用户名: 密码: 验证码:
间歇式次同步振荡及次同步控制互作用问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
次同步振荡是电力系统稳定问题之一。随着世界各国电力系统的发展,特别是我国高电压、大容量、长距离交直流输电的不断建设和规模化可再生能源的并网发电,由传统次同步振荡带来的新问题以及新的次同步振荡现象相继出现,这给电力系统稳定性研究又带来了新的挑战,本文围绕电力系统中出现的两种新的次同步振荡问题—间歇式次同步振荡(Intermittent Subsynchronous Oscillation, ISSO)和次同步控制互作用(Subsynchronous Control Interaction, SSCI)开展了如下研究:
     大型火电机组集群经高压直流输电线路与交流混合串联补偿线路送出时可能引起频繁超越发电机轴系累积阈值的收敛型次同步振荡问题,本文称为间歇式次同步振荡SSCI。通过对比其与传统HVDC引起的次同步扭振相互作用的不同特性,本文详细分析了间歇式次同步振荡产生的根本原因和作用路径;基于经直流送出的单机无穷大系统,提出了一种确定电气阻尼对间歇式次同步振荡作用路径中各电参量敏感度的方法,由此可确定最敏感的扰动因素;紧密结合我国蒙东呼盟系统多年来存在和困扰的间歇式次同步振荡问题,搭建了该系统的5厂10机等效电磁暂态仿真模型,采用测试信号法分析了系统的电气阻尼特性,并基于上述分析确定的最敏感因素,提出了一种与实际振荡特性一致的间歇式次同步振荡的仿真模拟方法,这为所研发的抑制装置的阻尼特性仿真和实验验证提供了可行的仿真手段。
     近年来的研究表明,含有双馈感应发电机的风力发电厂经固定串补线路远距离送出时会出现次同步控制互作用SSCI,可能引起风电机组的严重损坏。本文基于双馈感应风力发电机经固定串联补偿送出的单机无穷大系统,通过数学建模详细分析了次同步控制互作用产生的根本原因和作用路径,给出了发生次同步控制互作用的近似条件,提出了一种区分风机中可能出现的感应发电机效应和次同步控制互作用的方法;采用时域仿真法分析了风机风速、线路串补度以及双馈风机转子侧变流器控制器参数对次同步控制互作用的影响;基于其作用路径和相关控制器参数对振荡的影响分析,提出了抑制次同步控制互作用的阻断方法和附加阻尼方法,并对其有效性进行了时域仿真验证。
     基于并联电压源型换流器的拓扑结构,本文提出一种采用次同步振荡动态稳定器(Subsynchronous Oscillation-Dynamic Stabilizer, SSO-DS)抑制次同步振荡的方法,并基于此提出一种无功电流次同步调制策略。详细介绍了这种控制策略的具体控制流程,并采用复转矩系数法详细推导了其能够提供的近似电气阻尼,分析了影响该阻尼正负和大小的相关因素。针对SSO-DS这种新的抑制装置,基于IEEE第一标准模型中由固定串补引发的次同步谐振问题,通过测试信号法和时域仿真法验证了所提出控制策略的有效性。
     针对实际呼盟系统交直流并列输电方式和呼贝电厂存在的间歇式次同步振荡问题,分别提出了宽带通和窄带通SSDC的阻尼控制方法,详细分析了二者抑制间歇式次同步振荡的可行性。通过数学推导和仿真,对比分析了附加励磁阻尼控制器-SEDC与SSO-DS装置的响应时间以及阻尼转矩提供能力上的不同,对比分析了基于SVC拓扑结构的次同步谐振动态稳定器(Subsynchronous Resonance-Dynamic Stabilizer, SSR-DS)与SSO-DS抑制次同步振荡的阻尼能力,最后通过时域仿真法对比了SEDC、SSR-DS与SSO-DS阻尼间歇式次同步振荡的效果。
     在以上理论与方法研究的基础上,综合考虑了响应速度、抑制效果以及占地面积等多方面因素后,本文建议呼贝电厂采用SSO-DS的方法,并为装置的测试搭建了实时数字—物理闭环仿真实验平台。介绍了仿真平台的结构和各部分的功能,提出了一种模拟转速传感器的方法用于转速测量卡与转速处理卡的闭环接入。利用该实时仿真环境,通过SSO-DS的输入输出特性测试验证了控制器设计的准确性;针对呼贝电厂间歇式次同步振荡问题,提出了一种测量SSO-DS有效阻尼区域的方法,并通过多个工况下的测试对控制器参数进行优化,最后通过时域仿真法验证了SSO-DS解决呼贝电厂次同步振荡问题的有效性。目前,合作研制的SSO-DS装置已用于呼贝电厂解决多年来困扰的次同步振荡问题,并已具有较好的抑制效果。
Subsynchronous oscillation is one of the power system stability problems. With the development of power system in the world, especially the continuous construction of high voltage, large capacity and long distant ac/dc transmission and the scale of renewable energies connected to the grid for generating in China have caused new subsynchronous oscillation problems. New subsynchronous oscillation phenomena emerged in succession, which challenge the research on power system stability. The thesis focuses on two types of new emerging subsynchronous oscillation problems, intermittent subsynchronous oscillation (ISSO) and subsynchronous control interaction (SSCI) and carries out the research as follows:
     When large scales of thermal power plants deliver their power by HVDC and ac hybrid series compensated transmission lines, the converging subsynchronous oscillation may happen, which frequently exceeds fatigue accumulation threshold value of the generator shafts. It is called intermittent subsynchronous oscillation in the thesis. Compared with the characteristics of conventional subsynchronous torsional interaction caused by HVDC, the thesis analyzes the root cause leading to ISSO and the ISSO path in detail. Based on single-machine infinite bus system connected with HVDC, a method analyzing electrical damping sensitivity with respect of electrical parameters in ISSO path is proposed, by which the most sensitive position can be determined. According to the actual ISSO problem existing in Hulunbuir League power system in the east of Inner Mongolia, the equivalent electromagnetic transient simulation model is built, which has5power plants in total including10generators. The test signal method is used to analyze the electrical damping characteristics of the system. According to the most sensitive position by analysis above, a disturbance simulation method is proposed which can stimulate similar ISSO with the actual case and provide feasible simulation method for damping characteristics simulation of mitigation device and experimental verification.
     The research in recent years indicates that subsynchronous control interaction may happen when a wind power plant including DFIG-based wind-power generators deliver its power by fixed series compensated long distant transmission lines. It may lead to the damage of wind-power generators. In the thesis, the mechanism and interaction path of SSCI is analyzed by math modeling based on a single machine infinite bus system where a DFIG-based wind-power generator is connected to the fixed series compensated transmission lines. And an approximate condition used to determine the existence of SSCI is given. A method used to distinguish induction generator effect (IGE) and SSCI of DFIG is proposed. The effects of wind speeds, series compensation levels and the parameters of rotor side converter controller on the characteristics of SSCI are analyzed by time domain simulation method. According to the analysis of SSCI path and the influence of the controller parameters on SSCI, the interdicting method and the supplementary damping method are proposed to mitigate SSCI and their effectiveness is verified by time domain simulation.
     Based on the topology of voltage sourced converter in parallel, the method using subsynchronous oscillation-dynamic stabilizer (SSO-DS) to mitigate SSO is proposed in the thesis. And based on SSO-DS, the control strategy of reactive current modulated by subsynchronous signals is proposed. The concrete control process of this control strategy is introduced in detail. And the damping provided by the control strategy is deduced by complex torque coefficient approach and the related influence factors on the direction and size of the damping are analyzed. Based on IEEE first benchmark model where there may be a subsynchronous resonance caused by fixed series compensation, the availability of this new mitigation device called SSO-DS with proposed control strategy is verified by test signal and time domain simulation methods.
     According to ISSO which exists in Hulunbuir League power system with ac and dc transmission, especially in Hulunbuir power plant, a wide band-pass SSDC damping method and a narrow band-pass SSDC damping method are proposed and their feasibilities for ISSO mitigation are analyzed. By math deduction and simulation, SEDC and SSO-DS are compared in the differences of response time and the ability of providing damping torque. SSO-DS is also compared with subsynchronous resonance-dynamic stabilizer (SSR-DS) based on the topology of SVC in damping ability by analysis and simulation. And time domain simulation method is used to compare the ISSO damping effect among SEDC, SSR-DS and SSO-DS.
     Based on the theories and methods above and considering response speed, mitigation effect, the floor space limit of the power plant and so on, SSO-DS is recommended to be used in Hulunbuir power plant for ISSO mitigation. In order to test its controller, the real-time digital and physical closed-loop simulation platform is built in this thesis. The structure of the platform and the function of every part are introduced. A method is proposed to interface the real-time digital simulator with the rotating speed acquisition panel by simulating the real rotating speed sensor. By means of the real-time simulating environment, input and output characteristics of SSO-DS test is done to verify the correction of its controller design. A testing method is proposed to measure effective damping area in multi operating conditions for ISSO mitigation and as a result, the parameters of SSO-DS controller can be optimized. Finally, time domain simulation is used to verify the effectiveness for SSO-DS to solve the problems of Hulunbuir power plant. Now SSO-DS device developed by cooperation has been used to solve the problem which has been bothering Hulunbuir power plant for many years, and have had good mitigation effect.
引文
[1]潘学富.新能源项目投资特性比较及策略研究[D].北京:华北电力大学,2013.
    [2]周宏林.大容量双馈式风力发电系统并网关键问题研究[D].北京:清华大学,2011.
    [3]严宇,朱伟江,刘皓,等.灵宝直流双控制系统接口部分存在问题及解决方案[J].电力系统自动化,2005,29(21):99-101.
    [4]李国栋,严宇,皮俊波,等.高岭背靠背直流系统过流保护动作案例分析[J].电力系统自动化,2012,36(23):126-129.
    [5]雷邦军,费树岷,翟军勇,等.静止无功补偿器(SVC)的一种新型非线性鲁棒自适应控制设计方法[J].中国电机工程学报,2013,33(31):65-70+11.
    [6]熊浩清,汤涌,张晓华,等.计及运行方式变换条件的多SVC布点方法[J].中国电机工程学报,2012,32(13):44-51+190.
    [7]洪磊,陈国柱.具有谐振抑制功能的新型SVC拓扑设计及控制方法[J].电力系统自动化,2012,36(1):101-106.
    [8]胡臻达,武守远,戴朝波.特高压输电线路用新型TCSC方案及其控制策略研究[J].电网技术,2012,36(9):73-80.
    [9]吴峰,郑建勇, 梅军,等.基于可控串补的故障限流器[J].电网技术,2012,36(2):53-57.
    [10]张健,冀瑞芳,李国庆.TCSC优化配置提高可用输电能力的研究[J].电力系统保护与控制,2012,40(1):23-28.
    [11]石访,王杰.基于Hamilton能量函数的发电机励磁与TCSC协调控制[J].电力系统保护与控制,2012,40(15):24-28.
    [12]郑重,杨耕,耿华.配置STATCOM的DFIG风电场在不对称电网故障下的控制策略[J].中国电机工程学报,2013,33(19):27-38+22.
    [13]郭春义,张岩坡,赵成勇,等.STATCOM对双馈入直流系统运行特性的影响[J].中国电机工程学报,2013,33(25):99-106+16.
    [14]王松,谈龙成,李耀华,等.链式星形STATCOM补偿不平衡负载的控制策略[J].中国电机工程学报,2013,33(27):20-27+5.
    [15]戴珂,徐晨,丁玉峰,等.载波轮换调制在级联H桥型STATCOM中的应 用[J].中国电机工程学报,2013,33(12):99-106+191.
    [16]高磊,刘玉田,汤涌,等.提升系统阻尼的多STATCOM阻尼控制器协调控制研究[J].中国电机工程学报,2013,33(25):68-77+13.
    [17]姚伟,文劲宇,程时杰,等.考虑时滞影响的SVC广域附加阻尼控制器设计[J].电工技术学报,2012,27(3):239-246.
    [18]黄柳强,郭剑波,孙华东,等.多FACTS广域抗时滞协调控制[J].电力自动化设备,2014,34(1):37-42.
    [19]戚军,江全元,曹一家,等.采用时滞广域测量信号的区间低频振荡阻尼控制器设计[J].电工技术学报,2009,24(6):154-159.
    [20]Mats Larsson, Christian Rehtanz.基于最优潮流的广域FACTS控制提高输电能力(英文)[J].电力系统自动化,2005,29(16):35-41.
    [21]白碧蓉.计及时滞影响的FACTS广域阻尼控制器的设计[D].杭州:浙江大学,2005.
    [22]江全元,张鹏翔,曹一家,等.计及反馈信号时滞影响的广域FACTS阻尼控制[J].中国电机工程学报,2006,26(7):82-88.
    [23]肖湘宁,郭春林,高本锋,等.电力系统次同步振荡及其抑制方法[M].北京:机械工业出版社,2014.
    [24]J.W. Butler, C. Concordia. Analysis of Series Capacitors Application Problem[J]. A1EETransactions,1937,56:975-988.
    [25]程时杰,曹一家,江全元,等.电力系统次同步振荡的理论与方法[M].北京:科学出版社,2009.
    [26]Walker C E, Bowler R L, Jackson D Hodges. Results of sub synchronous resonance test at Mohave[J]. IEEE Transactions on Power Apparatus and Systems.1975,94(3):1878-1889.
    [27]IEEE Subsynchronous Resonance Working Group. Terms, definitions and symbols for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems,1985,104 (6):1326-1334.
    [28]M Bahrman C E, Bowler R L, Jackson, et al. Experience with HVDC-turbine-generator torsional interaction at Square Butte[J]. IEEE Transactions on Power Apparatus and Systems.1980,99(3):966-975.
    [29]M Bahrman E V, Larsen R W. Piwko and H. S. Patel. Field tests and analysis of torsional interaction between the coal Creek turbine-generators and the CU HVDC system[J]. IEEE Transactions on Power App. & Sys.1981,100(1): 336-344.
    [30]余建纲.200MW汽轮发电机组轴系扭振的分析和对策[J].电力建设, 1989,10(7):11-15.
    [31]杨煜,陈陈.伊敏—大庆500kV输电系统次同步谐振分析——兼论发电机轴系共振频率[J].电网技术,2000,24(5):10-12+55.
    [32]郑巍,孔令宇,孙术文,等.绥中电厂次同步振荡问题的系列解决方案[A].中国电力企业联合会科技开发服务中心、全国发电机组技术协作会、电力行业热工自动化技术委员会.2010年全国发电厂热工自动化专业会议论文集[C].中国电力企业联合会科技开发服务中心、全国发电机组技术协作会、电力行业热工自动化技术委员会,2010:6.
    [33]陈大宇,赵永林,刘全,等.上都电厂轴系次同步扭振保护系统[J].电力系统保护与控制,2010,36(6):122-125.
    [34]徐政,张帆.托克托电厂串补送出方案次同步谐振问题的计算和分析[J].中国电力,2006,39(11):21-26.
    [35]顾强,林惊涛.国华锦界电厂串补输电次同步谐振解决方案的研究[J].电气技术,2012,11:38-41.
    [36]郑蕤.带串联补偿的交直流并列系统次同步振荡特性研究[D].华北电力大学(北京),2011.
    [37]Xiao Xxiangning, Zhang Jian, Guo Chunlin. A new subsynchronous torsional interaction and its mitigation countermeasures. Energytech 2013IEEE,2013.
    [38]毕天姝,孔永乐,肖仕武,等.大规模风电外送中的次同步振荡问题[J].电力科学与技术学报,2012,27(1):10-15.
    [39]中华人民共和国发展和改革委员会.可再生能源中长期发展规[EB/OL]. http://www.cwea.org.cn/,2007-08-31.
    [40]G. Irwin, A.K. Jindal, A.L. Issacs. Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission lines[C]. 2011 IEEE Power and Energy Society General Meeting, pp:1-6.
    [41]G.D. Irwin. Sub-synchronous interactions with wind turbines[C]. Technical Conference-CREZ System Design and Operation. January 26,2010, Taylor, Texas, USA.
    [42]Lingling Fan, Kavasseri R, Zhixin Lee Miao, et al. Modeling of DFIG-based wind farms for SSR analysis[J]. IEEE Transactions on Power Delivery,2010, 25(4):2073-2082.
    [43]Thirumalaivasan R, Janaki M, Prabhu N. Damping of SSR using subsynchronous current suppressor with SSSC[J]. IEEE Transactions on Power Systems,2013,28(1):64-74.
    [44]Faried S O, Unal I, Rai D, Mahseredjian J. Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators[J]. IEEE Transactions on Power Systems,2013,28(1):452-459.
    [45]Rai D, Faried S O, Ramakrishna G, et al. An SSSC-based hybrid series compensation scheme capable of damping subsynchronous resonance[J]. IEEE Transactions on Power Delivery,2012,27(2):531-540.
    [46]Xiaorong Xie, Xijiu Guo, Yingduo Han. Mitigation of multimodal SSR using SEDC in the Shangdu series-compensated power system[J]. IEEE Transactions on Power Systems,2011,26(1):384-391.
    [47]Wuhui Chen, Tianshu Bi, Qixun Yang, et al. Analysis of nonlinear torsional dynamics using second-order solutions[J]. IEEE transactions on Power Systems, 2010,25(1):423-432.
    [48]李伟,肖湘宁,赵洋.无功发生源抑制次同步振荡的机理分析[J].电工技术学报,2011,26(4):168-174.
    [49]谢小荣,武云生,林惊涛,等.采用遗传-模拟退火算法优化设计SVC次同步阻尼控制器[J].电力系统自动化,2009,33(19):11-14.
    [50]Lawrence C Gross, Jr, PE. Sub-synchronous grid conditions:new event, new problem, and new solutions[C]. Western Protective Relay Conference. Spokane Washington, October 19-21,2010.
    [51]Adams J, Carter C, Shun-Hsien Huang. ERCOT experience with sub-synchronous control interaction and proposed remediation[C]. Transmission and Distribution Conference and Exposition (T&D),2012 IEEE PES,2012:1-5.
    [52]Irwin G D, Jindal A K, Isaacs A L. Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission systems[C]. Power and Energy Society General Meeting,2011 IEEE,2012:1-6.
    [53]Badrzadeh B, Saylors S. Susceptibility of wind turbines to sub-synchronous control and torsional interaction[C]. Transmission and Distribution Conference and Exposition (T&D),2012 IEEE PES,2012:2073-2082.
    [54]Nath R, Grande-Moran C. Study of sub-synchronous control interaction due to the interconnection of wind farms to a series compensated transmission system[C]. Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES,2012:1-6.
    [55]Suriyaarachchi D H R, Annakkage U D, Karawita C, et al. A procedure to study sub-synchronous interactions in wind integrated power systems[J]. IEEE Transactions on Power Systems,2013,28(1):377-384.
    [56]谢小荣,姜齐荣,柔性交流输电系统的原理与应用[M].北京:清华大学出版社,2006.
    [57]周孝信,郭建波,林集明,等.电力系统可控串联电容补偿[M].北京:科 学技术出版社,2009.
    [58]孙海顺.可控串联补偿装置运行特性分析及实验装置研制[D].华中科技大学,2004.
    [59]高俊,丁洪发.TCSC的次频阻抗特性[J].电力系统自动化,2001,25(12):24-28.
    [60]葛俊,童陆园,耿俊成,等.TCSC抑制次同步谐振的机理研究及其参数设计[J].中国电机工程学报,2002,22(6):25-29.
    [61]康海燕,王西田.TCSC次同步频率阻抗特性及其抑制SSR的参数设计[J].电力系统及其自动化学报,2008,20(5):91-96.
    [62]曹路,陈珩.可控串联补偿抑制次同步谐振的机理[J].电力系统自动化,2001,25(4):25-30.
    [63]Holmberg D, Danielsson M, Halvarsson P, et al.The stode thyristor controlled series capacitor[C].CIGRE,Paris(France),1996:14-105.
    [64]Piwko R J, Wenger C A, Damsky B L, et al. The slatt thyristor controlled series capacitor project-design, Installation, Commissioning and System Testing[C]. CIGRE, Paris(France),1994:14-104.
    [65]吕世荣,刘晓鹏,郭强,等.TCSC抑制次同步谐振的机理分析[J].电力系统自动化,1999,23(6):14-18.
    [66]韩光,童陆园,葛俊,等.TCSC抑制次同步谐振的机理分析[J].电力系统自动化,2002,26(2):18-21.
    [67]田杰.可控串联补偿的分析研究[J].电力系统自动化,1997,21(10):43-47.
    [68]周长春,刘前进.抑制次同步谐振的TCSC主动阻尼控制[J].中国电机工程学报,2008,8(15):130-135.
    [69]周孝信,李亚健,武守远,等.可控串补晶闸管阀触发控制的电容电压增量控制算法[J].中国电机工程学报,2001,21(5):1-4.
    [70]李亚健,周孝信,武守远,等.可控串补晶闸管阀触发控制的电容电压增量控制算法[J].中国电机工程学报,2001,21(5):1-4.
    [71]葛俊,童陆园,耿俊成,等.TCSC抑制次同步谐振的机理研究及其参数设计.中国电机工程学报,2002,22(06):25-29.
    [72]张少康,李兴源,张振,等.TCSC及其主动阻尼控制对次同步谐振的抑制[J].电网技术,2010,31(1):22-26.
    [73]刘敏,周孝信,田芳,等.抑制次同步振荡的可控串补附加阻尼控制[J].电网技术,2010,34(10):65-70.
    [74]汤海雁,武守远,戴朝波,等.抑制次同步谐振的可控串补底层附加阻尼控制算法[J].中国电机工程学报,2010,30(25):117-121.
    [75]朱旭凯,周孝信,田芳,等.基于本地测量信号的TCSC抑制次同步振荡附加控制[J].电力系统自动化,2011,35(23):22-25.
    [76]刘敏,周孝信,田芳,等.采用主备方式的TCSC次同步振荡附加阻尼控制策略[J].电力系统自动化,2011,35(11):22-25.
    [77]Gyugyi L. Solid state control of AC power transmission[C]. Proceedings EPRI FACTS Conference 1, Cincinnati, USA,1990:(1.7-1)-(1.7-44).
    [78]Gyugyi L. Dynamic compensation of AC transmission lines by solid-state synchronous voltage sources[J]. IEEE Transactions on Power Delivery.1994, 9(2).
    [79]Gyugyi L, Schauder C D, Sen K K. Static synchronous series compensator:A solid-state approach to the series compensation of transmission lines[J]. IEEE Transactions on Power Delivery,1997,12(1):406-417.
    [80]高本锋.电力系统次同步振荡分析方法与抑制技术研究[D].北京:华北电力大学,2011.
    [81]Bongiorno M, Angquist Lennart, Svensson J. A novel control strategy for subsynchronous resonance mitigation using SSSC. IEEE Transactions on Power Delivery,2008,23(2):1033-1041.
    [82]Thirumalaivasan R, Janaki M, Prabhu N. Damping of SSR using subsynchronous current suppressor with SSSC. IEEE Transactions on Power Systems,2013,28(1):64-74.
    [83]Bongiorno M, Svensson J, Angquist Lennart. Single-phase VSC based SSSC for subsynchronous resonance damping. IEEE Transactions on Power Delivery, 2008,23(3):1544-1552.
    [84]Khalilinia H, Ghaisari J. Sub-synchronous resonance damping in series compensated transmission lines using a statcom in the common bus[C]. Power and Energy Society General Meeting,2009:1-7.
    [85]K R Padiyar, N Prabhu. Design and performance evaluation of subsynchronous damping controller with STATCOM[J]. IEEE Trans on Power Delivery,2006, 21(3):1398-1405.
    [86]Prabhu N, Janaki M, Thirumalaivasan R. Damping of subsynchronous resonance by subsynchronous current injector with STATCOM[C]. TENCON 2009-2009 IEEE Region 10 Conference,2009:1-6.
    [87]R. J. Piwko, E. V. Larsen. HVDC system control for damping of subsynchronous oscillations[J]. IEEE Trans, on Power Apparatus and Systems, 1982,101(7):2203-2211.
    [88]Y. Y. Hsu,L. Wang. Modal control of HVDC system for damping of subsynchronous oscillations.IEE Proceedings Part C,1989,136(2):78-86.
    [89]伍凌云,李兴源,龚勋等.基于模糊免疫方法的次同步阻尼控制器设计[J].电力系统自动化,2007,31(11):12-16.
    [90]高本锋,赵成勇,肖湘宁.高压直流输电系统附加次同步振荡阻尼控制器的设计与实现[J].高电压技术,2010,36(2):501-506.
    [91]冯煜尧,洪潮,杨煜等.高压直流系统附加次同步阻尼控制器的综合设计[J].华东电力,2008,36(5):53-56.
    [92]付伟,李兴源,洪潮等.基于PRONY辨识的附加最优次同步阻尼控制器设计[J].电力系统及其自动化学报,2008,20(5):10-15.
    [93]郑蕤.带串联补偿的交直流并列系统次同步振荡特性研究[D].北京:华北电力大学,2011.
    [94]李伟,肖湘宁,郑蕤等.基于模态控制的附加阻尼控制器的设计[J].电网技术,2010,34(10):76-81.
    [95]唐酿,肖湘宁,李伟等.HVDC附加次同步阻尼控制器设计及其相位补偿分析[J].高电压技术,2011,37(4):1015-1021.
    [96]Rauhala T, Ja□rventausta P. On feasibility of SSDC to improve the effect of HVDC on subsynchronous damping on several lower range torsional oscillation modes. Power and Energy Society General Meeting,2010 IEEE,2010:1-8.
    [97]马凯.基于阻塞滤波器抑制次同步谐振的研究[D].河北保定,华北电力大学,2009.
    [98]刘平,马凯,刘辉等.托克托电厂阻塞滤波器模态中心频率偏移对抑制次同步谐振的影响[J].中国电力,2010,43(1):25-29.
    [99]于海洋.托克托电厂600MW机组抑制次同步振荡方法研究[D].河北保定,华北电力大学,2010.
    [100]Xiaorong Xie, Xijiu Guo, Yingduo Han. Mitigation of multimodal SSR using SEDC in the Shangdu series-compensated power system[J]. IEEE Transactions on Power Systems,2011,26(1):384-391.
    [101]IEEE Subsynchronous Resonance Working Group. Countermeasures to Subsynchronous Resonance Problems[J]. IEEE Transactions on Power Apparatus and Systems,1980,99(5):1810-1818.
    [102]N C Abi Samra, R F Smith, T E Mcdeermott. Analysis of thyristor controlled shunt SSR countermeasures[J]. IEEE Trans, on Power Apparatus and Systems, 1985,104(3):584-597.
    [103]赵洋.静止同步串联补偿器控制策略及抑制次同步谐振的研究[D].北京: 华北电力大学,2009.
    [104]张志强.基于SVC的次同步振荡抑制方法及阻尼控制研究[D].北京:华北电力大学,2010.
    [105]李伟.交直流电力系统次同步振荡分析与抑制方法研究[D].北京:华北电力大学,2011.
    [106]B Singh. R Saha, A Chandra, et al. Static synchronous compensators (STATCOM):A review", IET Power Electron,2009,2(4):297-324.
    [107]倪以信,陈寿孙,张宝霖.动态电力系统的理论与分析[M].北京:清华大学出版社,2002.
    [108]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [109]郑蕤,肖湘宁,郭春林,等.伊冯/呼辽交直流系统的次同步振荡阻尼特性分析.电网技术,2011,35(10):41-46.
    [110]李俊峰,等.2012中国风电发展报告[M].北京:中国环境科学出版社,2012.
    [111]何世恩,郑伟,智勇,等.大规模集群风电接入电网电能质量问题探讨[J]. 电力系统保护与控制,2013,41(2):39-44.
    [112]刘新东,方科,陈焕远,等.利用合理弃风提高大规模风电消纳能力的理论研究[J].电力系统保护与控制,2012,40(6):35-39.
    [113]徐乾耀,康重庆,江长明,等.多时空尺度风电消纳体系初探[J].电力系统保护与控制,2013,41(1):28-32.
    [114]刘其辉,贺益康,张建华.交流励磁变速恒频双馈型异步发电机的稳态功率关系[J].电工技术学报,2006,21(2):39-44,62.
    [115]刘其辉,谢孟丽.双馈式变速恒频风力发电机的空载及负载并网策略[J].电工技术学报,2012,27(10):60-67,78.
    [116]Johansson N, Angquist L, Nee H.-P. A comparison of different frequency scanning methods for study of subsynchronous resonance[J]. IEEE Transactions on Power Systems,2011,26(1):356-363.
    [117]Valderrama G E, Mattavelli P, Stankovic A M. Reactive power and imbalance compensation using STATCOM with dissipativity-based control[J]. IEEE Trans on Control Systems Technology,2001,9(5):718-727.
    [118]Ben-Sheng Chen, Yuan-Yih Hsu, An analytical approach to harmonic analysis and controller design of a STATCOM[J]. IEEE Trans on Power Delivery,2007, 22(1):423-432.
    [119]Hatano N, Ise T, Control scheme of cascaded H-bridge STATCOM using zero-sequence voltage and negative-sequence current[J]. IEEE Trans on Power Delivery,2010,25(2):543-550.
    [120]徐政.基于晶闸管的柔性交流输电控制装置[M].北京:机械工业出版社,2005.
    [121]杨帆.STATCOM抑制次同步振荡的原理与仿真分析[D].北京:华北电力大学,2012.
    [122]IEEE Subsynchronous Resonance Working Group. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Trans, on Power Apparatus and Systems,1977,96(5):1565-1672.
    [123]谢小荣,杨庭志,姜齐荣,等.采用SVC抑制次同步谐振的机理分析[J].电力系统自动化,2008,32(24):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700