]Yuan G Y, Sun Y S, Ding W J. Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering A,2001, 308:38-44.
    [32]Yuan G Y, Sun Y S, Ding W J. Effect of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Scripta Materialia,2000,43:1009-1010.
    [33]郑飞燕,郑开宏,戚文军等.微量B对AZ91镁合金显微组织与力学性能的影响.轻合金加工技术,2008.26(2):7-11.
    [34]滕新营,王彬,王致明.微量Si、Ba、Sn对AZ91铸态组织的影响.特种铸造及有色合金,2007,27(2):83-85.
    [35]闵学刚,孙扬善,薛烽.Ca对AZ91显微组织及力学性能的影响.材料科学与工艺,2002,10(1):93-96.
    [36]Wang Q D, Chen W Z, Zeng X Q, et al. Effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Science,2001,36: 3035-3040.
    [37]Sun Y S, Zhang W M, Min X G. Tensile strength and creep resistance of Mg-9Al-1Zn based alloys with calcium addition. Acta metallurgica sinica,2001,14(5):330-334.
    [38]Du W W, Sun Y S, Min X G, et al. Influence of Ca addition on valence electron structure of Mg17Al12. The Chinese Journal of Nonferrous Metals,2003,13(6):1274-1279.
    [39]刘文辉,刘海峰,侯骏.高强度耐高温压铸镁合金的开发.汽车工艺与材料,2003,(4):12-15.
    [40]刘海峰,侯骏,佟国栋等.抗高温蠕变压铸镁合金的研制.汽车工艺与材料,2003,(8):9-13.
    [41]Lee S, Lee S H, Kim.D H. Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and materials transactions A,1998,29A:1221-1235.
    [42]蒋晓英,刘文军,陈刚.镁合金车轮成形工艺研究现状.机械制造,2010,(2):56-58.
    [43]毛萍莉,王峰,刘正等.镁合金方向盘骨架应用研究及性能测试.特种铸造及有色合金,2009,(5):420-422.
    [44]王越,林立,李锋等.钕对压铸AM50镁合金力学性能的优化作用.铸造,2003,52(10):732-736.
    [45]黄晓锋,王渠东,卢晨等.Si对AM50力学性能和高温蠕变性能的影响.材料研究学报,2004,18(6):631-634.
    [46]李冬升,程晓农,李丹.微量钛、硼对AM50镁合金组织和性能的影响.机械工程材料,2006,30(11):45-51.
    [47]崔红卫,李红,高巧春等.合金元素Sb对AM50镁合金组织和性能的影响.铸造技术,2009,30(6):791-795.
    [48]Mayer H, Papakyriacou M, Zettl B et al. Influence of porosity on the fatigue limit of die-casting magnesium and aluminum alloys. International Journal of Fatigue,2003,25:245-256.
    [49]Bronfin B, Katsir M, Aghion E. Preparation and solidification features of AS21 magnesium alloy. Materials Science and Engineering A,2001,302:46-50.
    [50]Luo A, Pekouleryuz M O. Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science,1992,29:5259-5269.
    [51]Kim J J, Kim D H, Shin K S, et al. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloy by Ca or P addition. Scripta Materialia,1999,41(3):333-340.
    [52]Evangelista E, Gariboldi E, Lohne O, et al. High temperature behavior of as die-cast and heat treated Mg-Al-Si AS21X magnesium alloy. Materials Science and Engineering A,2004,387-389: 41-45.
    [53]Pettersen G, Westengen H, Hoier R, et al. Microstructure of a Pressure die cast magnesium-4%aluminum alloy modified with rare earth additions. Materials Science and Engineering A, 1996,207:115-120.
    [54]吕宜振,王渠东,曾小勤等.镁合金在汽车上的应用现状[J].汽车技术,1999,(8):28-31.
    [55]袁序弟.镁合金在汽车工业的应用前景[J].汽车科技,2002,(3):1-4.
    [56]吉泽升,李德锋,孙荣滨.镁合金压铸技术的发展现状.轻合金加工技术2001,29(12):1-4.
    [57]汪之清.国外镁合金压铸技术的发展[J].铸造,1997,(8):48-51.
    [58]Brown R. Magnesium automotive meeting. Light Metal Age,1992, (5-6):18-20.
    [59]59Kamado S, Koike J, Kondo H K, et al. Magnesium research trend in Japan[J]. Materials Science Forum,2003, (419-422)::21-34.
    [60]60唐春龙.镁合金的特性及其在汽车制造业中的应用[J].中国科技信息,2005,(21):75-76.
    [61]61王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用.材料导报,2000,14(6):22-24.
    [62]吕宜振,王渠东,戳春泉等.压铸镁合金的应用现状及发展趋势.铸造,1998,(12):50-53
    [63]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2002,(4):41-42.
    [64]黄晓艳,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报,2003,2(4):300-306.
    [65]许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工业学院学报,2002,23(3):190-192
    [66]厄普顿.压力铸造.北京:机械工业出版社,1988.
    [67]赖华清.压铸工艺及模具.北京:机械工业出版社.2004.
    [68]于海朋,王峰,于宝义.工艺参数和热处理对压铸AZ91D镁合金力学性能的影响.特种铸造及有色合金,2002,(2):27-28.
    [69]夏明许,袁森,蒋百灵等.镁合金压铸件收缩缺陷分析及对策.特种铸造及有色合金,2002,(6):23-25.
    [70]潘宪曾,压铸模设计手册.北京:机械工业出版社,1999.
    [71]金温琳,许宝成.最新实用压铸技术.北京:兵器工业出版社,1993.
    [72]Nussbaum A I. Semi-solid processing of alloys and composites[J]. Foundry Management & Technology,1998, (9):50-55.
    [73]Nussbaum A I. Semi-solid forming of aluminium and magnesium [J].Light Metal Age,1996(6): 6-22.
    [74]Arbor A. Thixomoulding of magnesium components experiencing rapid commercial growth[J]. Die-casting World,1996, (6):26-28.
    [75]黄昌辉.两岸三地镁合金压铸工业现状与前景[J].材料热处理学报,2001,22(增刊):8-16.
    [76]刘环,周荣.镁合金成形技术及应用[J].昆明理工大学学报,2002,(6):60-64.
    [77]Hu B H, Tong K K. Design and optimization of runner and casting systems for the die casting of thin-walled magnesium telecommunication parts [J]. Journal of Materials Processing Technology, 2000, (105):81-87.
    [78]传海军,黄晓峰,毛祖莉.压铸技术在镁合金中的应用和发展.铸造技术,2007,28(8):1067-1070.
    [79]熊守美,苏仕芳.镁合金成形技术研究进展.铸造,2005,54(1):20-23.
    [80]吕宜振,曾小琴.镁合金铸造成形技术的发展与应用.铸造,2000,7(7):384-386.
    [81]Decker R F. Magnesium semi-solid metal forming[J]. Advanced Materials & Processes,1996, (2): 41-42.
    [82]罗守靖,田文彤,毛为民.半固态加工技术及应用.中国有色金属学报,2000,12(6):769-772.
    [83]倪红军,王渠东,丁文江.镁合金半固态铸造成形技术(SSP)的研究与应用.铸造技术,2000,(5):36-40.
    [84]龙思远,查吉利,曹韩学等.镁合金压铸技术和装备的现状与展望.特种铸造及有色合金,2008,(专刊):49-54.
    [85]赖华清,徐翔,范宏训.充氧压铸及其应用[J].金属成形工艺,2004,(2):12-14.
    [86]吉泽升,辛明德,梁维中等.压铸镁合金的研究现状及应用前景.新材料产业,2003,(7):19-22.
    [87]王栓强.镁合金压铸技术进展.铸造技术,2008,29(9):1292-1294.
    [88]严力,王猛,单志法等.镁合金调压铸造充型能力的研究[J].铸造技术,2005,26(10):914-915.
    [89]Scott K. Advanced die casting machines [J]. Die-casting Engineer,1999, (5-6):38-45.
    [90]高志强,邱伟,张卫善等.铸造充型过程初始温度场的数值模拟及实验研究.清华大学学报,1996,36(8):50-55.
    [91]邱伟,高志强,柳百城.用改进的SOLA-VOF法模拟铸造充型过程.清华大学学报,1997,37(11):42-55.
    [92]熊守美,柳百城,许庆彦等.铸件充型凝固过程数值模拟研究.现代铸铁,2002,(1):16-20.
    [93]Si H M, Cho C, Kwahk S Y. A hybrid method for casting process simulation by combining FDM and FEM with an efficient data conversion algorithm. Journal of Materials Processing Technology,2003,133:311-321.
    [94]Barkhudarov M. High pressure die casting simulation with FLOW-3D. Flow Science, Inc:1-4.
    [95]马秋,于彦东,赵康培.镁合金压铸件充型过程的数值模拟技术研究.哈尔滨理工大学学报,2004,9(4):28-30,35.
    [96]Modi D, Advani S. In fluence of injection gate definition on the flow-front approximation in numerical simulations of mold-filling processes. International Journal for Numerical Methods in Fluids,2003, (42):1237-1248.
    [97]李朝霞,刘文辉,熊守美等.压铸镁合金模具温度场分布的研究,铸造,2003,52(6):400-404.
    [98]贾良荣,熊守美,冯伟明等.压力铸造充型过程流动与传热数值模拟的研究.清华大学学报(自然科学版),2001,41(23):8-11.
    [99]Kumar A, Ghoshdastidar P S, Muju M K. Computer simulation of transport processes during injection mold-filling and optimization of the molding conditions. Journal of Materials Processing Technology,2002,120:438-449.
    [100]麻向军,候骏,赵立信.充型过程中自由表面的数值模拟.特种铸造及有色合金.2001,(4):34-36.
    [101]李朝霞,张雷,熊守美等.镁合金压铸用模具的应力场和变形数值模拟.铸造,2004,53(6):465-46.
    [102]李梅娥,邢建东.铸造应力场数值模拟的研究进展.铸造,2002,51(3):141-144.
    [103]Yao G F. Development of new pressure-velocity solvers in FLOW-3D. Flow Science, Inc:1-11.
    [104]漳州庆,张国伟,候华等.铸件凝固过程的微观组织模拟研究进展.华北工学院学报,2004,25(5):386-390.
    [105]于彦东,马秋,逯云龙等.镁合金压铸件凝固过程计算机模拟.热加工技术.2005,(12):30-33.
    [106]赵维民,李海鹏,胡爱文等.铸件凝固过程的温度场模拟及缩孔、变形和热烈缺陷的预测.中国铸造装备技术,2003,(1):1-4.
    [107]Hirt C W. Modeling shrinkage induced micro-porosity. Flow Science, Inc. FSI-03-TN66:1-14.
    [108]Hirt C W, Barkhudarov M R. Modeling the lost foam process with defect prediction. Flow Science. Inc. FSI-97-TN45:1-19.
    [109]李文珍.铸件凝固过程微观组织及缩孔缩松形成的数值模拟研究.北京:清华大学博士论文.1995.
    [110]贺群武,王秋旺,索晓娜等.直接模拟蒙特卡罗方法下的逆温度抽样算法.西安交通大学学报,2006,40(1):22-25.
    [111]许林,杨湘杰,郭洪民.用宏微观耦合模型模拟铝合金凝固过程.特种铸造及有色合金.2004,(3):37-40.
    [112]郭洪民,危仁杰,杨湘杰.一种改进的模拟凝固微观组织的宏微观耦合模型.特种铸造及有色合金,2003,(5):26-29.
    [113]孙立斌,许庆彦,柳百成.ZGOCr13Ni4Mo不锈钢铸件凝固相变过程的数值模拟.金属学报,2003,39(4):387-394.
    [114]Zhang G Y, Jin T, Liu B CH. Dendritic morphology simulation using the phase field method. Tsinghua Science and Technology,2003,8(1):79-82.
    [115]赵达文,杨根仓,于艳梅等.相场模型凝固组织模拟进展.材料科学与工程学报,2003,83:437-440.
    [116]LONG W Y, CAI Q Z, CHEN L L, et al. Phase-field simulation of solidification of Al-Cu binary alloys. Trans. Nonferrous Met. Soc. China,2004,14 (2):291-296.
    [117]李英民,崔宝侠,苏仕方.计算机在材料加工领域中的应用.北京:机械工业出版社,2001.
    [118]范有,应长亮,李昊.AZ31B镁合金薄壁壳形件真空压铸模的设计.模具设计,2005,293(7):48-51.
    [119]王家弟,卢晨,丁文江.镁合金压铸件及压铸模设计关键技术.特种铸造及有色合金,2002,(2):24-26.
    [120]吴晓光,刘瑞祥,陈立亮等.基于UG的三维压铸型CAD系统的研究与开发.铸造,2003,52(4):272-275.
    [121]潘宪曾.压铸模设计手册(第2版).机械工业出版社,2001.
    [122]Choi J C, Kwon T H, Park J H et al. A Study on development of a die design system for die casting. The International Journal of Advanced Manufacturing Technology.2002,20:1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700